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A prescription is given for obtaining the Green's function for 11' free particles which can have different masses. 
The approach is systematic and straightforward. A coordinate transformation of the Fourier integral repre­
sentation of the N-particle noninteracting Green's function facilitates the integration over 3N-1 angular vari­
ables of wavenumber space. A single radial integral can then be evaluated. The resulting Green's function 
representation may be of use in applying the integral form of SchrOdinger's equation to calculate the ground 
and excited states of atoms. 

For certain problems in quantum mechanics, it is 
advantageous to reduce the number of continuous 
variables, replaCing them with sums over discrete 
variables. Many investigators 1- 6 have utilized some 
form of hyperspherical coordinates to express a 3N­
dimensional problem, 11' = 2, 3, 4, ... , in terms of a 
sin6le continuous radial variable with the remaining 
3N-l coordinates being angles. Functions of the 3N 
coordinates may then be expanded in terms of a set 
of "generalized" spherical harmonics labeled by dis­
crete indices. If N is 1, ordinary spherical polar 
coordinates result. 

tween particles 1 and 2 with masses m 1 and m 2' res­
pectively, r 2 is the vector from their center of mass 
to a third particle, and r 3 is a vector from the center 
of mass of all three to a fourth particle. The ith vec­
tor r;, i = 1,2, ... , N, is from the center of mass of 
all the particles 1, 2, 3, ... , i to the center of mass 
particle i + 1. The ith reduced mass, Ili' is 

In this paper, a well- known hyperspherical coordin­
ate system 7 ,8 is employed to obtain the noninterac­
ting Green's function for N + 1 distinguishable par­
ticles. Although other forms of the many-particle 
Green's functions are available, 9,10 the representa­
tation developed here permits one to employ the inte­
gral solution precedure of Sams and Kouri, 11 which 
is a numerical method for noniteratively solving 
integral equations. It has been used successfully in 
carrying out numerous scattering calculations 12 and 
bound state investigations for model potentials such 
as the Lennard-Jones. 12,6 Since such integral equa­
tions are constructed using Green's functions, their 
numerical method can be employed to calculate 
energy eigenstates of systems composed of several 
particles if the relevant Green's functions are known. 
The present representation for the N-particle 
Green's function is computationally convenient for 
solving the integral form of Schrodinger's equation 
for atoms,13 and it therefore may be of some benefit 
in analyzing other three- or more- body problems. 14 

In center of mass coordinates, r 1 is the vector be-

809 

(; 11 ;+1 
11; = m;+l .6 mj .6 m j , 

)= 1 )=1 

and 71 i is defined by 

2 
71; = Il i • 

The Green's function G (<H I <H') for N free particles 
having reduced masses 71; satisfies the 3N-dimen­
sional inhomogeneous differential equation 

(t1 (~;Y Vi
2 

+ K2) G (<HI <H') 

(1) 

(2) 

= - o(r1 - r~)o(r2 - r~) ... o(rN - r;'), (3) 

where the vector <R possesses 3N components and the 
right side of Eq. (3) is a product of N three- dimen­
sional Dirac Ii functions. The Fourier integral re­
presentation of G (<HI <H') may be written as 

G(<HI <H') = (2~ yN J dU1 J du2 ' .• J dUN 
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ties in Eq. (4) follow from the boundary conditions 
imposed on G(ffi) as ffi -700. It is convenient to let 

and 

in order to obtain the equation 

(5) 

(6) 

G(ffilffi/) = (-i1T~3NJ "Ildgl J "I2dg2'" J "INdgN 

x (e ig1' (R1-RP eig2 . (R2 -R~ > ••• eigN.(RN-R;'» 

2 2 2 2 
gl +g2 + ... +gN- K 

(7) 

By employing a partial wave decomposition1 6 and 
integrating Eq. (7) over the 2N spherical polar angles 
J g , ... ,Jg ,CPg,"" CPg ,the expression for 

1 N 1 N 

G (ffi I ffi/) becomes 

I (2\ N 100 3 2 roo 3 2 00 3 00 00 00 11 12 / N 

G(ffilffi) = rr} 0 "Ilgldguo "I2g2
dg

2" ·Jo "INgNdgNl~O 1~0 zp=o m~z1 m~-12 m"!}-I
N 

l(jZ1 (glR 1) jI1 (glR1)jI2 (g~2)j12 (g~;} .. jIN(gNRN)jIN(gNRl,)\ 

I g ~ + g~ + ... + gJ - 'K2 -; 

Xym1(R )ym1*(R/)ym2(R )ym2* (R') ... ymN(R~ )ymN*(R')t (8) 
11 1 Z1 1 12 2 /2 2 / N N INN \' 

has been employed in performing the integration. 

The orbital angular momentum of the ith particle, 
i = 1,2, .. , ,N, is designated li and the z component 
is m i ; so the spherical Bessel functions written in the 
form jl ,(gi Ri ) represent" single-particle functions." 

t 
The lith spherical Bessel function jl ,(g~i) is defined , 
in terms of the cylindrical Bessel function 
.lz ,+1/2(giRi) by the equation , 

(10) 

and the Yl~ lfti ) (m i = - li' - li + 1, •.. ,li) are ordin-
z 

ary spherical harmonics defined by Edmonds. 17 

After Eq. (8) is expressed in hyper spherical coordin­
ates, the many-particle representation of the Green's 
function will be explicitly given by executing the re­
maining integrals, which are tedious but not difficult. 
The hyperspherical coordinates include 4N spherical 
polar angles ei, e;, ¢i' ¢! and hyper spherical distances 
p and p' defined by 

and 

N 

p2 = ~ (ri ) 2 
i~1 

N 

p'2 =~ (r{)2 
i~l 

(11) 

(12) 

where r i is the ith radial spherical polar coordinate 
for the observer; primes denote source coordinates. 
In addition there are 2N- 2 hyperspherical angles OJ 
and oj ,j = 1,2 ... ,N - 1, given by the relations 

r l = p COSQll' 

r 2 = P sinQlI COSQl2' 
... , (13) 
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and 

rN- 1 = p sinol sinQl2'" cos0N-I' 

rN = p sinQlI sinQl2' .. sinQlN_I, 

r{ = p' COSQl{, 

r2 = p' sinoi COSQl2' 
... , 

rl,-l = p' sino;' sinQl2' .. COSQlN_l 

(14) 

rl, = p' sino{ sin02 ... sinoN-V 0 ~ 0; ~ 7T/2. 

Hyperspherical coordinates of wavenumber space 
have radius Q, given by 

N 

Q2 = ~ (gi)2, 
i=l 

(15) 

and the hyperspherical angles (3j' j = 1,2, ... , N - 1, 
are introduced by the relations 

g I = Q cos/3t, 

g2 = Q sin{31 cos{32' 
... , (16) 

gN~l = Q sin{31 sin!32'" cos{3N_l' 

gN = Q sin{31 sin{32' .. sin/3N_I' o ~ /3. ~ 7T/2. 
J 

The other 2N coordinates, Jg. and CPg., are the spheri-, , 
cal polar angles over which integration was carried 
out to obtain Eq. (8). 

With this choice of coordinates, the products of 
spherical Bessel functions n~ljz .(giRi) and 
n~=ljl.(giR;) in Eq. (8) can be separately coupled, using , 
the product expansion relationl8 : 

J" (z sine sin<l> VJl (z cose cos<l» 
00 

= 2z- 1 :L; J"+Jl+2~+1 (z) cosIJ6 sin"<l> 
x~o 

x ~l (- ~, J) + 11 + ~ + 1; J) + 1; sin26) 

x ~l(- tt, J) + 11 + It + 1; J) + 1; sin2<l» 
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x cosJl<p sinve(- 1)~(v + J1 + 2:1. + 1) 

(
r(v + (.t + x + 1)r(v + x + 1») 

x x!(r(v + 1)]2r«(.t + ~ + 1)' (17) 

The orders v, J1 of the Bessel functions can assume 
any value except negative integers, and x is zero or a 
positive integer. Thus, 2F1 is the Jacobi polynomial 
of x + 1 terms, and r is the usual gamma function. 
Equation (8) may be represented in hyperspherical 
coordinates exclusively after 2(N - 1) coupling opera­
tions are performed; however, a definite pattern is 
followed to implement this transformation. By using 
Eq. (17), the functions jz N (gNRN) andjz N (gN-lRN-l) are 
initially coupled to yield a two-particle "cluster 
function," where the hyperspherical variable p is a 
parameter. Likewise the functions jz N (gNRj,) and 
jl (gN-IRlv-l)are coupled producing tne two-par-

N-J 
ticle "cluster function" with p' entering as a para­
meter, Le., 

jZN(gNRN)jZN_1 (gN-lRN-l) = [(2g;RJ (2gN_1T1RN_~)r/2 
xJz +1/2(gNRN)J; +1/2(gN-lRN-l) 

N N-l 

= 2~p(sini31' .. sini3N_2 ~inCl'l ... sinaN_2) 

xi; (Q~) J1N+1N-l +n +2(Qp sintl1 ··· sintlN_2 
7;1 =0 J 

and 

x sinal'" sinCl'N_2) COS1N-1Cl'N_l sin1NaN_1 

X F(- ~1' l.v + IN-l + nl + 2; ~ + ~; sin2 Q1N_l) 

x cos lN-1{3 sinlN{3 N-l N-l 

x Ft- ;\1' IN + IN-l + )1:1 + 2; '-N + ~; sin2{3N_l) 

x (- 1)~J:n:12 (18) 

and 

jZ)gNRj,)jZN_l (gN-lRlv-l) = [(2g:R~) (2gN-~lv-J J 1/2 

X Jz +1/2(gNRlv)J; + 1/2 (gN-IR!v-l) N N-1 

= 2;P' (Sintll'" sintlN_2 ~iDCl'{ ... SinCl'!v_2) 

x ~o (Q~') J;N+lN-l +2A'J+2 
1 

x (Qp' SiIlf31 ... sintlN-2 sinal' " sinCl'!v_2) 

X COSZN-1Cl'N_1 sinlNalv_1 

X F(- '\:1' '-N + IN-l + Xl + 2; '-N + i; Sin2Cl'N_l) 

x COSlN-J{3N_l sin l.v tlN-l) 

x F(- :t1, l.v + '-N-l + ;\~ + 2; iN + ~; Sin2{3N_l) 

x (- 1V~ (:n:~)-2, (19) 

(20) 

:n:'Z _ ~~![r(lN + %)]2r('-N-l + 7t~ + ~) 
1 - 2('-N + IN-I + 2:tl + 2)r('-N + IN-l + ~1 + 2)r('-N + x~ + %) (21) 

Thus the two-particle "cluster functions" are shown 
in Eqs. (18) and (19). 

The second step in transforming the integrand of Eq. 
(8) entails coupling the single-particle functions 

jz (gN-zRN-2) andjz (gN-zR!v-2) to the two-particle 
N-2 N-2 

"cluster functions" of Eqs. (18) and (19), respectively, 
using the product expansion relation of Eq. (17). To 
these expanded results, the functions jz (gN-3 RN- 3 ) 

N-3 
andjz (gN-3J(N-3) are, respectively, coupled which 

N-3 
completes the third transformation step. Finally, the 
N-particle "cluster function" is formed by coupling 
the remaining Single-particle function,il ,to the (N -
1)-particle "cluster function." J 

However, the integral representation for the norun­
teracting N-particle Green's function G(<RI<R') can be 
generated from a generalized expression for the pro­
duct expansion operation that will couple M particles, 
M = 2,3,4, ... ,N, within a hypersphere of 3M dimen­
sions and will thus yield an M-particle "cluster func­
tion." The (M - l)th product expansion operation is 
now considered where an Ma -particle function is 
coupled to an Mb -particle product expansion, and it 

follows that M = Ma + Mb • (Note that Ma is equal to 
one in the present treatment.) Via this coupling pres­
cription with the hyper spherical coordinates intro­
duced, the (M - l)th expansion operation couples the 
(N - M + l)th Single-particle expression to the (M -
2)th Mb-particle expression. By identifying the rela­
tions 

Qp COS~_M+l COSQlN_M+l = Qp sinf3t ... sin.BN-M 

X COS{3N-M+l sinCl'l'" sinaN_M COSCl'N_M+l' (22) 

Qp sinoN-M+1 sin.BN-M+I = Qp sin.B1 · .• siIlf3N-M 

x sintlN-M+l sinal'" sin0N-M sinaN-M+I , (23) 
and 

a = N- M + 1, (24) 

then the (M - l)th product expanSion in the sequence 
of (N - 1) expansions may be expressed as 

( 
_._ 1r )Ma/

2 
J; +1/2 (Qp costlo COSCl'o) 

2Qp cos.Bo cosao a 

X (~\Mb/21 _ . 1. ) (3Mb/2-1) 

2-; \ Qp sm.Bo Slntl'o 
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x J (Qp siI1i3o sino) 
VM-2 

= (i)MI2 ~_J(Q~)(3 M/2-1) Jv M-I (Qp) cosloO'o 

x sin{ IJ 1Ih -[(3 Mb/ 2)-1]) 0'0 

x F(- AM-I> lJM- I - jtM-l; lJM- 2 + 1; sin2 0'0) 

X cos1a{30 sin{UM- z-[(3Mb/2)-l]},Bo 

x F(- jt M-l' lJM- 1 - A M-l; lJM-2 + 1; sin2!30 ) 

x (- 1)"M-l (~M-l)-2J 
= (i) M/2 (~py3M/2-1) 

x I; [J (Qp) cOSAa(o)O' sin Ab (M-2)QI 
_ IJ M-l 0 0 

1tM-l -0 

X COSAa(a){:3o sin Ab(M-2){:3a 

x F(- jtM-I' lJM- I - lI:M- I; lJM - 2 + 1; Sin2Qa) 

x F(- lI: M - I , lJM- 1 - lI: M- 1 ; lJM- 2 + 1; sin2i3a) 

x (- l);\M-I (!RM_l)-Z, (25) 

where 

(!RM-l) 2 

(AM-I) 1 [r(lJM- 2 + l)]2r(lI:M- I + Aa(a) + 3Ma/2) 

= 2(lJM-I)r(lJM-C ~M-1r(lI:M-I + Ab(M-2) + 3MJ2) 
(26) 

The M-particle "cluster functions" constructed in 
Eq. (25) by the (M - 1)-product expansion operation 
contains a cylindrical Bessel function order lJM-I> 

which is given by 
M-I M-I 3M 

lJM- 1 = 6 lw-i + 2 6 n; + 2 - 1, 
i=O i= 1 

(27) 

where the IN-i are individual particle orbital angular 
momentum quantum numbers and the \ are defined 
in Eq. (17). The order lIM-2 of the cylindrical function 
belonging to the Mb -particle "cluster function" is 
obtained from the relation 

M-2 M-2 3M 
lJM- 2 = 6 Zzv-i + 2 6 n; + T - 1. (28) 

i =0 i= 1 

It is also apparent that the powers Aa(a) of the cosine 
functions produced by the (M - l)th product expan­
sion are numbers related to the number of particles 
Ma; Le., the Aa(a) are quantum numbers given by 

Aa(a) = IN-M>l' (29) 

Similarly the powers >..b (M - 2) of the sine functions 
are connected with the number of particles M b inclu­
ded by the (M - 2)th product expansion. 

The relevant relation here is 
M-2 M-2 

'Ab (M - 2) = 6 lw-i + 2 6 iii • 
i=O i= I 

(30) 

It also may be seen that 

lJM-2 = Ab(M - 2) + (3M b /2) - 1 (31) 
and 

lJM- I = 2l1:M- 1 + 'Aa(a) + Ab(M - 2) + (3M/2) - 1. (32) 
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Now hyperspherical coordinates and Eqs. (27)-(30) are 
used in order to write the N-particle Green's func­
tion integral of Eq. (8) as 

The orthogonality condition19 

.C /2 (sin{3o)(ZAb (M-2»3 Mb -1) (cos{3o) (2 Aa (0).3 Ma -1) 

X F(- "'M-l' lJM- 1 -- ?tM- I ; VM-2 + 1; sin2i3o) 

(33) 
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xF(- 7t~-1' vM-I - 7t~-I; lJM- 2 + 1; sin2i3o)di3o 

= 0 A M-1 "~-I 
X ( (7tM- 1) l[r(vM_2 + 1»)2r(ltM-l + M(a) + 3Ma/2) \ 

2VM-l r(lJM_I - ~M-1)r(i\M-1 + II.b(M - 2) + 3Mb/2)! 
(34) 

is utilized to perform the (N - I)-fold integration 
over the hyperspherical angles i3j' j = 1, 2, ... , 
N - 1, in Eq. (33), and the resulting expression is 

N ( 1 ~(3NI2-1) 
G (mlm')= n (Tli)3 -, 

i=l pp 

x2.:;2.:; .. ·2.:;2.:;L; ... L;2.:;2.:; ... 2.:; 

QJu (Qp)Jv (Qp')dQ 
x 1, "'" N-l N-l 

o Q2 _K2 

X ymN(R )ymN*(k)ymN-I(R _ ) 
IN N IN N IN-1 N 1 

X y/''N-I * (Ii ~-1)' •• Yz mi (R1) YI m1 * (R{) 
N-l" 1 1 

2 I • Ab(O) X:n;: cosN-IQlN_1 sm Q1N-1 

x F(-il: 1 ,v1 - 1t1; lJO + 1; Sin2Q1N_1) 
IN-I' . Ab(O) , 

x cos Q1N-1 sm Q1N-l 

x F(- 1t1' V1 - 7t 1; lJO + 1; Sin2Q1~_1) 
-2 I . Ab(1) x JL2 cos N-z Q1N-2 sm Q1N-2 

x F(- 7t 2, lJ2 - 7t2; lJI + 1; sin2Q1N_2) 

X COSIN-Z",' sinAb(1)Q1' 
UN-2 N-2 

1 . 2 ' ) X F(- 1t2 , lJ2 - ~2; V1 + ; sm Q1N-2 
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-2 I . I-.b (N-2) 
X :rrN-I cos!a1 sm 0'1 
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I . I-.b(N-2) x cos IQl{ sm Q1{ 
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The summations in the above equation collapse into 
finite sums for a fixed value of N - 1. Thus, only a 
finite number of terms are associated with anyone 
hyperradial Green's function. 

The hyperradial integral in Eq. (34) can be evaluated 
to yield20 

~ rriJu (Kp J Hu(1) (Kp» , 
N-l N-I 

and the outgoing wave solution G(mi m') of Eq. (2) is 
thus determined where p <, p> are the lesser and 
greater, respectively, of p and p'. The cylindrical 
Hankel function of the first kind is designated H (1), 
and the 'JC:"2, . = 1,2, .. " N - 1, are obtained from 

J J 
Eq. (25). 

This representation of the many-particle Green's 
function appears to be useful in obtaining non-Har­
tree- Fock wavefunctions and energy levels for many 
electron atoms. 13 
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Another Set of Axioms for Classical Gas Dynamics 
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Another set of axioms is given for a nonequilibrium classical gas composed of hard, spherical, nonattracting 
molecules. It is shown"that the thermodynamic functions of this type of gas can be expressed as multiple inte­
grals. It is also shown in a certain limiting case that the thermodynamic functions of this type of gas can be 
expressed as Wiener integrals. 

1. INTRODUCTION 

A new model is given for a nonequilibrium gas com­
posed of hard, spherical, nonatiracting molecules. It 
is shown that with this model such nonequilibrium 

parameters as average velocity at a point, pressure 
at a point, density, and the correlation functions may 
be exactly expressed as multiple integrals. Thus a 
theory of gas dynamics is derived in terms of inte-
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xF(- 7t~-1' vM-I - 7t~-I; lJM- 2 + 1; sin2i3o)di3o 
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N - 1, in Eq. (33), and the resulting expression is 
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The summations in the above equation collapse into 
finite sums for a fixed value of N - 1. Thus, only a 
finite number of terms are associated with anyone 
hyperradial Green's function. 

The hyperradial integral in Eq. (34) can be evaluated 
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and the outgoing wave solution G(mi m') of Eq. (2) is 
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and the 'JC:"2, . = 1,2, .. " N - 1, are obtained from 

J J 
Eq. (25). 

This representation of the many-particle Green's 
function appears to be useful in obtaining non-Har­
tree- Fock wavefunctions and energy levels for many 
electron atoms. 13 
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Another set of axioms is given for a nonequilibrium classical gas composed of hard, spherical, nonattracting 
molecules. It is shown"that the thermodynamic functions of this type of gas can be expressed as multiple inte­
grals. It is also shown in a certain limiting case that the thermodynamic functions of this type of gas can be 
expressed as Wiener integrals. 

1. INTRODUCTION 

A new model is given for a nonequilibrium gas com­
posed of hard, spherical, nonatiracting molecules. It 
is shown that with this model such nonequilibrium 

parameters as average velocity at a point, pressure 
at a point, density, and the correlation functions may 
be exactly expressed as multiple integrals. Thus a 
theory of gas dynamics is derived in terms of inte-
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grals, rather than in terms of partial differential 
equations. 

Since the average velocity at a point of the gas 
modeled in this paper satisfies the hydrodynamic 
equations, and since its total energy is preserved with 
time independent potentials, the integral formulation 
given here is essentially equivalent to the differential 
formulations. 

While these integrals are difficult to approximate 
numerically, their numerical approximation seems to 
be no more difficult than the present methods used to 
solve the Maxwell-Boltzmann equation or the Navier­
Stokes equations. 

It will further be shown in the limiting case as the 
temperature of the gas approaches infinity that the 
typical path of a molecule in the gas has the same 
distribution as Brownian motion with a drift co­
efficient. In this case it will be shown that all para­
meters of the gas may be expressed as Wiener inte­
grals. The author has recently shown how this type of 
Wiener integral can be numerically evaluated. 

There is a connection between the type of Wiener inte­
gral derived in this paper and the path integral of 
quantum mechanics. This connection will be given in 
another paper. 

The approach taken is qualitatively as follows. At 
each point the initial local temperature, mean velocity, 
and density are given for the gas. It is assumed that 
when the molecules of the gas collide, the average 
velocity and energy of the molecules at the point 
where the collision takes place are conserved. It is 
shown that the preservation of these quantities implies 
preservation of local temperature also. It is also 
assumed that the paths of the molecules are continuous. 
A further assumption is made that the distribution of 
the velocities of the molecules just after a collision 
has maximum entropy, subject to the constraints of 
preservation of energy and average velocity. It is 
shown that, with these assumptions, the distribution of 
the velocities at a given pOint just after a collision is 
completely determined and that this distribution is 
normal with mean the preserved average velocity and 
with variance proportional to the preserved local tem­
perature. Since the paths of the molecules are 
assumed to be continuous, the distribution of the posi­
tions of the molecules just after a collision is the 
same as just before. Therefore, it is shown that, with 
these assumptions, it is possible to calculate the distri­
bution of both the poSition and velocity of the mole­
cules just after a collision, given that it is known just 
before a collision. Since it is assumed that the mole­
cules obey the laws of classical mechanics, the distri­
bution of their positions and velocities can be deter­
mined in the times between collisions since their posi­
tion paths obey a given differential equation with 
initial conditions the random position and velocity of 
their last collision. 

It is then shown that the distribution of the positions 
and velocities of the molecules at any time after the 
initial time and at any place can be calculated. This 
distribution is determined by computing the expected 
value of any function of the paths or their velocities 
with respect to it. This expected mean, or average, is 
shown to be a multiple integral, or a ratio of multiple 
integrals. 
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While these multiple integrals can be explicitly writ­
ten down, their actual numerical calculation appears 
to present serious difficulties. 

Since the mean intermolecular time is very small for 
most gases, a natural approximation for the above 
integrals is to let this parameter tend to zero. An 
analYSis of what happens in this case is given. In 
order that the variance of the pOSitions of the mole­
cules stay positive, it is necessary that the tempera­
ture of the gas approach infinity as the mean inter­
molecular collision time approaches zero. 

If these assumptions are made, it is shown that the 
above multiple integrals become Wiener integrals 
(real path integrals), which are very close in form to 
the Feynman path integrals which solve the SchrOdin­
ger equation. 

These real path integrals depend on only the external 
potential and the initial density and average velocity. 

Thus with the above assumptions any parameter of a 
nonequilibrium gas can be expressed as a Wiener inte­
gral. 

While the collisions in a gas without long range inter­
action forces occur at random time intervals, the 
assumption is made that the collisions occur at regu­
lar time intervals. This is justified on the ground 
that the intercollision time is very small, so that the 
error introduced is negligible. 

In the case of the high temperature approximation, the 
equation of the pOSition paths of the molecules, x(t), 
formally becomes a stochastic equation of the form 

x(t) == u(t,x(t)) + Az(t), 

where z(t) is the derivative of Brownian motion and u 
satisfies the partial differential equation 

where V is the external potential for the gas. This 
contrasts with the Ornstein-Uhlenbeck model 

described, for example, in Nelson.l 

2. THE MODEL AND SOME DEFINITIONS 

The following axioms are assumed for the gas: 

(a) The molecules of the gas obey the laws of New­
tonian mechanics. 

(b) The position vectors of all molecules, the energy, 
and the average velocity of the gas at each point of 
the space in which the gas is enclosed are continuous 
functions of time. 

(c) The molecules are nonattracting, and the col­
lisions between them are elastic. 

(d) At collisions the entropy is maximized. 
A fifth axiom is added for the sake of mathematical 
convenience. 

(e) The collisions occur at all points of the space at 
regular intervalS ti = it:J., i = 0, 1,2, .... 

It will also be assumed for mathematical convenience 
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that the mass of the molecules to be dealt with is 
unity and that they move in only one dimension. A con­
siderable amount of notational and mathematical 
clarity is achieved by this last assumption with no 
loss in generality since all results are invariant with 
respect to the dimension of the space in which the 
molecules move, if the external force is the negative 
of the gradient of a potential, and the initial mean 
velocity is irrotational. 

It is assumed that the gas occupies all of space. A 
later paper will shown how boundary conditions can 
be included in the model. 

It is also assumed that if a function is differentiated, 
its derivative exists and, that if the function is inte­
grated, its integral exists. 

We assume now a gas satisfying axioms (a), (b), (c), 
(d), and (e) listed previously. At each point x and for 
all times t 2: 0 a potential V(t, x) is assumed given, 
with - Vx = f· 
At time 0, it is assumed that at each point x of space 
the average velocity u(O, x), the density p(O, x), and the 
variance of the velocity k(O, x) are given. 

It will be shown hOW, with the help of axioms (a)-(e), 
the quantities u, p, and k can be determined inductively 
for all time. 

At times tp by axiom (e), a collision takes place. We 
will denote by t; quantities at time ti just before the 
collision takes place and by tt quantities just after 
the collision takes place. By axiom (b), the quantities 
U, k, and p are continuous in time at collisions (p is 
continuous since the paths of the molecules are), and 
therefore 

u(ti,x) = u(tt, x), k(ti,x) = k(tt,x), and 

p(ti, x) = p(tt, x) for each x. 

We use the notation 

E{F(x, i)} 

to denote the expected, average, or mean value of the 
function F(x, x) of the position paths of the molecules 
x and their velocities x and the notation 

E{F(x, x) 1 x(t) = x} 

to denote the expected, average, or mean value of 
F(x, i) given x(t) = x, or, in other words, the expected, 
mean, or average value of F(x, x) over all paths whose 
position at time t is x. Thus 

u(t, x) = E{ x(t) 1 x(t) = x} 
and 

k(t, x) = E{(x(t) - u(t, x))21 x(t) = x}. 

At time 0- = t'O at each point x, the velocities have a 
certain distribution whose exact form does not con­
cern us; we know by assumption, however, that their 
mean is u(O, x) and that their variance is k(O, x). 

Let N be total number of molecules in the gas. Then 
p(O, x)dxN is defined to be the number of molecules at 
x at time O. 

Let p (0- ,x I x(O) = x) be the unknown conditional distri­
bution of the velocities of the molecules at x at time 

0-. It can be seen that the total number of molecules 
at x with velocity x at time 0- is peEr, xl x(O) = x) 
p(O, x)Ndxdx, and thus the total kinetic energy of the 
molecules at x at time 0 is 

f-:~x2p(0-,xlx(0) =x)dx p(O,x)dxN 

= EH [x(O))21 x(O) = x}p(O, x)dx N 

The energy at 0- ,x, E(O- ,x), is now seen to be 

E (0- ,x) = (E{[ x(0)]2/21 x(O) = x} + V(O, x»p (0, x)dx N 

= HE{[x(O) - u(O,x))21 x(O) = x} + tu2(0, x) 

+ V(O,x»p(O,x)dx N 

= H k(O, x) + ~ u 2 (0, x) + V(O, x))p(O, x)Ndx 
(2.1) 

Equation (2.1) shows that k(O, x) must be continuous at 
time 0, since all the other members of (2.1) are. 

By assumption, collisions occur at 0, x. By axiom (b), 
the paths of the molecules are continuous, and there­
fore the position of a molecule just after a collision is 
the same as just before it. Thus the density function 
is the same just after a collision as just before it. 
This is not true, of course, of the velocities which by 
axiom (c) change instantaneously. 

To obtain the distribution function for the velocities 
just after a colliSion, axiom (d) is used. By axiom (b) 
E (0, x) and the average velocity u(O, x) are the same 
just after the collision as just before, and therefore, 
as is well known, we must maximize 

- f-:p(O+, x I x(O) = x)ln[p(O+, x I x(O) = x)]dx (2.2) 

subject to the restrictions 

L: p(O+, x I x(O) = x)dic = 1, 

L: xp(O+, x I x(O) = x)dx = u(O, x), 

f-:~ ic2p(0+, x I x(O) = x)dx 

(2.3) 

(2.4) 

+ V(O,x)p(O,x)dxN= E(O,x). (2.5) 

Equation (2.4) is, of course, just the condition of 
preservation of average velocity, and (2.5) is the 
preservation of energy. Via (2.1), (2.3) and (2.4), it 
can be seen that (2.5) can be written as 

L: [x - u(O, x))2p(O+, x I x(O) = x)di = k(O, x). (2. 5') 

The variational problem (2.2), (2.3), (2.4), and (2.5) is 
solved by Lagrange multipliers. Its solution is easily 
shown to be 

p(O+, ic) 1 x(O) = x) = ooexp { - [x - u(0,x)]2/2c} , 

f-ooexp{ - [x - u(O, x))2/2c}dx 
(2.6) 

where c is determined by (2.5') 

Since 

(21TC)- 1/21-: [x - u(O, x)]2 

x exp{- [x-u(O,x)]2/2c}dic = c, 

it follows that 
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c = k(O,x) 

and from (2.6) it follows that 

P (0+, X I x) = [27Tk(0, x) j1/2 

x exp{-[x-u(0,x))2/2k(0,x)}. (2.7) 

If the gas considered were in equilibrium, then the c 
defined above would be RT, where R is the gas con­
stant and T is the temperature of the gas (see Jeans, 2 
for example). In the case considered, therefore, k(O, x) 
has interpretation of being RT(O, x), whereR is the gas 
constant and T(O, x) is the local temperature. 

The density function p(O+, x I x(O) = x) gives the distri­
bution x at 0+ given x(O) = x. The joint distribution of 
x and x is therefore 

p(o+, x, x) = [27Tk(0, x)j1/2p(0,x) 

x exp{[x-u(0,x))2/2k(0,x)}. (2.8) 

If ° ~ t ~ t1 and F is an integrable function of x(t) and 
x( t), it follows that 

E{ F(x(t), x(t»} 

= r:, J_:F(x(t), x(t))p(O, .io' xo)dXodx o 

= f-:[27Tk(0,x o)]-1/2f-:F(x(t), x(t»p(O, x o) 

x exp{ - rxo - u(O, xo))2 /2k(0, xo)}dXodxo' (2.9) 

x(t) is the unique solution to the equation x'(t) = 
f(t, x(t» with initial conditions x(O) = Xo andx(O) = xo' 

It is to be emphasized that the differential equation 
x( t) = f(t, x(t)) must be solved for all values of its 
initial conditions, which are the variables of integra­
tion. This can, of course, be done explicitly only in 
special cases such as linear or quadratic potentials, 
V(t, x). 

Let x.n(x) = 1 if x is in a set B which is in the space in 
which the molecules are moving, and let XB(X) = ° if 
x is not in B. It follows then that the normalized den­
sity at t, x is 

p(t,x) = lim E{ x.n(x(t))}/IBI, 
13-">x 

where IB I is the length (in one dimension) of B; lim B-'x 
means that B contains x and shrinks down to it. We 
define 

E{ F(x(t), x(t» I x(t) = x} as lim E{F(x(t), X(t))XB(x(t))} , 
B-'x E{ XB(X(t))} 

(2. 10) 

where the lim B -.x is the same as before. See Kac. 3 

It can be seen if ° ~ t ~ t1 

p(t,x) = j"(t)=X[27Tk(0'X
O
)j1/2 p(0,xO) exp{ - [xo -u(0,xo))2/2k(0,xo)}dXodx o' 

j"(1)=127Tk(0, xOW1/2 x(t)p(O, x o) exp{ - rXb - u(O, x o))2/2k(0, xo)}dxodxo 
u(t, x) = 

(2.11) 

(2. 12) 
p(t, x) 

and 

k(t, x) = 
f"(I)= X[27Tk(0, x)]-1/2 [x(t) - u(O, x))2p (0, x o) exp { - [xo - u(O, x o)]2 /2k(0, xo)}dxdx 

p(t, x) 
(2. 13) 

As before, x(t) is obtained by solving the differential 
equation x(t) = f(t, x(t)) with initial conditions the vari­
ables of integration xo,xo' The notation Jx(t)=xdxodxo 
means to integrate over all values of xo and Xo such 
that x(t) = x. 

It follows that if the initial density, temperature [since 
RT(O, x) = k(O, x)], and average velocity of the gas are 
known for each initial point x and if the gas considered 
satisfies axioms (a)-(e) that these parameters can be 
calculated (in principle anyway) at time t1, for all 
values of x. t1 is, as defined before, the time of the 
second collision. Equation (2.8) shows that if u, k, and 
p are known just before the first collision, and if 
axioms (a)-(e) are assumed, the distribution of x and 
x just after the first collision can be determined. We 
apply (2.8) to determine the distribution of x and x 
,ust after the second collision. using the values of u, 
p, and kat t1 obtained from (2.11), (2. 12), and (2.13). 

u(t;. x) 

Therefore, by induction, it follows that any thermo­
dynamic function [see (2.9)] of the gas can be cal­
culated, since in fact the general distribution of x and 
x is now given. 

If tn ~ t ~ tn+1> the following formula can be obtained 
by induction: 

u(t;, x) and k(t;, x) for i 2: 1 can be calculated as be­
fore or by the recursive formulas 

1- . .J x(t;)=X[n~:i~127Tk(tj' X j)j1/2p(0, xO)[x(f i )] exp[- L)i-1 [~ - u(tj' Xj )]2 /2k(t j , Xj) ]dxodxo' •• dXi-1 

= r'-jX(ti)=x [n~:~127Tk(tj,Xj)]-1/2p(0,xo) eXP{ -:6[Xj -u(tj,Xj)]2/2k(fj'Xj)}dxodXo"'dXi-l ' 

(2.15) 
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r . .J x(ti)~x [n;:i~l 217k(tj , xj)f 1I2p (0, XO)[X(ti ) - U(ti' Xi)]2 exp { - ~i-1[Xj - u(tj' -'j)]2 /2k(tj , x)}dxodxo . •• dXi_1 

r .. f X(ti)~X[n 17k(tj , xj ) r 1/ 2p(0, X 0) exp{ - L: [Xj - u(tj ,x)]2 /2k(tj' Xj )}dxodxo• •. dXi -1 
(2.16) 

The notation f. .. lX(ti)~X means to integrate over 
those values of x o, x o, •.. , xi -1 such that x(ti) = x. 
The xo' xo, .•. , xn are independent quantities (Le., 
they are variables of integration). The variables x. 
are calculated inductively with xl = x(t 1), where x(t) 
satisfies the differential equation xU) = J(t, x(t)} with 
initial conditions x(O) = xo, x(O) =.xo' x2 = x(t2)' 
where x(t) = j(t, x(t)) with initial conditions x(t1) = Xl 
and X(ll) = Xl and so on for all the other Xi. x(t) is 
the solution to x (t) = J(t,x (t)) with initial conditions 
x(tn) = xn, x(tn) = x n • u(O,x) and k(O,x) are,asbefore, 
given initially. 

Another way of interpreting the probability distribu­
tion of xU) and x(t) is possible. This representation 
will be needed later. If tn < t :s tn+l' then x(t), x(t) is 
the solution of the differential equation x(t) = j(t, x(I») 
with initial conditions 

x(t;) = x(t;;) 
and 

x(t;) = u(tn, x(t;;)) + zn (k(t n , x(t;; )))112. 

(2.17) 

(2. 18) 

in is a Gaussian (normal) random variable with mean 
zero and variance one. 1.1 and k are, as before, com­
puted by the formulas 

u(tn' x) = E{x (t;;) I x(tn) = x} 

k(fn, x) = E{(x(t;) - u(t, x(tn )))21 x(tn) = x} 

x(O) has distribution p(O, x(O)), which is assumed given 
as are u(O,x) and k(O,x). 

This can be seen as follows. 

We change variables in (2.14) by letting 

(2.19) 

The Jacobian of this transformation is n;~~ [k(t;. xi )]1/2 
and so (2.14) can be rewritten as 

E{ F(x(t), x(t»} = 1-: ... 1-: (217r n
/
2 F(x(t), x(t»p(O, x o) 

x exp[- ,BzY/2]dxOdz O··• din. (2.20) 

Since the functions (217)-1/2 exp[- (z?/2)2] are the dis­
tribution functions of normal variables with mean 
zero and variance one and, since it can be seen that 
x( f), x(f) is actually a function of z 0' .•. , .in as des­
cribed by (2.17) and (2.18), it follows that the right­
hand side of (2.20) is the expected value of the arbit­
rary function F(i(t), x(t)) with respect to the Markov 
process described by (2.17) and (2.18). Since the 
values of u and k are computed exactly as before, this 
proves (2.17) and (2.18). (2.17) and (2.18) give 
another interpretation of the motion of the molecules 
of the gas. The molecules move according to the laws 
of Newtonian mechanics until a collision. The posi­
tion remains the same at the collision, while the 

I 
velocity is changed to a normal random variable 
whose mean and variance are the same as the mean 
and variance of the velocity of the fluid at the point of 
collision. The phrase "at the point of collision" is the 
root of most of the mathematical complications of this 
paper. However, the approach taken seems to be the 
only way that the gas may be modeled so that energy 
is preserved. 

In a real fluid, of course, the collisions do not occur 
at regular time intervals but have a probability dis­
tribution with respect to both time and space. The 
most natural distribution of collisions in both time 
and space of a gas satisfying axioms (a)-(d) is Pois­
son, and axiom (e) could now be replaced with this 
assumption. However, it does not seem that the in­
crease in accuracy derived by doing this would justify 
the additional mathematical complication. 

3. SOME CONSEQUENCES OF THE MODEL 

If the mathematical model of the proceeding section 
is to be considered physically valid, consequences of 
it must agree with known physical phenomena. In this 
section it will be explained why the total energy of the 
gas is preserved if the external potential is time in­
dependent and in what manner its parameters satisfy 
the hydrodynamic equations. 

It is well known that while a gas is freely flowing be­
tween colliSions, it satisfies the hydrodynamic equa­
tions, which are 

Pt + (up)x = 0, 

u t + uU x = - Px/p + J. 

(3.1) 

(3.2) 

p, 1.1, and J are defined in Sec. 2. P is pressure and 
according to Jeans4 may be defined, in the notation of 
this paper, as P = pk. 

At the collision times {t.}, all the above quantities are 
continuous by assumptidn, although the derivatives p , 
u. x, and Px might not be continuous as functions of tibe 
over the times tj" It should be remembered, however, 
that any derivation of the equations of motion of a gas 
with discrete, hard collisions must involve some kind 
of time smoothing. 

That p, u,/, and P satisfy (3.1) and (3.2) may also be 
derived from the theory of the last section. 

By definition, the energy of the gas is preserved 
across collisions at each point and therefore for the 
entire g?-s at the collision times. In between colliSions, 
energy 1S preserved along each path, if the external 
potential is independent of time, and therefore the 
total energy of the gas is preserved in these times 
also. Thus the mean energy of the gas is preserved 
for all time if the external potential is independent of 
time. 

Since the total energy of the gas is preserved and 
since the entropy of the gas is always increasing, one 
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would expect from classical statistical mechanics 
that the distribution of the velocities and the positions 
of the molecules in the limit as time approaches in­
finity would be the Maxwell-Boltzman distribution. A 
direct proof of this fact seems very difficult and has 
not been found. 

4. THE APPROXIMATION TO BROWNIAN MOTION 

While exact expressions for the parameters of the gas 
considered in this paper are given by (2.14), they are, 
as has already been pointed out, very difficult to use 
for computational purposes. Since the intermolecular 
collision time f1 is extremely small, it seems that a 
good approximation for these integrals would be to let 
this parameter tend to zero. This approximation will 
be considered in this section. 

If, however, we let f1, which in this paper has the inter­
pretation as the mean length of time of a free path of 
a molecule, tend to zero, without changing the other 
parameters of the gas, then it can be seen that the 
variance of x(t) tends to zero which is clearly not 
desirable. 

From another point of view, it is shown in books on 
gas dynamics (see Jeans 2 ) that the mean length of time 
for a free path is const/v'temp. Therefore, if f1 is to 
tend to zero, we must let the temperature tend to in­
finity. 

In this paper k(t, x) has the dimensions of temperature. 
It is, therefore, multiplied by 1I. 2 / f1, where>.. is a new 
constant parameter which gives still some measure of 
the temperature or activity of the gas. 

Representation of the gas as a stochastic process now 
has the form 

x(tn+) = U (tn ,x(tn» + >..(znl.f15:)..Jk(tn, x(~», 

x(t~) = x(t;;). 

Consider now a process 
Will Az. [t/t.] 

z(t) = L; _t = L; zJA 
i.[l;. i 

(4.1) 

(4.2) 

where the Zj are, as before, independent random vari­
ables with mean zero and variance one. [t/f1] is the 
greatest integer less than t/f1. 
A t is now fixed. The number of collisions n from 
time 0 to time tis [t/f1]. We now let f1~ O. By defini­
tion [z (t + f1) - z(t)]I f1 tends the z(t), the derivative of 
Brownian motion. (4.1) formally becomes 

x(t) = u(t, x(t)) + lI.z(t)[k(t, x)]1/2 (4.3) 

The stochastic equation (4.3) is called an Ito equation 
and has been extensively studied; see It05 or Doob6 

for the theory of this equation. 

We now make another assumption: that the k(t, x(t» of 
(4.3) is in fact 1. This assumption is necessary since, 
while it is possible to derive a partial differential 
equation for u, it has not yet been possible to derive 
an expression for k(t, x) in the limiting case of f1~ O. 
The assumption that k(t, x) is 1 in the limit case can 
be justified in a number of ways. It might be assumed 
that the temperature becomes uniformly infinite 
throughout the gas, in which case it is justified. The 
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derivation of the Navier-Stokes equation (which is 
what is really desired for the case at hand) usually 
includes the assumption that temperature variations 
are negligible. Since, as has already been pOinted out, 
k(t, x) has the dimensions of temperature, it is again 
justifiable to set k(t, x) = 1. A third possibility of 
justification is to change the original model. k(t x) is 
included in the model so that energy will be con~erved 
across collisions. If we drop this assumption and re­
?lace it with the assumption that only average velocity 
IS preserved across collisions and that the impact 
force zn is of constant variance, then it is again justi­
fied to set k(t, x) = 1. This assumption will be made 
for the remainder of the paper. 

Equation (4.3) now reads 

x(t) = u( t, x( t» + A. Z (t). (4.4) 

A rigorous justification that the system described by 
(4.1) and (4.2) has a limit as f1 ~ 0 and that it is of the 
form (4.3) seems very difficult and has not yet been 
obtained. 

On the other hand, the fact that the stochastic differen­
tial equation (4.3) describes a system which is formal­
ly the limit of the model of Sec. 2 is fairly clear. Thus 
(4.3) is introduced to describe such a limit. 7 

Let 
Dx(t) = lim E{[x(t + h) - x(t)]lh l<Pt } 

h .... O+ 

and 
D*x(t) = lim E{[x{t + h) - x(t)]jh lift}, 

h .... O+ 

where (!>t and ift are respectively the a-algebras 
generated by x(a) with 0 :s a :s t and t :s a < CXJ. 

The operators D and D* are introduced and studied by 
Nelson. s 

Since it follows easily from the theory of Sec. 2, for 
f1 > 0, that 

D~ x(t) =:; D 2 x(t) = f(t, x( t)), 

if x(t) is defined by (4.1) and (4.2), it will be assumed 
that the x(t) defined by (4.4) has the following proper­
ties: 

D2x(t) = D(u(t,x(t)})= f(t,x(t)) (4.5) 
and 

D~x(t) =:; D*u*(t,x(t)) =f(t,x(t) (4.6) 

u* is the drift coefficient of the Markov process (4.4) 
with time reversed. See Nelson. 9 

Since Nelson10 shows 

Du(t,x(t)) = ut + UU" + (A.2/2)u"" 
and 

D*u*(t,x(t)) = u*t + u*u*,,- (A.2/2)u*"x, 

it follows from (4.5) and (4.6), if certain differenti­
ability and boundedness assumptions are also included 
in the model (4.4), that 

Ut + uU xx + (A2/2)uxx = f(t, x) (4.7) 
and 

u*t +u*U*,,-(A2/2)Uh ,,=!(t,x). (4.8) 

We proceed to study the models (4.4) and 
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(4.9) 

where u and u* satisfy respectively the partial differen­
tial equations (4.7) and (4.8) and where z*(t) of (4.9) 
is the derivative of Brownian motion with time re­
versed. See Nelson.1o 

It will now be shown that the expected value of any 
function of the paths x(t), where x(t) is the solution of 
the stochastic equation x(t) = u(t, x(t» + AZ(t) and 
where u(t, x) is the solution of the partial differential 
equation (4.7), can be expressed as a Wiener integral, 
or as a real path integral. 

Lemma 4.1: Suppose u(t, x) satisfies (4.7) and 
Ux(t, x) = u(t, x). Then 

~ + tu; + h 2 uxx + V(t,x) + c(t) = O. (4.10) 

Proof: Lemma 4.1 is proved by differentiating 
(4.10) with respect to x, and using (4.7). 

By suitable choice of V or U, the function c(t) in 
(4.10) can be made zero. It will be assumed that this 
is the case for the remainder of this paper. 

Equation (4.10) is known as the stochastic Hamilton­
Jacobi equation, or as Bellman's equation, and has 
been extensively studied by engineers; see Wonham11 

or Flemming.12 

Let EW{F(z)lz(o) = x} be the expected value of the 
function F(z) with respect to the Wiener measure that 
has variance parameter A2, and with probability one, 
has all its paths starting at x at time zero. 

The main theorem of this paper can now be proved. 

Theorem 4.1: Suppose u satisfies (4.7), that 
lui s/K, a constant, 13 and that (4.4) has a unique 
solution. 14 

Then, 

E{F(x(' » I x(O) = x} 

= E W IF(X(' » exp[ :2 (J 6 vet, x(t»d.t 

+ U(T, x(T» - U(O, X(O»)] I x(O) = x~. (4. 11) 

V(t, x) is the potential for the gas, U(t, x) is a function 
such that Ux = u, where U satisfies (4.7), and F is an 
arbitrary integrable function of the Brownian motion 
paths x( 0). 

rroof: Since x = u + ;>"2, it follows that x( . ) = 
J~ u(O', x(O'»dO' +x(O) + ;>..(z(· ) - z(O» and therefore 
x( . ) can be written as a function of z ( . ) and x(O) = x: 
x( ',z( ·),x(O». SeeSchilder1S fora more thorough dis­
cuss ion of this point. 

E{F(x(' »} is really by definition 

EW{F(x( . ), z( . ), x(O» I z (0) = o}. 

[Since only i appears in (4.4), z(O) is arbitrary, and 
it is therefore set equal to zero.] 

In the last Wiener integral, we change variables by 

letting z(t) = (1/A)(x(t) - u(t, x(t». See (4.4), where 
x( . ) is the new variable of integration and x(O) is 
fixed at x. Girsanov16 shows rigorously that 
E{F(x( . »} is 

EU) F(x(' » eXP[:2 V~ u(t, x(t»dx(t) 

- t J~U2(t,X(t»dt)J I x(O) = XI' 
The integral J ~ u(t, x(t»dx(t) is called an Ito integral. 
See Doob6 or Itos for its properties. [It should be 
remembered that i(t) has infinite variance and is ex­
tremely discontinuous, and therefore an Ito integral is 
not quite the same as an ordinary Stieltjes integral.] 
In the above works it is shown that if x(t) is Brownian 
motion, which it may be considered in the above inte­
gral, then 

U(T, x(T» - U(O, x(O» 

= J~ Ut(t, x(t»dt + J6 U)t, x(t»dx(t) 

A2 JT + '2 0 uxx(t, x(t»dt. 

Since Ux = u(t, x) by hypothesis, we have 

J~ u(t, x(t»dx(t) = - J~ Ut(t, x(t»dt - ~ J~ Ux)t, x(t»dt 

+ U(T, x(T» - U(O, x(O». 

Making these substitutions, we get 

E{F(x(·» Ix(O) = x} 

= EW~F(X(' » exp[-~2) J6 (Ut + ~2 Uxx + t(Ux)2 )dt 

+ U(T,x(T»/A 2 - U(O,X(O»/A 2} x(O) = X(. 

By Lemma 4.1, the last expression is 

EW1F(X('» eXP[(:2) J~V(t, x(t»dt + U(T, x(T» 

- U(O, X(O»] I x(O) = xf' 

as was to be shown. 

Since t x2 (t) - V(t, x(t)) is actuall¥ the Lagrangian for 
the problem x = - Vx, and since J 6(t x2 - V)dt -
U(T, x(T» + U(O, x(O» can be defined as its action 
(see Feynman and Hibbs17), (4.11) can be rewritten as 

E{F(x( 0 »} = J F(x( 0» exp[- (1/;>..2) (action) ]:Dx(t), 

using Feynman and Hibbs integral notation. 

As ;>.. ~ 0, then I/A2 ~ 00 and the above integral be­
comes singular, putting all its mass on the path x(t) 
which minimizes the action, and E{F(x( 0 »} becomes 
just F(y( 0 », where y( 0) minimizes the action. This is 
shown rigorously in Schilder .18 As A ~ 0, it can be 
seen from (4. 4) that the random motion in the gas is 
going away. Another proof is therefore given, for the 
Simple case considered, of Hamilton's variational 
principle. The theory presented in this paper can 
most likely be generalized to other types of Lagran­
gians by ~sing the theory developed by Varadhan19 or 
Flemming.12 
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Corollary 4.1: 

E{F(x( . ))} 

= f-:EWk(X(') exp~ :2 (J~ V(t, x(t))dt 

+ U(T,x(T)) - U(O, X(O)~J I x(O) = Xfp(O, x)dx. 

Proof: The proof follows directly from the defini­
tion of conditional expectation [that x(O) = x]. 

Let U*x = u*. 

Theorem 4.2: Suppose u* satisfies (4.8), that 
I u* I ~ K, a constant, that (4.9) has a unique solution, 
and that F is an arbitrary integrable function of the 
paths x*(t). Then 

E{F(x( .)) I x(T) = y} 

= EWk(X(')) eXP[:2 (J~V(t'X(t»dt 

Proof: The proof is immediate from Theorem 4. 2 
and Corollary 4.2. 

Theorems 4. 1 and 4. 3 show that any macroscopic 
parameter of the gas considered can be expressed as 
a Wiener integral or as the ratio of Wiener integrals 
that depend only on V, U(O, x), and U(T, x), or on V and 
U*(O, x). Schilder15 shows how this type of Wiener 
integral can be expanded in a power series in X. 
Nelson2o shows that u, u*' and p are related by the 
interesting formula 

(4.14) 

where p again is the density. This formula can also 

Proof: From Corollary 4.2, it follows that 

u*(T, y) = - d~ ~nEw{exp[:2 (J~ V(t, x(t))dt - <P(X(O»)] 

I x(T) = yD; 
the proof is obtained by changing variables in the 
above Wiener integral by letting x(t) = y(t) + y, by 
differentiating with respect to y, and then by changing 
back to the x(t) variable of integration. 

The partial differential equation (4.8) is known as 
Burger's equation and is used in the study of turbu­
lence. See Meecham.21 

If the F(x(·» of Theorem 4.3 is limh->o{[x(t + h) -
x(t)]/h}, then the left-hand side of (4.13) is by defini-
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SCHILDER 

- U*(O, x(O»\l I x(T) = yt exp[U*(T, Y)/X2]. 
/J \ (4.12) 

Proof: The proof is carried out in the same man­
ner as Theorem 4.1. 

Corollary 4.2: 

exp[U *(T, y)/X2] 

= (Ew{ eXP[(1/X2) V~ V(t, x(t))dt - U*(O, X(O)~J 

x I x( T) = y} t 1
. 

Proof: Corollary 4.2 is proved by setting the F of 
Theorem 4.2 equal to one, and by transposing 
exp[1/X2)U*(T, y) to the left-hand side of (4.12). 

Theorem 4.3: Suppose F and u* satisfy the hypo­
thesis of Theorem 4.2; then 

(4. 13) 

I 
be derived from Corollary 4.2 of this paper. If (4.14) 
is integrated with respect to x and raised to the eth 
power, it is found that 

exp[U*(t, X)/X2]P(t, x) = exp[U(t, x)/X2], 

whence the term exp[- U(O, x(0))/X2] of (4.11) can 
be replaced by exp[- U*(O, x(0))/X2]p(0, x(O)). 

It will now be shown that u*(T, y) can be expressed as 
the ratio of two Wiener integrals. This theorem is 
due to Professor M. Donsker. See Varadhan.19 

Theorem 4.4: Suppose u* satisfies the conditions 
of Theorem 4.2 and that U* (0, x) = <p (x). Then 

I 

tion u*(T, y). That the right-hand side of (4.13) satis­
fies Burger's equation is shown in Schilder .13 

By construction it follows as tJ. --7 0 that the variance 
of x(t) tends to infinity. Thus what has been called 
pressure in Sec. 3 tends to infinity, and the equation of 
Sec.3, u t + uu'" = - P",/p + f, becomes meaningless 
as tJ. --7 O. On the other hand, it has been in reality 
assumed that the u defined in the limit as tJ. ---> 0 satisfies 
u t + uu" + (;\2/2)u"" = f. The explanation for this 
phenomenon is that the t derivative limit of u t and the 
tJ. limit cannot be interchanged. If one is going to con­
sider a gas with an infinite number of collisions in 
every finite interval, then the natural order of limits 
is clearly to let the number of collisions tend to in­
finity and then take the time derivative of velocity. 
This is the order considered in this paper. 
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Doob6 shows that P (t, x) satisfies 

Pt + (up)x = ~ >..2px.x' 

that is, the Fokker-Planck equation. This equation 
and the equation ut + uUx + >..2/2 uxx = f coupled with 
it, are the continuity and motion equations for the gas 
considered here. 

Nelsonl has developed a different theory for the kine­
matics of stochastic motion. 

Kirkwood22 has shown that random motion for 
"liquids and other condensed systems" can be model­
ed on an Ito equation of the form x(t) = f(t, x(t)) + 
{3x(t) + >..z(t) (see also Onsager and Machlup23), where, 
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as before in this paper,! is external force, x is the 
position of the particle, and z is Brownian motion. It 
is easy to show, however, that a fluid modeled on this 
type of equation does not conserve energy (it is suf­
ficient to let f = 0 and that its average velocity vector 
at a point does not satisfy the usual hydrodynamical 
equations. See Schilder15 or DeGroot and Mazur.24 

While the theory of this paper was developed under 
the assumption that f has derived from a potential, 
some of the results go through without this assump­
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A later paper will show how the concepts developed 
here can be applied to quantum mechanics. 
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Garding Domains and Analytic Vectors for Quantum Fields 

Gerhard C. Hegerfeldt 
Ins!ifu! }iiI' Thcoyelische Physik, Ulli/'crsi!;i! Collingel/, Gollingen, Gennall.\' 

(Received 22 February 1971) 

If one studies the canonical commutation relations (CCR's) of quantum field theory in the unitary Weyl form, 
one does not know if one can find a common dense domain for the field operators since their domain of defini­
tion depends on the test function. We consider here a general class of test function spaces including the spaces 
Sand :D of Schwartz and the space 'Do '" IR (00) of all finite linear combinations of a countable basis. It is shown 
that there exists an invariant Garding domain D on which all fields are defined and strongly continuous. D con­
sists of analytic vectors for the fields. It turns out that the test function space can be enlarged by continuity. 
For irreducible or factor representations it becomes even a Hilbert space. The basic idea of the proof is the 
same as in the Schrodinger representation for one degree of freedom and very transparent. We simply use 
rapidly decreasing functions in "Q- space" and "P-space" as smoothing factors. That this can be done in the 
infinite case also is due to a new and interesting measure theoretic result derived here. As an application of 
our results, we mention that the renormalized fields (after removing the cutoff) of the q.~n model of Glimm and 
Jaffe possess a G~rding domain for test functions inS or :D for each time. 

1. INTRODUCTION U(j) = eitf> (f), V(g) = ein(g), (1. 4) 

The canonical, equal time, commutation relations of 
quantum field theory (CCR 'S), 

[cI:>(x, to), n(X', to)] = i6(3)(X- x'), 

<l>(X, to), <l>(X', to) = [n(x, to)' n(X', to)] = 0, (1. 1) 

are usually studied in the Weyl form. Heuristically, it 
is obtained by first smearing the fields with real test 
functions, 

cI:>(j) =' cI:>(j, to) = I d 3xcI:>(x, to)J(x), 

n(g) =' n(g, to) = .r d 3xn(x, to)g(x) 

so that 

[cI:>(j), rr(g)] = i I f(x)g(x)d 3x =' i(j,g). 

Defining unitary operators 

(1. 2) 

(1. 3) 

one obtains, in a formal way, the Weyl commutation 
relations 

U(j l)U(j 2) = U(j 1 + f 2)' 

V(g1)V(g2) = V(gl + g2)' 

V(g)U{j) = ei(f,g>U(j)V(g). 

(1. 5) 

Taking Eqs. (1. 5) as a starting point for a rigorous 
investigation of the representations of the CCR's, one 
avoids all sorts of domain questions connected with 
the unbounded operators <l> (j) and n (g). So one defines 
a representation of the CCR' s to be a family {U(j), 
V(g),J E 'Oq,;g E 'On} of unitary operators satisfying 
Eqs. (1. 5), where 'Oq, and 'On are real linear spaces 
and where (j, g) is a nondegenerate bilinear form on 
'Oq, x 'On; furthermore, one demands as minimal con-
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infinite case also is due to a new and interesting measure theoretic result derived here. As an application of 
our results, we mention that the renormalized fields (after removing the cutoff) of the q.~n model of Glimm and 
Jaffe possess a G~rding domain for test functions inS or :D for each time. 

1. INTRODUCTION U(j) = eitf> (f), V(g) = ein(g), (1. 4) 

The canonical, equal time, commutation relations of 
quantum field theory (CCR 'S), 

[cI:>(x, to), n(X', to)] = i6(3)(X- x'), 

<l>(X, to), <l>(X', to) = [n(x, to)' n(X', to)] = 0, (1. 1) 

are usually studied in the Weyl form. Heuristically, it 
is obtained by first smearing the fields with real test 
functions, 

cI:>(j) =' cI:>(j, to) = I d 3xcI:>(x, to)J(x), 

n(g) =' n(g, to) = .r d 3xn(x, to)g(x) 

so that 

[cI:>(j), rr(g)] = i I f(x)g(x)d 3x =' i(j,g). 

Defining unitary operators 

(1. 2) 

(1. 3) 

one obtains, in a formal way, the Weyl commutation 
relations 

U(j l)U(j 2) = U(j 1 + f 2)' 

V(g1)V(g2) = V(gl + g2)' 

V(g)U{j) = ei(f,g>U(j)V(g). 

(1. 5) 

Taking Eqs. (1. 5) as a starting point for a rigorous 
investigation of the representations of the CCR's, one 
avoids all sorts of domain questions connected with 
the unbounded operators <l> (j) and n (g). So one defines 
a representation of the CCR' s to be a family {U(j), 
V(g),J E 'Oq,;g E 'On} of unitary operators satisfying 
Eqs. (1. 5), where 'Oq, and 'On are real linear spaces 
and where (j, g) is a nondegenerate bilinear form on 
'Oq, x 'On; furthermore, one demands as minimal con-
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tinuity condition ray continuity, Le., that U(Aj) and 
V(~g) are weakly continuous in ~. 

Ray continuity allows one to recover the smeared 
fields as infinitesimal generators by Stone's theorem, 
and the fields satisfy Eq. (1. 3) on a dense domain. 
However, all domains depend onf and g, and one does 
not know if there is a common domain on which every 
cl> {j) and II (g) is defined. This is unfortunate since in 
applications it is often advantageous to work with the 
fields which are linear info 

In the present paper, a common domain for the fields 
{cl> {j)} and {II (g)} is constructed under additional con­
tinuity requirements which are in general stronger 
than ray continuity. If the test function space were 
finite dimensional, this would follow immediately from 
a well-known theorem in group theory by Garding.1 

Following usage, we call a Carding domain a domain 
on which all infinitesimal generators-in our case the 
fields-are defined and essentially self-adjoint and 
which is left invariant by the infinitesimal generators 
and the associated unitary groups. If A is an opera­
tor in a Hilbert (or Banach) space P, cp is called an 
analytiC vector for A if Ancp is defined for each n and 
if, for some t > 0, 

:0 t~ IIAncp II < 00. 
n n. (1. 6) 

cp is called entire for A if Eq. (1. 6) holds for all t> 
O. Analytic vectors are very useful since on them 
one can consider power series in A which converge 
absolutely. Furthermore, a result by Nelson2 states 
that a symmetric operator A is essentially self-ad­
joint on a domain D if D contains a dense set of ana­
lytic vectors. 

In the following we take the same test function space 
for cl> and II, '0 = '04 = 'On and, moreover, assume 
that '0 is a nuclear space such as S, the space of 
Schwartz, that U{j) and V{j) are weakly continuous in 
f for the topology of '0, and that (j,g) is also con­
tinuous. We note that the Weyl operators can then be 
regarded as a continuous representation of an infin­
ite-dimensional nuclear Lie group in the sense of 
Gel'fand. 3 

In particular we have in mind the spaces S and ~ of 
Schwartz and the space '00 "" R (00) which consists of 
all finite linear combinations of a countable basis 
and hence is isomorphic to the space R (00) of all 
finite sequences. For '00 the continuity requirement 
reduces to ray continuity since '00 ' regarded as a 
union of increasing finite- dimensional subspaces, is 
a nuclear space (as a strict inductive limit). The 
spaces S, ::I), and '00 are separable barreled nuclear 
spaces,4 and only this last fact will be used. 

The basic idea underlying our construction of a Gar­
ding domain and analytic vectors is astonishingly 
simple and taken from the corresponding problem in 
the Schrodinger representation for one degree of 
freedom. There the obvious thing to do is to consider 
functions which decrease rapidly enough in x- space 
andp- space to control the growth of any power of x 
andp, e.g., one could consider hermite functions or 
something similar, 

cp(x) = h(x)e- 1xI2 , (1. 7) 
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where h(x) is a polynomial or a function not increas­
ing too fast. The very same idea will be applied here, 
only that instead of the single norm 1·1 we will have 
to deal with a countable number of norms. 

In case of the metrizable space S, this idea can be 
applied directly if one uses the form of representa­
tions of the CCR's given by Gel'fand3 for cyclic U{f) 
and by Hegerfeldt and Melsheimer5 for the general 
case ("Q- space"; cf. Sec. 3). For spaces such as ~ 
and '00 ' which are not metrizable, an additional mea­
sure- theoretic property is needed. This result (Pro­
position 2.1), which seems to be new and quite inter­
esting, is proved in Sec. 2. A Garding domain is then 
constructed in Sec. 3 along the ideas outlined above. 

It turns out that in doing so one obtains actually a 
stronger result which shows that the test function 
space can in general be chosen larger than the original 
'0. This is spelled out in Sec. 4. 

At the end of Sec. 4 an interesting extension is made. 
It is shown that for irreducible or factor represen­
tations one can extend the test function space to a 
Hilbert space. 

As an application of our results we note that for fix­
ed time the renormalized fields of Glimm and Jaffe6 

in the iI>~" model (with the cutoff removed) possess a 
Ghding domain on which the fields are strongly con­
tinuous if the test functions are taken to lie in S or 
~. The renormalized Weyl operators are continuous 
in Sand 5) due to the locally Fock property of the 
limit state. 

For infinitely many Qi and Pi (Le., for a test function 
space '(0 ) similar results have already been obtained 
by Reed7 using the realization of the CCR's of Gard­
ing and Wightman. 8 In particular, it was shown that '00 
can always be extended to a Hilbert space. Reed's 
results are recovered from ours as a special case in 
Sec.4. Reed's original derivation could not be car­
ried over to test function spaces like S or ~; this is 
an indication that the "Q- space" realization of the 
CCR's may be more advantageous. 

2. SUPPORT PROPERTIES OF MEASURES ON 
INFINITE-DIMENSIONAL SPACES 

The following auxiliary measure-theoretic results 
are of interest in themselves. The main result need­
ed for the next section is Proposition 2. 1. For a 
space like S it is an immediate consequence of 
Lemma 2.1, and the reader may omit the technical 
details. 

Throughout, '0 denotes a locally convex vector space 
and '0' its dual. Letf E: '0 and FE: '0'. We write (f, 
F) for the value of the linear functional F applied to 
f. We consider the a-algebra ffi('O', '0) of subsets of 
'0' generated by all cylinder sets over finite-dimen­
sional subspaces of '0. It is generated by all sets of 
the form 

f)j.B = {F E: '0': {j, F) EO B C IR}, (2.1) 

where f EO '0 and B C R is an open or a Borel subset 
of the real line. Note that eachf, regarded as a func­
tion on '0', is measurable with respect to ffi('O', '0). 

The next lemma is a simple variant of Lemma 3.4 
of Ref. 9. 
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Lemma 2.1: Let P be a continuous seminorm on 
a separable space '0. Then the space '0; of all P­
continuous functionals on '0 is a measurable sub­
space of '0' . 

Proof: The fact that 'Op C '0' follows from the 
continuity ofp(J) by 1 (J,F) 1 '" cF'P(J) for F EO: '01,. 
Putting % == 0 and a/O = 00 for a "" 0, we now de­
fine, for F EO: '0', 

p'(F) == sup 1 (J,F) 1 p(f)-l. (2.2) 
f 

Then F EO: '01, if and only if P' (F) < 00. If to is a count­
able dense subset of '0, then, by continuity, 

p'(F) = sup l(Jr,F)lp(f~)-l. 
r 

Since each (j,y, F) is measurabl~, so is P' (F), and 
hence the set {F: p'(F) < C1)} is measurable. QED 

Corollary 2. 1: The dual norm P' (F) in Eq. (2. 2) is 
a measurable function on '0' . 

In the next lemma, '0 is assumed to be a barreled 
space. This is only to insure that each convergent 
generalized sequence (net) {f cJ in '0 converges uni­
formly on weakly compact subsets K of '0', i.e., that 
(fa) F) is uniformly convergent for F EO: K. This is an 
immediate consequence of the Banach-Steinhaus 
theorem,10 and therefore a detailed definition is omit­
ted. 

Remark: Products, inductive limits, and quotient 
spaces of barreled spaces are barreled. 10 In particu­
lar all F- spaces (Le., complete metrizable locally 
convex spaces) and strict inductive limits (unions) of 
F- spaces are barreled, e.g., S,~, and IR (00) ""'- '0 • We 
also note that a nuclear F- space is separable, q1 as 
well as a strict inductive limit of such spaces. 

Lemma 2.2: Let '0 be barreled and nuclear, and 
let K be a weakly compact subset of '0'. Define a semi­
norm on '0 by 

qK(J) == sup 1 (J,F) I. (2.3) 
FEK 

Then this seminorm is continuous, and there is a sep­
arable continuous Hilbertian seminorm p on '0 and a 
constant C such that qK .,; cp and K C 'Op C '0'. 

Proof: Continuity of qK follows from uniform con­
vergence on K. Now, the nuclear topology is given by a 
basis family of separable Hilbertian seminorms on 
'0.1 2 Hence one of these norms,p say, satisfies qK"; 
cp for some C > O. It follows that each qK-continuous 
linear functional on '0 is also p-continuous, and so K C 

'0; C '0'. QED 

Remark: We note that the dual normp'(F) as de­
fined in Eq. (2. 2) is a separable Hilbertian norm on 
'Op since p induces a Hilbertian norm on 'O/:JL where 
:JL is the null space of p. If the nuclearity assumption 
is dropped, then p need not be Hilbertian, which will 
be needed in Sec. 3. Nuclearity, however, is crucial for 
the next lemma. 

Lemma 2.3: Let '0 be nuclear and J.l be a normed 
positive measure on '0'. For each E > 0 there is a 

weakly compact set K C '0' with outer measure 
f.l*(K) ? 1 - Eo 

Proof: Since '0 is nuclear, there iS13 a weakly 
compact set K C '0' such that for every cylinder set 
Z containing K one has f.l(Z) ? 1 - Eo Now u*(K) = 
inf{~'i"'Jl(ZU>}, where Zy are cylinder sets with K C 

U Zy. For each TJ> 0 and each Zy there is an open 
cylinder set flll with base in the same subspace of '0 
such that Zy C flv and f.l(tl v) .,; f.l(Z) + TJ2- v, by the 
regularity of normed measures on the Borel sets of 
finite-dimensional spaces. Since K C U'l flv' there is 
a IJ 0 < 00 such that K C U ~o (':)v' by compactness. Since 
a finite union of cylinder sets is again a cylinder set, 
one has 

Va 00 C() 

1 - E .,; f.l(U (':) ) .,; L; f.l(tl ) .,; L; f.l(Z ) + TJ 
1 11 1 y 1 v 

for each TJ. This implies f.l*(K) ? 1 - Eo QED 

Now we can prove the main objective of this section, 
namely that a finite (or a-finite) measure on '0' is 
concentrated on a countable union of normed sub­
spaces '01, n of '0' . 

Proposition 2. 1. Let '0 be a separable barreled 
nuclear space, such as S, ~, or '00 ""'- IR (co), and let f.l be 
a finite positive measure on <B('O', '0). Then there 
exists a sequence {Pn} of separable continuous Hil­
bertian seminorms on 'O,p 1 .,; p 2 .,; ••. , with associa­
ted dual spaces 'Opn such that 

(i) p~ as defined by Eq. (2. 2) is a measurable non­
negative extended real-valued function on '0', and 
PI ? P2, ? ... ; 

(ii) each 'Opn is a measurable subspace of '0'. '01,1 C 

'01,2 C '" 'O~n = {F E '0': p~(F) < C1)}, andP~ re­
stricted to '01, is the dual (separable Hilbertian) 
norm to Pn; n 

(iii) f.l(U'Op' ) = f.l('O'). 
n n 

Proof: We can assume f.l('O') = 1. For each posi­
tive integer n there exists a weakly compact subset 
Kn of '0' with outer measure f.l*(K,) ? 1- 2-n• By 
Lemma 2.2, there is a separable continuous Hilber­
tian seminorm Pn on '0 such that Kn C 'OPn C '0'. By 

Lemma 2.1, '01, is measurable and so f.l('Op' ) ? 1-
n n 

2-n • By induction, one can choose Pn such that h .,; 
P2 .,; .•. • Then one has P1 ? P2 ? '" and 'OP

1 
C 

'OP2 C ., • , and f.l (Un 'L~) == 1. The remaining state­
ments then follow from the preceding lemmas. QED 

For S or for a countably normed nuclear space of 
Gel'fand and Vilenkin3 the proposition follows directly 
from Lemma 2.1 since in this case '0' = Un 1Jj, for 
suitable Hilbertian norms. n 

Let'W be a subspace of '0'. A measure J.l is called 'W­
quasi-invariant if f.l(A) = 0 implies J.l(A + g) = 0 and 
conversely, for all g EO: 'Wand all A EO: (l',('O', '0). J.l is 
called 'W-ergodic if there is no nontrivial 'W-quasi­
invariant measure which is absolutely continuous 
with respect to J.l. In particular, if '0 has been embed­
ded in '0' by means of a nondegenerate bilinear form 
on '0, one may consider 'W == '0. We have the following 
additional result. 
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Corollary 2.2: Let /-t be as in Proposition 2. 1 and 
'W-quasi-invariant. If 1J.('OPj '" 0, then 'W c 'OP

n
' 

Proof: Assume g ri 'Op ,g E W. Then ('Op + Ag) 
, n n 

n ('OPn + A'g) = 0 for A '" A' since otherwise (A - A')g 
E 'Op and so g E 'Op • By quasi -invariance one has 

n n 
{l('Op + Ag) > 0, and so '0' contains uncountably many 

n 
disjoint sets of positive measure. This contradicts 
{l('O') < ro. QED 

In passing we note the following simple corollary. 

Corollary 2.5 (zero-one-property): If IJ. is 'W­
ergodic and finite, then every measurable linear sub­
space.c c '0' has either zero or full measure. 

Proof: If 'W c £, then .c is invariant under 'W, and 
so J.L(£) = /-t('O') or O. If g E'W and g ¢ £, then J.L(£) = 
0, by the preceding proof. QED 

3. THE MAIN THEOREM 

Every representation of the CCR' s in a separable 
Hilbert space ~ can be realized by means of a direct 
integral with a quasi-invariant measure on the alge­
braic dual of the test function space. 5 If one deals 
with a continuous representation of the CCR's over a 
nuclear test function space '0, one can perform the 
construction with a measure on '0', or more pre­
cisely on the a-algebra CB('O', '0). Since the bilinear 
form (j, g) is nondegenerate and continuous, there 
is a natural embedding of '0 in '0' so that we can as­
sume '0 to be a subspace of '0' . 

There is a 'O-quasi-invariant measure IJ. on '0' with 
/-t(W) = 1 and a direct integral decomposition of ~, 

.p = J:;, .f)(F) dJ.L(F) (3.1) 

such that U(j) becomes multiplication by ei(f.F), 

(U(j)cp) (F) = ei(f.F)cp(F) (3.2) 
and 

(V(g-)cp) (F) = td/-tl:(:)g)f
/2 

Ag(F)cp(F + g), (3.3) 

where A (F) is a unitary map from ~ (F + g) onto 
~(F) and'satisfies, for walmost all F, 

(3.4) 

Since U(j) and V(j) are, up to a sign, on equal footing, 
a similar realization holds in which V(g) becomes 
multiplication by ei(g.F). Indeed, if we put fl(j) = 
V(J) and tr(g) = U(-g), then these operators fulfill the 
Weyl relations, and hence therElis a'D-quasi-invari­
ant measure ii, Hilbert spaces.f) (F) _and opergtors 
4(F) which yield a realization for U(f) and V(g) ana­
logous to Eqs. (3. 1)- (3. 4). 

The realization which diagonalizes U(J) may be call­
ed "Q- space" realization, in analogy to the quantum 
mechanical situation, and "P- space" realization dia­
gonalizes V{g). In Q-space, the action of the field 
operators <I>(J) is given by multiplication by (J, F) on 
vectors in the domain of <I> (J), 

(<I> (J)cp) (F) = (J,F)cp(F). (3.5) 
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The same holds for II (g) in P- space. 

In the following lemmas we exploit the Hilbertian 
norms {p~} of Proposition 2.1. Let (Fl'F2 )n be the 
scalar product on 'OPn such that 

(3.6) 

Note that since the scalar product can be expressed 
by p~, (F l , F)n is a measurable function on '01, in F 
for fixed Fl' n 

Now let D 1 be a dense subset of ~, and let D 2 be the' 
linear span of vectors obtained from Dl by multipli­
cation with smoothing factors of exponential de­
crease, 

D 2 : cp(F) = ~~(jk'F)~ 19(9k,F)n~ e-P;'(F)2 cp(F), (3. 7) 

and finite linear combinations of such vectors; here 
;p E Dl andfk E 'O,gk E 'O,n = 1,2, ... , and M,N = 
0, 1, 2, ... , where for M = 0 or N = 0 the correspon­
ding factors are to be omitted. The factors in curly 
brackets are only inserted to obtain invariance pro­
perties of D 2 • Note that '0 c 'Opn' by Corollary 2.2, 
so that (g, F) is defined for g E '0 and F EO 'Op' . If 

n , 2 n 
F ¢ 'Op then e-P n (F) = 0 and we can define cp (F) = O. 

n 

Lemma 3.1: Let Dl be a dense subset of .p and 
let D2 be defined as in Eq. (3.7). Then D2 is dense 
in S) , it consists of analytic, or rather entire, vectors 
for each <I>(j), and is invariant under {<I>(f),j E 'O}. 

Proof: Note that, for F E 'Op
n

' one has I (j, F) I ~ 
Pn(j)p~(F) and I (g,F)n I ~ p~(g)p~(F). Thus,by ele­

mentary calculus, 

for QI > O. By Proposition 2.1, cp(F) in Eq. (3. 7) is 
measurable and, by Eq. (3. 8), square-integrable and 
thus in S). Also iP(j)D 2 c D2 for f E '0. From Eq. 
(3.8) one finds, with a suitable constant c, 

(3.9) 

and hence 

for all t> 0, by Stirling's formula. By the triangle 
inequality, the sum of two analytiC vectors is analytic. 

Finally, to show that D 2 is dense in S), assume that 
<;j;q' cp) = 0 for all cp in Eq: (3.7) with ~,N... = O. ~et 
{cp .f be a sequence in Dl WIth If/ o = s-hm CPu' Puttmg 
cpJF) = e-P~(F)2 %(F), one then has 

0= (If/o, cp) -7 I II If/o (F) II 2 e-P:(F)2d/-t = O. 

Hence If/o(F) = 0 a.e. on 'OPn for each n, and thus on 
'0', by Proposition 2. 1. QED 

Corollary 3.1: For cp EO D2, <I>(J)cp is strongly con-
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tinuous inf for the nuclear topology of '0 and for the 
topology generated by the seminorms {Pn }. 

Proof: fex -f fo ('0) implies Pn (fa - f 0) -> 0 for all n. 
Let cp be as in Eq. (3.6). Then for suitable n, 

II <I> (fa) - <I>(fO) 112 ~ Pn (fa - fO)2 I p~ (F)21Icp(F) 11 2 dJ..t -> o. 
QED 

It follows by duality in P- space that {n (g); g E 'O} 
possesses also a dense invariant subspace of analytic 
vectors, with analogous properties as D2 above. 
Hence we may take Dl in the previous lemma to be 
such a set, and we shall take in particular the linear 
span of vectors which, in P- space, look similar as in 
Eq.(3.7), 

D : $(F) = j~ (g F)( e-Pr:(F)2~(F) (3.10) 
1 I k= 1 K' \ 

where the tilde denotes P-space realization; we take 
1/-' E.\) and p; to be the norms of Proposition 2. 1 be­
longing to the measure;; of the P- space realization. 
Then one has estimates for lin (g) v<p II similar to 
those for 11<I>(f)lIcpll above. 

Lemma 3.2: Let D2 be defined as in Eq. (3.7), 
with D 1 given by Eq. (3. 10). Then D2 consist of en­
tire vectors for {<I> (f), n (f);f E 'O} and is invariant 
under these operators. Furthermore, for cp E D 2, 

<I> (f)cp, and n(f)cp are strongly continuous inf for the 
nuclear topology on '0 and for the topology generated 
by the seminorms Pn or Pn , respectively. 

Pyoaf: Lemma 3. 1 and Corollary 3.2 apply to 
<I> (f). To deal with IT (g), we write p(F) for the multi­
plicative factors in Eq. (3.7) such that 

cp(F) = p(F)cp(F). (3.11) 

From the Q- space realization of V(g), Eq. (3. 3), we 
have 

- iT- 1 ({ V(Tg) -1 }cp)(F) 

= - iT-1{P(F + Tg) - p(F)}(V(Tg)¢) (F) 

+ p(F)(- iT- 1) ({V (Tg) - n}¢)(F). (3.12) 

By definition of IT (g), the last term converges strong­
ly to p (F)(IT (g)$)(F) since p(F) is bounded. To deal 
with the first term, the Hilbertian nature of the norms 
{p~} is essential. Using the scalar product (Fl , F2 )n' 
we see that p(F + Tg) is differentiable in T, and the 
mean value theorem of calculus shows that the first 
term on the right- hand side of Eq. (3. 12) converges 
strongly. 

Thus 

(IT (g)cp) (F) = - i a~ p(F + Tg) I FO ef(F) 

+ p(F)(IT(g)$)(F). (3.13) 

The differentiation of the exponential brings down a 
factor (g,F)n. Hence,by Eq.(3. 7),IT(g)cp is again in 
D2 and depends continuously ong since both terms 
in Eq. (3.13) do. 

Using the Leibniz rule and the estimate for lin (g) vefll 
analogous to Eq. (3.9), one finds after some calcula­
tion 

(3. 14) 

for some constant c. Hence cp is entire for IT (g). QED 

Our main result on Garding domains and analytic 
vectors is now an easy consequence of the forgoing 
lemma. 

Theorem: Let {U(f) , V(g)} be a continuous repre­
sentation of the CCR' s with a separable barreled 
nuclear test function space '0, such as S, X, or '00 , in 
a Hilbert space.\';1. Then there exists a dense domain 
DC.\';1, a Garding domain, with the following proper­
ties: 

(i) The fields {<I> (f), IT (g)} are essentially self -adjoint 
on D, and Dis invariant under {U( f), v( g)} as 
well as under all polynomials in the fields. 

(ii) On D, any product of field operators {<I> (f;)} and 
{n (g)}, in any order, is jointly strongly continuous 
in the.~ and g i; in particular, any matrix element 
of the form 

<cp, ... <I>(j;) ••. IT(gj) .•• 1/1) (3. 15) 
, 

is a jointly continuous function if cp, 1/1 ED. 

(iii) D can be chosen to consist of analytic and even 
entire vectors for the fields {<I> (f), IT (g)}. 

Proof: Since '0 is separable, the representation is 
a direct sum of representations in separable Hilbert 
spaces. So we can assume .\) as separable. Let D2 be 
the domain of Lemma 3.3. We show that D defined as 
the linear span of {U(f)V(g)}D 2 has the required pro­
perties, where f and g run through '0. The procedure 
is standard. 

From the definition of the fields as strong deriva­
tives of the Weyl operators it follows that 

IT(g')U(f)V(g)cp = U(j)V(g)IT(g)cp + (f,g')U(j)V(g)cp 
(3.16) 

and a similar expression for q, (f'). Hence the fields 
are defined on D and leave it invariant since D2 is 
invariant. Clearly D is also invariant under U(f)V(g). 

Since IT (g')~D is strongly continuous in g' for cp ED?, 
so is IT(g')U(j)V(g)cp,by Eq.(3.15). The same holds 
for IT replaced by <I>. If one has a product of field opera­
tors applied to U(f)v(g)cp the resulting vector is a 
continuous function in each field separately because 
each field can be brought to the left and the additional 
terms originating from the CCR's are continuous. By 
the kernel theorem for nuclear spaces this implies 
joint continuity. 

Turning to analyticity, we note that for cp E D 2 one 
obtains from Eq. (3.15) 

IT(g')IIU(f)V(g)cp = U(j)V(g) {IT(g') + (f,g')}vcp.(3.17) 

From 

II{u(g') + (J ,g')}vcpll ~ II{ In(g') 1 + I(J ,g') I}vcpll 

~ 2v ll{ IIT(g') Iv + l{f,g') Iv}cpll 

"" 2v lln(g')vcpll + 2v l{f,g') Ivllcpll 

it then follows that U(j)V(g)cp,and thus every vector 
of D, is entire for IT(g'}. The same applies to <I>{f'}. 
By Nelson's theorem, the fields are essentially self-
adjoint on D. QED 
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Remarks: The domain D constructed above is by 
no means the largest Garding domain. One obtains a 
larger domain if one uses smoothing factors 
h(p'(F)2), with hE S(Rl), and forms the union of the 
resulting domains for all h E S and for all continuous 
seminorms. For specific applications it may be 
necessary to enlarge D in this way. For example, in 
the Fock representation the vacuum Q need not lie in 
D, but it does lie in the so enlarged domain if Q ---7 
(/Jo(F) == 1 and if 11 is the Gaussian measure, for then 
there are nontrivial functions of the form exp{p '(F)}2, 
with a suitable norm p on 'D, which are integrable; 
hence one obtains C{Jo(F) == 1 by the smoothing opera­
tion. 

For possible applications we note that <I>(j)2 + IIU)2 
is essentially self- adjoint on D 2; in fact, a direct com­
putation shows that the vectors in D 2 are analytic. 
To treat <I> (j) m and II (g) m, one can use smoothing fac­
tors of faster decrease. 

It may be worthwhile to point out the role of the 
norms{Pn } and of Proposition 2. 1. This result is used 
in the construction mainly to ensure that suffiCiently 
many factors exp{ - P , (F) 2} do not vanish, 11 almost 
everywhere. It is at least conceivable that for more 
general spaces the sets 'Dp = {F E 'D';p'(F) < oo} have 
all measure zero for every continuous seminorm P on 
'D. 

4. EXTENSION AND DISCUSSION OF RESULTS 

In the last section, we have proved slightly more than 
the main theorem. It is an easy consequence of the 
previous lemmas that the representation of the CCR's 
can be extended to a larger test function space and 
that the extended fields are still essentially self­
adjoint on the above Garding domain D. 

To be more preCise, the seminorms {Pn} and {pJ are 
actually norms since 'D C 'D;n and thus I (f ,g) I .,; 
Pn(f)p~(g) = 0 for all g implies f = O. Hence we can 
definemetrics d 1 and d 2 on 'D by 

(4.1) 

and d 2 with Pn replaced by Pn • The topology on 'D in­
duced by d 1 is just the one generated by the norms 
and analogously for d 2 • We also consider the metrie 

(4.2) 

Corollary 4.1: Let the assumptions be as in the 
main theorem. Then the representa,!ion can be exten­
ded by continuity to the completion 'D(d) of 'D in the 
metric d. The extended representation is strongly 
continuous in the metric d. There is a Garding do­
main D for the fields satisfying (i) -(iii) of the above 
Theorem, with 'D replaced by 'U(d). 

Proof: Convergence of a sequence {j,} in d implies _ y 

convergence in the norms Pn andp". By Proposition 
2. 1, (j v' F) then converges, J.l and jj. almost every­
where. Hence U(j,) and V(j,) are strongly continuous, 
by Lebesgue's bounded convergence. It followS 14 that 
the representation can be extended to U(d). The ac­
tion of u(.f) for j E U(d) is given by multiplication by 
ei(J.F),where (f,F) = lim (jy,F) for F E Un'DPn' Note 
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that th~ elements of Un'Dp are d-continuous function-
als on 'D(d). n 

The action of <I> (.f) !n Q- space is given, as before, by 
multiplication by U, F) with FEU 'Dp' ,and Similarly 

n n 
for II (g) in P-space. One can now apply directly the 
arguments of the last section to obtain a Garding do­
main as in (i)- (iii) on which, to begin with, products 
of fields are separately strongly continuous in the 
test functions. Since on complete metric spaces mul­
tilinear functionals are jointly continuous if they are 
separately continuous,15 this implies joint weak con­
tinuity and thus also joint strong continuity. QED 

We remark that the norms can be chosen such that 
Pn = "fin and such that 'O(d) becomes a nuclear metric 
space. For 'D = S, the above extension may be trivial 
since S is already countably normed. For:D, however, 
this is not true. Further below we will also obtain an 
important extension of S if the representation is irre­
ducible. 

The result of Reed 7 follows from the last corollary. 
Reed considers as test function space the finite linear 
span of an orthonormal set, Le., 'D = 'Do. It is easy to 
see that there is a space 'Dp' cO.!!lplete with respect to 
a norm p, such that 'Do C 'Dp C 'D(d) and such that 
p(f) ---70 implies dU) ---7 O. By corollary 4.1, the 
fiel.ds with test functions in 'Dp have a Garding do­
mam and are strongly continuous on it with respect 
to the norm p. This is just Reed's result. It is also 
instructive to apply the techniques of Secs. 2 and 3 
directly to 'Do since in this case one can see directly 
where the norms {Pn } come from and what they look 
like. 

Irreducible Representations 

Denote by Xn (F) the characteristic function of 'Dp C 
n 

'D' and by Pn the projection operator given as multi-
plication by Xn (F) in Q-space. Since 'D C 'D~n' one has 

Xn (F + g) = Xn (F), and so Pn commutes with {U(f) 
V(g)}. Thus Pn ~ is an invariant subspace. Noting that 
Pn E {U(j);! E 'D}", one obtains Pn E {uU), V(g)1' n 
{UU), V(g)", and hence Pn = J or 0 for a factor re­
presentation. This means 11('Dp) = 1 or 0, and there­
fore one can choose allPn to be equal,P1 = P2 = ... , 
so that a Single Hilbertian norm PI suffices. In the 
same way one sees that all "fin can be chosen to be 
equal. Defining a Hilbertian norm P on 'D by 

(4.3) 

one arrives as in Corollary 4. 1 at the following inter­
esting extension. 

Theorem 4.1: Let {U(j), V(g)} be a continuous 
irreducible or factor representation of the CCR's 
with a separable barreled nuclear test function space 
'D, such as S, :D, or 'Do "" lR (00), in a separable Hilbert 
space ~. Then there is a Hilbertian norm P on 'D such 
that the representation can be exte~ded by continuity 
to a Hilbertian test function space 'Op obtained from 
'0 as the Hilbert space completion of '0 in the norm p. 

The extended representation is strongly continuous in 
the norm p, and there exists a Garding domain D for 
the fields satisfying (i)- (iii) of the main theorem, 
with '0 replaced by 'Up. 
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If the representation is not irreducible or not a factor 
representation, we learn from the above argument 
that it decomposes into a direct sum of representa­
tions in PI''!), (P2 - P 1)S), (P3 - P2) S) etc. such that 
U(j) isPn-continuous in (Pn - Pn-1)S). For fixed sub­
representation one can apply the same argument to 
V(g), and thus we find that the representation is a 
direct sum of subrepresentations in each of which 

L. Garcting, Proc. Nat. Acad. Sci. (U.S.) 33,331 (1947). 
E. Nelson, Ann. Math. 70, 572 (1959). 

3 1. M. Gel'fand and N. Y. Vilenkin, Generalized Flmclions (Acade­
mic, New York, 1964), VoL4 (last section). 

1 F. Treves, TopologiCflI Vee/or Spaces,Distyibutions ""d Kernels 
(Academic, New York, 1967). 

5 G. C. Hegerfeldt and O. Melsheimer, Commun. Math. Phys. 12 
304 (1969). 

6 J. Glimm and A. Jaffe, Acta Math, 125, 203 (1970) 
7 M. C. Reed, Commun. Math. Phys.14, 336 (1969). 
8 L. Garding and A. S. Wightman, Proc. Nat. Acad. Sci. (U.S.) 40, 

622 (1954). 

U(j) and V(g) are continuous with respect to some 
Hilbertian norm (depending on the subrepresenta­
tion). 
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It is shown that the construction of concrete models of Clebsch-Gordan decompositions for tensor products of 
irredUCible group representations leads to a Wide variety of special fW1Ction identities. In this paper the repre­
sentation theory of the rotation and Lorentz groups in 3-space is used to give elegant derivations of identities 
involving Laguerre, Gegenbauer, hypergeometric, and generalized hypergeometric functions. Some of these 
identities may be new in this general form. 

INTRODUCTION 

In Ref. 1, which we refer to as I, a method was des­
cribed whereby a knowledge of the Clebsch-Gordan 
decomposition for the tensor product of two repre­
sentations of a group G, could be used to derive 
special function identities. The idea is easy to des­
cribe. Suppose G has a family of irreducible repre­
sentations {DJ with Clebsch-Gordan series 

D" 0 Dv ~ 6 EEl Dw, 
w 

such that each irreducible representation Dw occurs 
at most once in the tensor product. If {jn(">} is a 
canonical basis for D", then there exists a relation of 
the form 

(a) h.(w) = 6 C(u,n;v,mlw,h)jn(u)0j}:i), 
n,m 

where the constants c('I') are Clebsch-Gordan coef­
ficients. Suppose we have an explicit function-space 
model of the representation Du 0 Dv' Then the vectors 
jJU) 0 j};:) will be special functions and if the model is 
simple enough, the special functions Jh(w) can be com­
puted directly. In this case, expression (a) becomes 
an identity relating the special functions jJu> 0 j~) 
and }k w ). This identity can be inverted since the coef­
ficients C(· I') satisfy orthogonality relations. 

The above method is useful for a given group if there 
is a procedure for constructing a variety of models 
of the group representations. In Refs. 2-4, a number 
of such models are cataloged for groups of common 
occurence in physics. Here we use these models to 
give elegant derivations of identities associated with 

the rotation and homogeneous Lorentz groups in 3-
space. Some of these identities may be new in this 
general form; certainly their close relationship to one 
another and to group theory is new. 

Most of the following explicit examples are associat­
ed with the Lorentz group G3 but the analogous ex­
amples for SO(3) are usually self-evident. 

In physical applications, integral forms of these iden­
tities appear when one computes matrix elements 
corresponding to a quantum mechanical system with 
symmetry group SO(3) or G3 .5,6 However, the group 
theoretic method has validity independent of the com­
putation of matrix elements, so the results of this 
paper are not presented in integral form. The reader 
can write most of the following identities in various 
integral forms by using well-known orthogonality re­
lations for the Laguerre, Gegenbauer, and hypergeo­
metric functions. 

1. THE GROUPS SU(2) AND G3 

The group SU(2) consists of all 2 x 2 unitary uni­
modular matrices. In Euler angles, every A E SU(2) 
can be written as 

(

e- i (1I'1+1I'2)/2 cos(8/2),ie-i(1I'1-1I'2)f2 Sin(8/2)j 
A(c,ol' 8, c,02)= ."( )"2 ,/ "( ) le' "'1-'1'2' sin (81 2),e' 11'1+11'2 V2 cos(8/2) 

lal 2 + IbI 2 =1. (1.1) 

If ab "" 0 the Euler angles can be defined uniquely by 

cOS(8/2) == 1 ai, Sin(8/2) == 1 b I, o :::: 8 :::: 1T, 

J, Math, Phys., VoL 13, No.6, June 1972 



                                                                                                                                    

GARDING DOMAINS AND ANALYTIC VECTORS 827 

If the representation is not irreducible or not a factor 
representation, we learn from the above argument 
that it decomposes into a direct sum of representa­
tions in PI''!), (P2 - P 1)S), (P3 - P2) S) etc. such that 
U(j) isPn-continuous in (Pn - Pn-1)S). For fixed sub­
representation one can apply the same argument to 
V(g), and thus we find that the representation is a 
direct sum of subrepresentations in each of which 

L. Garcting, Proc. Nat. Acad. Sci. (U.S.) 33,331 (1947). 
E. Nelson, Ann. Math. 70, 572 (1959). 

3 1. M. Gel'fand and N. Y. Vilenkin, Generalized Flmclions (Acade­
mic, New York, 1964), VoL4 (last section). 

1 F. Treves, TopologiCflI Vee/or Spaces,Distyibutions ""d Kernels 
(Academic, New York, 1967). 

5 G. C. Hegerfeldt and O. Melsheimer, Commun. Math. Phys. 12 
304 (1969). 

6 J. Glimm and A. Jaffe, Acta Math, 125, 203 (1970) 
7 M. C. Reed, Commun. Math. Phys.14, 336 (1969). 
8 L. Garding and A. S. Wightman, Proc. Nat. Acad. Sci. (U.S.) 40, 

622 (1954). 

U(j) and V(g) are continuous with respect to some 
Hilbertian norm (depending on the subrepresenta­
tion). 

ACKNOWLEDGMENTS 

The author would like to thank H. J. Borchers, J. 
Challifour, and J. Slawny for helpful comments. 

9 G. C. Hegerfe1dt, Nuovo Cimento 4B, 225 (1971). 
10 Cf. Ref. 4, Theorem 33.2 and Proposition 36. 1. 
11 A. Pietsch, Nuklcare Lokallwlll'eXe Raunze. 2. AuJlage (Akademie­

Verlag, Berlin, 1969),Sec. 4. 4.10. 
12 Reference 11,Secs.4.4.1 and 4.4.9. See also Y. Umemura,PubI. 

Res. Inst. Math. Sci. AI, 1 (1966). 
13 Y. Umemura,Ref.12,Secs.1O and 12. 
14 G. C. Hegerfe1dt and J. R. Klauder, Commun. Math. Phys. 16, 329 

(1970) . 
15 G. Choquet, LcclllyeS on Analysis, edited by J. Marsden, T.Lance, 

and S. Gelbart (Benjamin, New York, 1969), Vol. II, Sec. 23.16. 

Clebsch-Gordan Coefficients and Special Function Identities. 
It. The Rotation and Lorentz Groups in 3-Space 

Willard Miller, Jr. 
Mathematics Department, Unil'ersity of Minnesota, Minneapolis, Minnesota 55455 

(Received 17 February 1971) 

It is shown that the construction of concrete models of Clebsch-Gordan decompositions for tensor products of 
irredUCible group representations leads to a Wide variety of special fW1Ction identities. In this paper the repre­
sentation theory of the rotation and Lorentz groups in 3-space is used to give elegant derivations of identities 
involving Laguerre, Gegenbauer, hypergeometric, and generalized hypergeometric functions. Some of these 
identities may be new in this general form. 

INTRODUCTION 

In Ref. 1, which we refer to as I, a method was des­
cribed whereby a knowledge of the Clebsch-Gordan 
decomposition for the tensor product of two repre­
sentations of a group G, could be used to derive 
special function identities. The idea is easy to des­
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the form 
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amples for SO(3) are usually self-evident. 
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-{(<Pi + <P2) = arga, {(<P2 - <Pl)+ !1T = argb, 

- 21T :::: <Pv <P2 < 21T. (1. 2) 

However, if ab =: ° these angles are not unique. As a 
basis for the Lie algebra su(2) we choose the matrices 
~v ~2' ~3' such that 

A(O, 0, 0) = expO~l A(f' 0, - f) = expO ~Z' 
A(<p, 0, 0) = A(O, 0, <p) = exp<p~3' (1. 3) 

These matrices satisfy the commutation relations 

Another convenient basis is given by 

(1. 5) 

which belong to the complexification of su(2). Here, 

(1. 6) 

The irreducible unitary representations of SU(2) are 
n, 2u = 0,1,2, ... , each defined on a (2u + 1)-di­
m"ensional Hilbert space Xu with ON basis {Pm: m = 
- u, - u + 1, ... ,u - 1, u}. The defining relations are 

J 3 Pm = mPm, J±Pm = [(u 'f m) (u ± m + 1»)1/Z Pm±l' 

m = - u, ... , u, (1. 7) 

where J±, J3 are the linear operators corresponding 
to ~±, ~3, respectively, in the Lie algebra representa­
tion induced by n , The matrix elements Un. m (A) of 
the unitary operators U(A) on Xu which determine 
this representation are 

(

U + m)! (u - n)! )l/Z 
Un•m (A) = (1),., U(A)Pm> = ( )1 ( _ )1 

u+n. u m. 

- - 1 x aU+nau-mbm-n -----"--
r(m - n + 1) 

x F( - u - n, m - u, m - n + 1; - I b / a IZ) 

. (u + m)! (u - n)!) liz = (z)n-m 
(u + n)! (u - m)! 

(1. 8) 
where 

pr.m (xl = -- --(1 + x)(m-r)/2 (1 - x) <m+r)/2 
u 2 2 

x 1 F(u + m + 1, - U + m; 
r(m + r + 1) 

m + r + 1; ~ (1 - x» (1. 9) 

and A is given by (1. 1). Here, (', .) is the inner pro­
duct on JC,. , linear in the second argument and 
F(a, b; c; z) is the hypergeometric function, see Ref. 7, 
Vol. 1. 

The group G3 consists of all 2 x 2 complex matrices 
of the form 

A = (F~)' a,b, EC, detA=: laI 2 -lbI 2 =1. 
(1. 10) 

J. Math. Phys., Vol. 13, No.6, June 1972 

This is a real 3-parameter matrix group isomorphic 
to SL(2,R).2 Furthermore, G3 is the twofold covering 
group of the homogeneous Lorentz group in 3-space.8 

We can choose real coordinates (Il, p, v) for A so that 

(

e- i (jl+II)/Z cosh(p/2) e i (II-",)/Z Sinh(p/2») 
A(1l p v) = . 

" ei(",-vYZ sinh(p/2) ei(jl+v)/z cosh(p/2) 
(1. 11) 

Here we require, 

lal = coshp, I b I = sinhp, ° :::: p < 00 , 

Il =: - arga - argb, v = argb -' arga. (1. 12) 

The matrices ~1' ~z, ~3' such that 

A(O, p, 1T) = expp~l' A(O, p, 0) =: expp~z, 
(1. 13) 

A(Il, 0, 0) =: A(O, 0, Il) = eXPIL ~3' 

form a basis for the Lie algebra g30f G3 • The com­
mutation relations are 

A more convenient basis for many purposes is ~± = 
- ~z ± i~l' ~3 = i~3 in the complexification of g 3' 

Here the commutation relations are 

[~+, ~-] = 2~3, [~3, ~±) = ± ~±, 

identical with (1. 6). 

(1. 15) 

We consider a class n; of irreducible unitary repre­
sentations of G3 , defined for u> ° (discrete series). 
Here, D; can be realized on the Hilbert space :Ie with 
ON basis {j,,: n = 0, 1, 2, ... }. The defining relations 
are 

J3jn == (u + n)jn' J+jn = (2u+ n)(n + l)]lIZjn+l' 

J-jn = - [n(2u + n - 1))1/Z jn-l> n = 0,1, .. " 
(1. 16) 

where J±, J3 are the representation operators cor­
responding to ~±, ~3, respectively. (To be more pre­
cise, n;; is a global representation of G 3 only for 2u, 
an integer. For 2u not an integer, D: is a local re­
presentation of G3 and a global irreducible represen­
tation of the Simply connected covering group of G3 
(see Refs. 2, 8, and 9), The matrix elements of It+ 
are 

Vn.m (A) = Un' V(A)jm> 

= (
r(2U + n)ml) 1/2 

r(2u + m)n! 
• an{i-Zu-mb m- n 

F(-n,2u +m;m-n+l;lb/aIZ) 
X ~--~----~--------~~~ 

r(m-n+ 1) 

(
r(2U + n)m') l/Z = . e-i[jJ (u+n)+v(u+m) ~-u-n.u+m 

r(2 + ) 1 -u(coshp), 
u m n. (1.17) 

where the coordinates of A are given by (1. 10), (1. 11), 
and 
~jJ.,(z) = 1 [z + ~\ (~-jl)/2 (z - ~\ h+p}fZ 

II r(~ + Il + 1) , 2 7 2 J 
x F(v + ~ + 1, ~ - v; Il + ~ + 1; t(1 - z». (1.18) 
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As is well known, the Clebsch-Gordan series for 
SU(2) is 

u+V 
(1. 19) 

w ~ lu-v I 

The vectors {Pn• m = It.. 181 P'm: n = - u, - u + 1, ••• , 
m = - v, - v + 1, ... , v} form a natural basis for the 
rep'resentation space Xu I8i 3C~, while a canonical 
basis for the subspace transforming according to Dw 

where the 3 - j coefficients are 

( 
jl jz h) = (- 1)j3-

m
3 C(J' m' J' m IJ' - til ) 

./2' + 1 l' 1, 2' 2 3 3 
ml til 2 m3 13 (1. 22) 

and the sum is taken over all ji> m i for which (1. 21) 
makes sense. In particular, C(u, n; v, m 1 w, k) = 0 un­
less k = n + m and 1 u - v / :5 W :S U + v. The various 
symmetries and explicit formulas for the CG coef­
ficients which abound in the literature can all be ob­
tained from (1. 21), see Refs. 10 and 11. 

The Clebsch-Gordan series for the tensor product 
Dt 181 Db of G3 representations iS2 ,6 

0() 

Dt 181 Dt ~ L; EB Dt+v+s' 
s~ 0 

(1. 23) 

The vectors {jn,m = jn I8i i;. : n, m = 0,1,"'} form a 
natural ON basis for the representation space X I8i X'. 
A canonical basis for the subspace of X I8i X' trans­
forming according to Dt+v+s can be denoted 
{jff:h = 0, I,···}. The CG coefficients are 

E(u, n; v, til 1 s, h) = (jn,m' j~>', (1. 24) 

where < " .>' is the inner product on X I8i X I. With an 
appropriate choice of basis vectors, the CG coef­
ficients are given by the generating function. 

(
2U + 2v + 2s - l)r(2u + 2v + s - 1)r(2v + S»)1/2 

S !r(2u)r(2v) 

x (1 - by)-2u-s (1 - bx)-2v-s(y - x)s 

= ~ (r(2u + 2v,+ 2s + h»)1/2 
k.n,m~O, h. 

x E(u, n; v, mis, h)ynxmb\ I bxl < 1, 1 by 1< 1. 
(1. 25) 

We can expand the left-hand side of (1. 25) to obtain 
explicit expreSSions for the CG coefficients. In gene­
ral they are rather complicated finite sums. How­
ever in the special cases s = 0 or h = 0, the sum con­
tains only one term and the CG coefficient reduces to 
the square root of a quotient of gamma functions, as 
the reader can easily verify. 

can be denoted {p~: k = - w + 1, ... , w}. The 
Clebsch-Gordan (CG) coefficients relating these two 
bases are 

C(u, n; v, m Iw, k) = (Pn,m,P:>', (1. 20) 

where (', . > I is the inner product on Xu 181 X ~. If the 
basis vectors are chosen appropriately, the CG coef­
ficients are defined by the generating function 

(1. 21) 

From the definitions (1. 20), (1. 24) it follows that the 
CG coefficients satisfy orthogonality relations. Indeed 
the coefficients E(') are real and satisfy 

~ E(u, nl ; v, m l ,s, h)E(u, n2 , v, m 2 / s, h) = on nOm m , 
x h= 0 t 2 1 2 

. (1.26) 
00 

L; E(u, n; v, m 1 sl' hl )E(u, n; v, m Is2 , h2 ) = 6s s 6h h • 
n,m=O 1 2 1 2 

The coefficients C(·) satisfy similar relations except 
that the sums are finite. 

2. IDENTITIES FOR THE MATRIX ELEMENTS OF 
SO(3) AND G3 

Just as in I,Sec. 2, we can use products of matrix ele­
ments of the representations D u> Dt to construct new 
models of these representations. Since the methods 
are identical with I we present only the results. 

For fixed band c, the functions 
00 

Pk(u<v+s) (A, A') = '" E( n v m' s h) L.J u,;, , 
n,m=O 

x V(u)(A)V(v) (A') h = 0, 1,2,"', (2.1) b,n c,m , 

form a canonical basis for a model of Dd+v+s under 
the group action 

[P(B)f](A, A') = f (AB, A' B), A, A', B E. G3 (2.2) 

on functions defined on G3 x G3 • Hence, Vb~"i! (A) is the 
matrix element (1. 17) corresponding to the repre­
sentation Dt. Note that the sum on the right-hand 
side of (2.1) is finite since E(u, n; v, mis, h) = 0 un­
less n + m = s + h. 

Using the transformation properties of the basis 
plu +v 's), we can also show 

00 

Ph(u:+v+s) (A, A') = L; E(u, s + j - c; v, cis ,j) 
j=O 

X V},uh+v+s)(A')Vb\~{j_c(A(A')-l). (2.3) 

Equating (2.1) and (2.3) we obtain a family of identi-
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ties obeyed by the matrix elements. In particular, 
for A == A' the identity reduces to the formula 

6 E(u, n; v, mis, h)Vb~'!l (A)Vc~vJ, (A) 
n.m 

== E(u b' v cl s b + c - s)V(u+ V+S) (A) (2.4) 
, '" b+c-s~h' 

since Vn~uJ, (E) == on.m for E the identity matrix. 

The construction of models of the representations 
Du of SU(2) is analogous to that given above, and 
formulas (2.1) and (2.3) can easily be modified for 
this case. Of special interest is the case where the 
basis contains only one element poCO) (A, AI), i.e., this 
function transforms according to the identity repre­
sentation Do. Nonzero functions PoCO) (A, A') can be 
constructed only if u == v, in which case the analogy of 
(2.1) is 

PoCO) (A, A') 
U 

== B C(u, n; u, - nlO, 0) Ub~u;. (A) Uc~:'~ (A') (2.5) 
n;::-u 

with fixed b, c. The analogy of (2.3) is 

MO)(A,AI) = C(u, - c;u, cIO,O)Ub<."Jc (A(A I)-l). (2.6) 

Equating (2.5) and (2.6) we obtain a family of addition 
theorems for the matrix elements. The simplest case, 
b == c == 0, U == l, yields the well-known addition 
theorem 

Pz[cose cose l + sine sine' cos(<;o - <;0')] 

I 

= 2t: 1 m'P-z YZm (e ' , <;o')Ylm (e, <;0) (2.7) 

for the Legendre polynomials (see Ref. 12, p. 68). 

3. DIFFERENTIAL OPERATOR MODElS 

In this section we construct new models of the repre­
sentations D;; as classified in Ref. 2, Chap. 5, and use 
these models and the results of Sec. 1 to obtain 
special function identities. 

The Type B operators 

J+ == eie (x ~ - i ~ - x) ax ae ' 
(3.1) 

J-== e-i9(x~ + i~) J3 ==-i~ ax ae ' ae 
and basis functions 

( 
n! \1/2 

j,,(X, e) = r(n + 2u») 

x XU LJ2 u-1) (x) ei (u+n)e, n == 0,1,2, ... , (3.2) 

form a model of D;; ,Le., they satisfy expressions 
(1. 16). Here L~a) (x) is a generalized Laguerre poly­
nomial (see Ref. 7, VoL 1). 

It follows that the functions 

x XU L~2U-1)(ax)ei(u+n)eL m! \1/2 
\r(m + 2v)) 
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X x~L(2v-1)([1- a]x) ei(v+m)e, 

n,m==0,1,2, .•• , (3.3) 

and the operators (3.1) define a model of Dt 0 Dt 
where a, u, v are real constants such that u> 0, v > O. 
Indeed, 

J+(j~)j~2» == j~l) e i9 (x :x - i :e - (1 - a)x) j~) 

+ j~2) eie (x :x - i :e - ax) j~l) == [(2u + n) 

x (n + 1)]1/2 j~n j~) 

+ [(2v + m) (m + 1)]1/2 j~1)j~2)1 

= eiS fx ~ - i ~ - x\ J'(1).;(2) (3.4) \: ax ae '}" Jm , 

with similar interpretations of J- and J3. 

We now compute the basis vectors j g, s, h == 
0,1,2, ... ,corresponding to the Clebsch-Gordan 
series (1. 23). From (1. 24) we have 

00 

jhs(x,e) == ~ E(u,n;v,mls,h)j~1)(x,e)~2)(x,e). 
",m=O (3.5) 

[Recall that E(') == 0 unless n + m == s + h.) On the 
other hand, we can compute the jff directly for this 
model by using the fact that they satisfy (1. 16) with 
n == h, u == u + v + s. Indeed, from (3.2), 

( 
h r \1/2 

jg(x, e) == C s r(h + 2u'+ 2v + 2s)/ 

x XU+V+5 L(2u+2v+2s-1) e i (U+V+5+h)B (3.6) 
h (x) , 

where Cs is a constant. To determine cs ' we equate 
(3.5) and (3.6) in the case h = O. In this speCial case, 
(3. 5) simplifies to 

.5 _ (s !r(2u + 2v + s - 1) r(2u + s)r(2v + S») 1/2 
Jo -

r(2u + 2v + 2s - 1) 
00 

x B (- 1)"( (s - n) In! r(2u + n)r(2v + s-n»)-1/2 
n =0 

X jP)j~?~. (3.7) 

Substituting (3.3) and (3.6) into this expreSSion, com­
paring coefficients of XU<V<S on both sides of the re­
sulting equation we find 

c = (a - 1)5 (r(2U + s)r(2u + 2v + s - 1) 

5 r(2u) s ! r(2v + s) 

~ 1/2 ( x (2u + 2v + 2s - 1'l F 1 - s - 2v, 

- s; 2u; a ~ 1) , s == 0, 1, 2, ... , (3.8) 

where F( 01, (3; y ; z) is the hypergeometric function 
(see Ref. 7, Vol. 1) Note that Cs is a polynomial of 
order s in a. The final identity is obtained by sub­
stituting (3.3), (3.6), and (3.8) into (3.5). 

For a = 0 this identity simplifies to 

XS L~2U+ 2v+ 25 -1) (x) (- 1)" 

x(h !r(2u + s)r(2u + 2v + S - 1)(2u + 2v + 2s - 1»)1/2 

x!r(2v + s)r(2u + 2v + 2s + h) 
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EU,njv,m s,h)' L(2v-1)(X). ( I (
m 'T(2u + n») 1/2 

nlr(2v + m) m n.m 
(3.9) 

A second model of Dt is defined by the operators 

J± = e iiO «z2_1 )J/2 ~ ± iz ~ 'F . r ) 
az (z2 - 1)1/2 ae (Z2 - 1)1/2 ' 

(3.10) 
J 3 • a 

=- z ae' 

and basis functions 

jn<z.e) = [r(2u + n)n!)-1/2~=~.-u--n(z)ei(u+n)O, 

n = 0,1,2, ..• , Z =:: coshp, (3.11) 

where r is an arbitrary constant. It follows that the 
functions 

j (z.o) =:: j (z e)1 (z e) =:: [T(2u + n)n 1]-1/2 . n~m n'.rm' 

x ~=:l.-u-n(z) ei (u+n)e[r(2v + m)m!]-1/2 

x \j3 -r2 • -v-m(Z) e i(v+mJe, 
-v 

r 1 + r 2 = r, n,m =:: 0,1,2,"', (3.12) 

and the operators (3. 10) d~fine a realization of D~ ® 
Dt. Indeed, writing J+ = J+ - eier(z2 - 1)-1/2, we 
have 

J+(jnjm) =jn(j+-e ier 2(z2 -1)-1/2)jm 

+ jm(j+ -e iO r 1(z2 -1)-1/2)jn 

with a similar interpretation of J- and J3. From 
(3.11) we see that the basis functions j~ correspond­
ing to the Clebsch-Gordan series (1. 23) must be 

jt =:: cJ r(2u + 2v + 2s + h)h !]-1/2 
ill -r.-u-v-s-k( ) i(u+ v+S+k)e 

X ~ Z e • 
-u-V-s 

(3. 13) 

To compute the constant Cs we substitute (3.12) and 
(3.13), h = 0, into (3.7). Canceling the common 
factor 

(2;- 1) -(u+v+s+r)/2 (z ; 1) -(u+ v+s-r )/2 

on both sides of the equation and setting z =: 1, we 
obtain 

r(- u - v - s - r + 1) 
c = ----------------

s r(2u)r(-r1 - U + 1)r(-r2 - v - s - 1) 

x (r(2U + s)r(2u + 2v + s - 1) 

slr(2v+s) 

)
1/2 

x (2u + 2v + 25 - 1 

x 3F2(- s,- 2v- s + 1,u + r 1 ; 

2u, - r 2 - v - s -1; 1). (3. 14) 

Our final identity is obtained by substituting (3. 12), 
(3.13), and (3.14) into (3.5). In the very special case 
')'"1 = r 2 = s = ° this identity reduces to 

r(- u- v + 1) ( r(2u + 2v) \1/2 

r(l - u)r(- v-I) r(2u)r(2v)r(2u + 2v + h)h I) 

k 

X illU+ v+k (z) = ~ E(u n' v h - n I 0 h) +'-.u-v-s , , , , 
n=O 

1.\3~~n(z) \j3:,;s-n(z) 
x , (3.15) 

[r(2u + n)r(2v + s - n)n I (5 - n)! ]1/2 

where ~ ~ (z) is a Legendre function of the first kind 
(see Ref. 7, Vol. 1). [In this special case 5 = 0, the 
coefficients E(') are easy to evaluate explicitly.] 

For our next model of D~ we choose operators 

J± - e i ie ~x2 - 1) ~ =F iX~) - \ ax ae' 
J3 =-~ 

ae ' 
(3.16) 

and baSis functions 

J' (x e) = f- n! \ 1/2 (X2 _ 1) ul2 Cu (x)e;(u+nJe 
n' \r(2u + n)) n , 

n = 0,1,2, ... , (3.17) 

where C:(x) is a Gegenbauer polynomial (see Ref. 7, 
Vol. 2). It follows that a model of Dt ® Dt is deter­
mined by the operators (3.16) and basis functions 

. .. (n !ml \ 1/2 
In,m (x, e) = In(x, e)Jm(x, e) = r(2u + n)r(2v + m») 

n, m = 0, 1, 2, .••. (3.18) 

The basis functions jf transforming according to 
Dt+ v+s can be obtained directly from (3. 17): 

P(x e) = c . (x2 _1)(u+ v +s)/2 ( 
h' J 1/2 

h' s r(2u + 2v + 2s + h) 

s, h = 0,1,2,···. (3.19) 

To determine the constants Cs we substitute (3.18) 
and (3.19) into (3.7) and divide through by the com­
mon factor (x2 - 1)(u~v)/2. If s is odd, the right-hand 
side of the resulting expression is odd and the left­
hand side is even. Thus 

C s = 0, s odd. (3.20) 

If s is even, we compare coefficients of X s on both 
sides of the equation to obtain 

C

s 
= (r(2U + 5)(2u + 2v + 2s _1»)1/2 2 s r(v + s) 

s ! r(2 v + s) r(2u)r( v) 

x 3F2(u,- s,- 2v - s + 1; 2u,- v- s + 1; 1), 

seven. (3.21) 

Substituting (3.18)-(3.21) into (3.5), we obtain our 
general identity. In the special case s = 0, this 
formula reduces to 

( 
h!(2u + 2v-1) )1/2 

CrV(x) 
r(2u + 2v + h)r(2u)r(2v) 

h 

~ E(u, nj v, h - nlO, h) 
n=O 

x. . . C~(x)q_n (x), ( 
nl(h-n)1 )1/2 

r(2u + n)r(2v + h - n) 
(3.22) 
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where the coefficients E('} can be simply evaluated. 

Our next model of D~ is defined by operators 

ax ae l' J+ = eie~X(1 - x) ~ - i ~ - q) 
J-= eie x~ + i~) (3.23) ax ae' 
J3 =- i~ ae ' 

and basis functions 

. (f(2U + n)1/2 
In(x, e) = I n. 

xUF(- n, U + Qj2ujx)eiCu+nJe, 

n = 0,1,2, ... , (3.24) 

where q is a constant and F(a, (3; y, x) is a hyper­
geometric function (see Ref. 7, Vol. 1). It follows 
easily that the operators (3.23) and basis functions 

. (f(2U + n)r(2v + m)ll/z u+v 
In,m (x, e) = n!m! J x 

x F(- n,u + q1;2u;x) 
x F(- m, v + qz; 2v; x) eiCu+v+n+ m)e, 

n,m=0,1,2, ... , (3.25) 

define a model of Dt 0 v:; where q = q1 + qz. From 
(3.24) we see that the basis vectors j"s transforming 
according to D;;+ v+s are given by 

(
f(2U + 2v + 2s + h) 1/2 

J's(x e) = c XU+V+S 
h' s h! 

x F(- h, U + v + s + q; 2u + 2v + 2s; xl 
x ei(u+v+s+h)e, s, h = 0,1,2,···. (3.26) 

To compute the constants Cs we substitute (3.25) and 
(3.26) into (3.7) and equate coefficients of xu+v+s on 
both sides of the resulting expression. We find 

c =If(2u + 2v + S - 1)f(2u + s) ) l/Z 

s \~! (2u + 2v + 2s - 1)r(2v + s) 

f(2v)f(v + qz + s) 
x 3F2(- s, U + ql> 

f(2u + 2v + 2s -1)f(v + q2) 

- 2v - s + 1; 2u, - v - qz - s + 1; 1). (3.27) 

Substituting (3.25)-(3.27) into (3.5), we obtain our 
general identity. In the special case s = 0, it re­
duces to 

(
f(2u)r(2V)f(2U + 2v + h), l/Z 

r(2u + 2v) h! j 
x F(- h, u + v + qj 2u + 2v; xl 

h 

= .B E(u, n,; v, h - n 10, h) 
n~O 

(
f(2U + n)r(2v + h - n») liZ 

x n!(h - n)! 

x F(- n, u + ql; 2u;x) 

x F(- h + n, v + q2; 2v; x). (3.28) 
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The reader can discover other interesting special 
cases of this general identity by varying q1 and q2' 
e.g., set ql = - u. 

4. A DIFFERENCE OPERATOR MODEL 

As shown in Refs. 3 or 13, the operators 

J+ = eie ~x - l)L - x - i ;e + q), 
J- = e- ie (-(x + r)E + x + i ;e + r + q - ~, (4.1) 

J3 =- i~ ae 
and basis functions 

. (f(2U + n») l/Z 
In(x, e) = ----

n! 

f(u - q + 1)f(x + r + q - u - n - 1) 
x 

f(x + r - n) 

x 3FZ(- n, U - q - r + 1, U - q + 1; 2u, 

x+r-n;1)ei{u+nJe, n =0,1,2,'" 
(4.2) 

form a model of Dt, where r, q are constants and 
Ej(x, e) = j(x + 1, e), Lj(x, e) = j(x - 1, e). Further­
more, the operators 

J+ = e ie ~ i :e + V), J- = e- ie i :e + v , 

J3 = - i ~ (4.3) ae ' 
and basis functions 

., (e) = jf(2V + m) J - ei(v+m)e, m=0,1,2, •.. , (4.4) 
m m! 

form a model of Dt. Thus the operators (4.1) and 
basis functions 

(
f(2U + n)f(2v + m)11/2 

jn.m (x, e) = in (x, e)%,.(e) = n !m ! J 
f(u - q + V + 1)f(x + r + q - u - V - n - 1) 

x 
f(x + r - n) 

x 3F2(- n, U + V - q - r + 1, U + V - q + 1; 

2u, x + r - n; 1) ei(u+ v+n+m)13, n, m = 0,1,2,"', 

(4.5) 

define a model of Dt 0 Dt. The basis functions 
jC(x, e) transforming according to Dt+ v +5 can be ob­
tained immediately from (4.2) with U replaced by 
U + v + sand n = h: 

.s (f(2U + 2v + 2s + h») 1/2 
Jh(x,e) = Cs h! 

x 
f(u + v + s - q + 1) 

f(x + r - h) 

x f(x + r + q - u - v - S - h - 1) 

X 3FZ (- h, u + v + s - q - r + 1, U + v + s 

- q + 1; 2u + 2v + 2s, x + r - h; 1) 

(4.6) 
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To compute the constants c
5

, we substitute (4.5) and 
(4.6) into (3.7) and set x = - r + 1. We can then 
sum the right-hand side to obtain 

c = (r(2U + 2v + S -1)r(2u + s)r(2v + S))1/2 

5 s! (2u + 2v + 2s - 1) 
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Certain differential-geometric and Lie group theoretic facts that are useful in the systematic study and search 
for spectrum generating algebras are presented. 

1. INTRODUCTION 

Dothan has pointed out! several ideas and possible 
directions of research in connection with the "spect­
rum generating Lie algebras" of quantum mechanics. 
Typically, such ideas also have analogs in classical 
mechanics. Since the problems in classical mech­
anics often have a geometric foundation, one finds 
interconnections between geometry and Lie group 
theory, quantum mechanics and elementary particle 
physics. The aim of this paper is to survey more 
extensively some of these links than was possible in 
Dothan's paper. 

2. POISSON BRACKETS STRUCTURES AND CAN-
0NIcAL TRANSFORMATIONS ON MANIFOLD 

We adopt Ref. 2 as a basic reference for the ideas 
and notations of differential geometry on manifolds. 
Let M be a manifold of even dimension, with a closed 
two-differential form w of maximal rank on M. A 
diffeomorphism ¢: M --7 M is a canonical transforma­
tion if cp preserves the form w, i.e., ¢*(w) = w. A 
vector field X E V(M) defines an infinitesimal 
canonical transformation if 

X(w) = 0 (2.1) 

[X(w) denotes the Lie derivative 2 of the form w by 
the vector field Xl. The set of vector fields X satis­
fying (2.1) forms a Lie algebra [under Jacobi 
bracket (X, Y) --7 [X, Y]] of vector fields, that we 
denote by V(w). It may be thought of as the "Lie 
algebra" of the group of canonical transformations. 

Let F(M) denote the Coo, real-valued functions on M. 
The form w defines a Lie algebra structure 
if1,j2) -) {{Vf2} called the Poisson bracket. To define 
it, for f E F(M), let XI be the vector field such that 

Set 
df=XI J w. 

U1'/2} = - Xhif2) 

for f1>f2 E F(M). 

(2.2) 

(2.3) 

Then, one can prove the following results. 

The bracket { , } defined by 2.3 makes F(M) into 
a Lie algebra. (2.4) 

The mapping f --7 XI is a Lie algebra homo-
morphism of F(M) into V(w). (2.5) 

The kernel of this homomorphism consists of the 
constant functions on M. 

To recover the classical expression for Poisson 
bracket to be found in all mechanics books, suppose 
(Pi' qi)' 1 ::S i, j::S m is a coordinate system for M 
such that 

w = dPi 1\ dqi' 

Then, for f E F(M), 

X = _ of ~ + of ~ (2. 6) 
I api aqi aqi aPi ' 

Given h E F(M), the integral curves of the vector 
field Xh are the solutions of Hamilton's equations, 
with h the Hamiltonian. 2 Thus, if h is the function that 
represents the total energy of the mechanical system, 
a basic problem is to study these integral curves, i.e., 
to study the one-parameter group of canonical trans­
formations generated by Xh • NOW, in Ref. 2 certain 
general insights of the "Lie theory" of ordinary 
differential equations have been explained. In parti­
cula.r, they apply to the problem of finding the inte­
gral curves of Xh • 

Definition: A function f E F(M) is a symmetry of 
kif 

{f, h} = O. (2.7) 

If f satisfies (2. 7), then it follows from (2. 5) that 
[XI' Xhl = 0, hence that the one-parameter group 
generated by XI and Xh commute. The aim of the 
theory of "spectrum generating algebras", stated in 
rather vague terms, is to study Lie subalgebras of 
F(M), whose elements f satisfy commutation relations 
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To compute the constants c
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Certain differential-geometric and Lie group theoretic facts that are useful in the systematic study and search 
for spectrum generating algebras are presented. 

1. INTRODUCTION 

Dothan has pointed out! several ideas and possible 
directions of research in connection with the "spect­
rum generating Lie algebras" of quantum mechanics. 
Typically, such ideas also have analogs in classical 
mechanics. Since the problems in classical mech­
anics often have a geometric foundation, one finds 
interconnections between geometry and Lie group 
theory, quantum mechanics and elementary particle 
physics. The aim of this paper is to survey more 
extensively some of these links than was possible in 
Dothan's paper. 

2. POISSON BRACKETS STRUCTURES AND CAN-
0NIcAL TRANSFORMATIONS ON MANIFOLD 

We adopt Ref. 2 as a basic reference for the ideas 
and notations of differential geometry on manifolds. 
Let M be a manifold of even dimension, with a closed 
two-differential form w of maximal rank on M. A 
diffeomorphism ¢: M --7 M is a canonical transforma­
tion if cp preserves the form w, i.e., ¢*(w) = w. A 
vector field X E V(M) defines an infinitesimal 
canonical transformation if 

X(w) = 0 (2.1) 

[X(w) denotes the Lie derivative 2 of the form w by 
the vector field Xl. The set of vector fields X satis­
fying (2.1) forms a Lie algebra [under Jacobi 
bracket (X, Y) --7 [X, Y]] of vector fields, that we 
denote by V(w). It may be thought of as the "Lie 
algebra" of the group of canonical transformations. 

Let F(M) denote the Coo, real-valued functions on M. 
The form w defines a Lie algebra structure 
if1,j2) -) {{Vf2} called the Poisson bracket. To define 
it, for f E F(M), let XI be the vector field such that 

Set 
df=XI J w. 

U1'/2} = - Xhif2) 

for f1>f2 E F(M). 

(2.2) 

(2.3) 

Then, one can prove the following results. 

The bracket { , } defined by 2.3 makes F(M) into 
a Lie algebra. (2.4) 

The mapping f --7 XI is a Lie algebra homo-
morphism of F(M) into V(w). (2.5) 

The kernel of this homomorphism consists of the 
constant functions on M. 

To recover the classical expression for Poisson 
bracket to be found in all mechanics books, suppose 
(Pi' qi)' 1 ::S i, j::S m is a coordinate system for M 
such that 

w = dPi 1\ dqi' 

Then, for f E F(M), 

X = _ of ~ + of ~ (2. 6) 
I api aqi aqi aPi ' 

Given h E F(M), the integral curves of the vector 
field Xh are the solutions of Hamilton's equations, 
with h the Hamiltonian. 2 Thus, if h is the function that 
represents the total energy of the mechanical system, 
a basic problem is to study these integral curves, i.e., 
to study the one-parameter group of canonical trans­
formations generated by Xh • NOW, in Ref. 2 certain 
general insights of the "Lie theory" of ordinary 
differential equations have been explained. In parti­
cula.r, they apply to the problem of finding the inte­
gral curves of Xh • 

Definition: A function f E F(M) is a symmetry of 
kif 

{f, h} = O. (2.7) 

If f satisfies (2. 7), then it follows from (2. 5) that 
[XI' Xhl = 0, hence that the one-parameter group 
generated by XI and Xh commute. The aim of the 
theory of "spectrum generating algebras", stated in 
rather vague terms, is to study Lie subalgebras of 
F(M), whose elements f satisfy commutation relations 
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Wi.th h w~i~h are more complicated than (2. 7), yet 
stIll suffIclently simple to be able to derive useful 
information about the physical system. Certain use­
ful general remarks about this program have been 
made by Dothan. 1 Hence, we will not attempt to further 
formalize the general features of the program but 
will instead proceed to study certain more sp~cific 
facts of a differential geometriC nature. In later 
papers in this series, we will return to more general 
speculations. 

3. TRANSITIVE LIE GROUPS OF CANONICAL 
TRANSFORMATIONS 

Let us suppose now that G is a finite dimensional Lie 
subalgebra of F(M). Let G be the simply connected 
Lie group, whose Lie algebra is G. Let us suppose 
that G arises as the infinitesimal version of an action 
of G on M as a group of canonical transformations. 
Further, we will suppose that G acts transitively on 
M. (The "spectrum generating algebras" of such 
physical systems as the harmonic oscillator and the 
hydrogen atom seem to satisfy this transitivity con­
dition, so it seems to be a reasonable speculation.) 
Let L be the isotropy subgroup of G at a point of M. 
Then, by the general prinCiples of Lie group trans­
formation theory, M can be identified with the coset 
space GIL. Our aim in this section is to investigate 
the general conditions of the existence of a closed 
two-form w on M that is invariant under G imposes 
on G and L. We will suppose, for simplicity, that L 
is a connected subgroup of G. Further, in this section 
we will not suppose a priori that w is a maximal rank 
form nor that M is even dimensional. 

Theorem 3. 1: The coset space G / L admits a 
two-differential form invariant under G if and only if 
there is a skew-symmetric bilinear form 
w: G x G ---7R such that 

w(L, G) = 0, (3.1) 

w([Y, Xl, Z) - w([ Z, Xl, Y) - w(X, [Z, Y)l = 0 

for X, Y, Z E G, (3. 2) 

w([ X, Y], Z) + w(Y, [X, Z]) 0 for X E L, 

Y, Z E G. (3.3) 

Proof: Since G acts as a transformation group on 
M, by the general prinCiples of Lie theory G can be 
identified with a Lie subalgebra of V(M). Let p be 
the point of M for which L is the isotropy subgroup. 
Then, 

L = {X E G: X(P) = OJ. (3.4) 

Suppose first that a closed two-form w is given on M, 
such that 

g*(w) = w for all g E G. 

Then, also, 

X(w) = 0 for X E G. (3.5) 

Define w by the following formula: 

w(X, Y) ;:; w(X, Y)(P) for X, Y E G. (3.6) 

Then, it is readily verified that (3.1)-(3.3) follow 
from (3.4)-(3.6) and the condition that dw = O. The 
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s!eps are reversible, and show that such an w gives 
rIse to an w satisfying (3. 6). 

Kostant has given3 a general procedure for the con­
struction of a form w satisfying (3.1)-(3.3). Let Gd 
denote the dual space to the vector space G, i.e., the 
space of linear mappings a: G ---7 R. 

Theorem 3.2: Suppose that L is a Lie subalgebra 
of G and a is an element of Gd which satisfies the 
following condition: 

a([L, G]) = O. (3.7) 

Then, w defined by the following formula satisfies 
conditions (3.1)-(3.3), hence defines a G-invariant 
closed two-form w on GIL: ' 

w{X, y) = a([ X, I'J) for X, Y E G. (3.8) 

Proof: Notice that (3.7) is equivalent to (3.1). 
The other two conditions, (3.2)-(3.3), follow from the 
Jacobi identity for the Lie algebra G. 

Kostant's formula (3.8) gives one class of homogen­
eous spaces G/ L with invariant closed 2-forms. 
We shall now prove that, if G is semisimple, all 
structures are of this type. 

Let G be a Lie algebra, with w a form satisfying 
(3.1)-(3.3). Suppose further that B is a symmetric 
nonsingular bilinear form G x G ---7 R that is invariant 
under the adjoint representation, i.e., satisfies the 
follOwing condition: 

B([ X, Y), Z) + B(Y, [X, Z]) = 0 for X, I', Z E G. (3.9) 

(For example, if G is semisimple, the Killing form4 

will satisfy this condition.) Then, there is a linear 
transformation A: G ---7 G, such that 

w(X, Y) = B(AX, Y) for X, Y E G. (3. 10) 

Theorem 3.3: If A satisfies (3.10), then it is a 
derivation of G that commutes with AdL, i.e., it satis­
fies the following conditions: 

(X,AY] = A[X, Y] for X E L, Y E G, (3. 11) 

A([X, Y1) = [AX, Y] + [X, AY] for X, Y E G. (3.12) 

Proof: Let us first prove (3. 11). Given X E L, 
Y E G, set 

A'(X, Y) = [X,AY]-A([X, Y]). (3. 13) 

Then, for Z E G, 

B(A'(X, Y), Z) = B([X,AY], Z) - B(A[X, y], Z) 

= - B(AY, [X, Z1) - B(A[X, Y], Z), using (3.9), 

= - w(Y, [X, Z1) - w([ x, I'l, Z), using (3.10), 

= 0, 

using (3.3). Since B is nonsingular, (3. 11) follows. 

To prove (3. 12), set 

A"(X, I') = A([X, Y]) - [AX,Y] - (X, AY] 

for X, Y E G. 
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Given Z E G, [K, h] = O. (4.2) 

B(A" (X, Z), Z) = B (A[X, Y), Z) - B ([ AX, Y), Z) 

- B([X,AY], Z) 

= w([X, Yl, Z) + B(AX, [Z, Y1) + B(AY, [X, Z) 

= w([X, Y1, Z) + w(X, [Z, Y]) + w(Y, [X, Z]) 

= 0, 

using (3. 2). Again, (3. 12) now follows from the 
fact that B is nonsingular. 

Corollary: If Gis semisimple, there is an element 
Z E G, such that 

[Z,L] =0, (3.14) 

w(X, Y) = - B(Z, [X, V]) for X, Y E G. (3.15) 

In particular, w is of the type given by Kostant's 
formula. Further, the form w on GIL defined by w 
is of maximal rank, with GIL even dimensional, if 
and only if L is the centralizer of Z in G, i.e., 

L = {X E G: [X, Z) = o}. (3. 16) 

Proof: A well-known4 theorem of Cartan asserts 
that any derivation of a semisimple Lie algebra is 
inner. In particular, since A is a derivation, there is 
a Z E G, such that 

A(Y) = AdZ(Y) = [Z, Y] for Y E G. 

Equations (3.14)-(3.16) now follow readily from this 
fact. 

Remark: The referee has remarked that the above 
argument can be sharpened to cover the more general 
hypothesis (than semisimplicity) that G has vanishing 
second real-coefficient cohomology groups. In the 
case that w is a maximal rank form on an even­
dimensional M, this result is indeed known. 3 Of 
course, our aim is to apply it to the further case 
where M is odd dimensional, e.g., the "energy surface" 
of the phase space of mechanical system. 

We can now apply these results to various classifica­
tion problems that are associated with Dothan's 
general ideas concerning spectrum generating 
algebras. 

4. GENERAL FACTS ABOUT SPECTRUM GENERA­
TING ALGEBRAS 

Let us now turn to the case where M is the phase 
space of a classical mechanical system consisting of 
a single particle. Then, 

dimM = 6. (4. 1) 

Suppose that G is a semisimple group of canonical 
transformations that acts transitively on M. Let G 
be the Lie algebra of G, identified with a subalgebra 
of V (r.<) and F(M). Let L be the isotropy subgroup of 
G at a pOint P E M. Then G and L satisfy (3.14)­
(3.16). Further, let us suppose that h is a function on 
M that is the Hamiltonian of the physical system. 
Suppose that K is a connected subgroup of G that con­
sists of symmetries of h, i.e., such that 

Let N be the "energy surface" at p, i.e., the set of 
points p' E M, such that 

h(p') =h(p). (4.3) 

Then, in view of (4. 2),K maps N into itself. Let us 
suppose-as part of what is meant by "spectrum 
generating algebra"-that the following condition is 
satisfied: 

K acts transitively on N. (4.4) 

Let B be the Killing form of the Lie algebra G. Let 
w be the closed, maximal rank two-form on M defin­
ing the Poisson bracket structure. [In terms of the 
usual canonical coordinates (Pi' q;l, 1 sis 3, w is the 
form dPi /I dq;]. Then, there exists an element Z E G, 
such that L is the centralizer of Z in G and 

w(X, Y) = - B(Z, [X, YJ) 

= B([X, Zl, Y) for X, Z E L. (4.5) 

Further, we have the following result. 

Theorem 4. 1: If A is an Abelian subalgebra of G, 
then 

dimA - dim(A n L) s 3. (4.6) 

If A' is an Abelian subalgebra of K, then 

dimA' - dim(A' n L) s 2. (4.7) 

Proof. By (4.5) if X, Yare elements of an Abelian 
subalgebra of G, then 

w(X, Y) = O. (4.8) 

Now, w passes to the quotient to define a nonsingular 
bilinear, skew-symmetric form on GIL, which is of 
dimension six, which we may denote by w'. Now, a 
linear subspace V C GIL is said to be isotropic if 
w'(V, V) = o. It is a fact 5 of linear algebra that the 
dimension of such an isotropic subspace is of dimen­
sion no greater than three. NOW, the image of A in 
GIL is such an isotropic subspace, by (4.8). Combin­
ing these two remarks proves (4.6). (4.7) is proved 
similarly. 

5. MAXIMAL ORBITS 

We will now abstract from the phYSicist's intuitive 
idea of what is meant by a "spectrum generating 
algebra, " a precise problem in Lie group theory. 
Suppose, for the moment, that G, L, K are Lie groups, 
with L and K subgroups of G, and with G a "spectrum 
generating algebra". We have seen in Sec. 4 that one 
of the conditions going into the "spectrum generat­
ing" condition is dim(GI L) = 6. 

The dimension of at least one orbit of K is 5. This 
suggests the following general problem: 

Classify all triples (G, L, K), with G, L,K 
connected Lie groups, Land K closed subgroups 
of G, such that the following condition is 
satisfied: There is at least one orbit of K on 
GIL, whose dimension is one less than the 
dimension of GIL. (5. 1) 
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In this section, we will make some general remarks 
about these possibilities, in the case where K is 
compact. (As Dothan remarks,l this case seems to 
be the plausible one when one seeks "spectrum gener­
ating algebras" whose representations hopfully define 
the "bound-states" of a quantum mechanical physical 
system.) In this case, one can use the known general 
facts 2 concerning the structure of compact Lie groups 
of transformations on manifolds. In the rest of this 
section, we will summarize what can be said using 
these facts. 

Let M = G/ L and suppose that K is compact. Then, 
there is a positive Riemannian metric on M, such that 
K acts as a group of isometries of this metric. We 
will suppose that one such metric is fixed on M and 
that it is complete. For p EO M, let KP be the isotropic 
subgroup of Kat p i.e., the set of elements g EO K, 
such that gp = p. Recall2 the definition of maximal 
orbit: A point p EO M is on such an orbit if the follow­
ing conditions are satisfied; 

dimKP:s dimKP' for aU points p' EO M. (5.2) 

Let p be a point of M, and let N be the orbit of K 
through the point p. Let Np be the tangent space to 
Nat p. Let Nt be the orthogonal complement to Np 
in Mp (with respect to the fixed Riemannian metric on 
M). Then, KP acts on tangent vectors to M at p. 

(5.3) 

The action (5.3) of KP defines a representation of K 
by linear tranformations on Mp' called the tangent 
linear isotropy representation. The infinitesimal 
version of this defines a linear representation of XP, 
the Lie algebra of KP, by linear transformations on 
Mp. 

The following result can be proved, using the techni­
ques for the study of orbits of Riemannian trans­
formation groups given in Ref. 2. 

Theorem 5. 1: p lies on a maximal orbit of K if 
and only if 

Xv = 0 for all X EO KP, all v EO Nt. (5.4) 

Let us now translate condition (5.4) into an algebraic 
condition involving G. Let us suppose that G is a 
semisimple Lie algebra, and that K and L are linear 
subspaces that are nonsingular with respect to the 
Killing form of G. Let K 1. and Ll. denote the ortho­
gonal complement of K and Lin G, with respect to 
the Killing form of G. Then, one has the following 
relations: 

(5. 5) 

(The direct sum in (5.5) is only a vector space direct 
sum.) 

Suppose further that p is the identity coset element 
of G/K, so that the isotropy subgroup of G at p is L. 
Then, one sees that condition (5. 4) is equivalent to the 
following condition: 

[K n L, K.L] C L. (5.6) 
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Now, the question arises of translating (5.6) into a 
more familiar algebraic condition on the triple (G, K, 
L). We will attempt to do this here only in the case 
where K and L are both symmetric subalgebras of G, 
so that the following conditions are satisfied: 

(5.7) 

In addition, suppose that 

K n L is a nonsingular subspace of G 
with respect to the Killing form of G. (5.8) 

Theorem 5,2: If conditions (5.7), (5. 8) are satis­
fied, then condition (5. 6) implies the following two 
conditions: 

[K.Ln L\K.Ln Ll.) =0, 

[K n L, K.L n L 1.] = O. 

(5.9) 

(5.10) 

Proof: Let B(, ) be the Killing form of the semi­
simple Lie algebra G. Assume (5.6); 5. 10 then 
follows automatically. To prove (5.9), proceed as 
follows: 

Suppose X, Y EO Xl. n LL, Z EO K n L. 
Then, 

B([X, Y], Z) = - B(Y, [X, ZJ) 
= 0, by (5. 6). 

Then, B([KJ. n LL, Kl. n L.L], K n L) = O. 

But, using (5. 7), we have 

[K.L n L 1., K.L n L 1.] C K n L. 

(5. 11) 

(5. 12) 

Because of (5.8), (5. 11) and (5.12) combined to prove 
(5.9). 

Finally, in case (5.1) is satisfied, we have the follow­
ing condition: 

(5. 13) 

These results give us the tools to investigate exam­
ples of "spectrum generating algebras." 

6. SPECTRUM GENERATING ALGEBRAS ASSOCI-
ATED WITH COMPACT SYMMETRIC PAIRS 

Let us first recall some ideas from the theory of 
symmetric spaces. 4.6.7 Let G be a Lie algebra, and 
let a be an automorphism of G, such that 

0'2 = (identity). (6.1) 

Let K = {X EO G: (J Ixi = X}. Then K is called a 
symmetric subalgebra of G. A pair (K, L) of such 
symmetric sub algebras is called a symmetric pair. 
Such a symmetric pair will be called a compact 
symmetric pair if G is a semisimple Lie algebra of 
compact type, i.e., G is the Lie algebra of a compact, 
connected, semisimple Lie group G. (In Sec. 7 we will 
extend some of the results to certain noncompact 
groups G.) 

Let us suppose that such a compact symmetric pair 
(K, L) is fixed. Let K and L be the connected sub-
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groups of G generated by K and L. In Refs. 7 -9, 
certain general results are proved concerning the 
orbit structure of K acting on GI L. In this section, 
we will apply some of this work to the problem of 
classifying spectrum generating algebras. 

Let a and a' be the automorphisms of G which satisfy 
(6. 1), such that 

K = {X E G: o(X) = X}, L = {X E G: a'(X) = X}. 
Set 

H = {X E G: 0(X) = a'(X)}. (6.2) 

Then, H is a subalgebra of G, such that 

a(H) = H. 

Also, K n L = {X E H: a(X) = X}. Thus, K n L is a 
symmetric sub algebra of H. Set 

P = {X E H: 0(X) = - X}. (6.3) 

Let A be a maximal Abelian subalgebra of P, i.e., A 
is a Cartan Subalgebra4 .6 associated with the sym­
metric space HIK n L. Let A be the connected sub­
group of G corresponding to the subalgebra A. We 
will now state a basic result, referring to Ref. 8 for 
the proof. (Alternately, a proof could be given using 
Theorem 5 and general facts about Riemannian 
transformation groups.) 

Theorem 6.2: Let Po be the identity coset of 
M = G/ L. Then, the orbit Apo touches each orbit of 
K at least once and is transversal to each such orbit 
at the point of contact. At each maximal orbit, Apo 
fills up the perpendicular space to the orbits. In 
particular, 

dimA = dimM - (dimension of each maximal orbit 
of K). (6.4) 

Corollary: The maximal orbits of K are of one 
less dimension than M if and only if HIK n L is a 
symmetric space of rank one. 

[The corollary is of obvious interest in connection 
with finding examples which satisfy (5. 1).] 

Now, we can made further remarks about the possible 
structure of L in case the following condition is 
satisfied: 

oa'=o'a. (6.5) 

In this case, set a" = aa'. Notice that (a")2 = identity, 
and 

H = {X E G: u"(X) = X}. (6.6) 

In particular, H is also a symmetric subalgebra of G, 
hence the possibilities for dimA = 1 can be classified 
using Cartan's classification of compact symmetric 
spaces. However, we will not carry out this program 
here. 

NOW, G is a candidate for a "spectrum generating 
algebra" if G / L has a a-invariant Poisson bracket 
structure. By Theorem 3. 3, this will happen if and 
only if L is the centralizer of an element of X E G. 

In this case, L will be a maximal rank subalgebra of 
G. If G is simple, the possibilities for L may be read 
off from the table on page 128 of Ref. 4. 

For example, if G = 50(5, R), the only possibility for 
L is the 50(3, R) x 50(2, R) subgroup of G. Now, as 
Dothan remarks,! the spectrum generating algebra 
for the hydrogen atom is G = 50(4, 1), which is a non­
compact real form of 50(5, R). (As we will see in the 
next section, it is often possible to pass back and 
forth from the "compact" to the "noncompact" situa­
tions using Cartan' s construction of noncompact Lie 
algebras.) Now, in the hydrogen atom, K is the sub­
group 50(4, R). It may now be readily verified, with 
the aid of (6. 6), that H is also an 50(4, R) subgroup of 
50(5, R) with K n L equal to 50(3, R). Notice now 
that HIK n L is indeed a rank one symmetric space, 
hence to maximal orbits of K on G / L are five­
dimensional, as they are in the hydrogen atom. 

Another example is provided by the harmonic oscilla­
tor, where G := 5U(4), and where K and L are both 
U(3) subgroups. In this case also it is readily seen 
that the maximal orbits of K on G / L are five- dimen­
sional, while dim(G/L) := 6, and GIL as a G-invariant 
Poisson bracket structure. Now we turn to the des­
cription of a method for generating noncompact 
spectrum generating algebras. 

7. CONSTRUCTION OF NONCOMPACT SPECTRUM 
GENERATING ALGEBRAS 

We have just given a method for generating compact 
semisimple spectrum generating algebras. However, 
the examples cited by Dothan! involve noncompact, 
semisimple Lie algebras. We will now work out a 
method for passing back-and-forth between these 
two types. 

First, let us present Cartan's method for defining 
different "real forms" of the same complex Lie alge­
bra. Let G be a Lie algebra over the real numbers 
as a field of scalars, and let 0': G --7 G be an auto­
morphism of G, such that 

0'2 = (identity). (7.1) 

Let us now define a "new" bracket structure on the 
underlying vector space of G, to be denoted by [ , ]': 

[X, Y]' = H[x, a(Y)] + [a(X), Yl 

+ [X, Y] - O'([X, Y])}, 
(7.2) 

Now, we have the following result, whose proof is easy, 
but which we will not give here: 

Theorem 7. 1: Formula (7. 2) defines [, l' as a real 
Lie algebra structure on the underlying vector space 
of G. If we denote this Lie algebra by G', then the 
complexifications of G and G' are isomorphic as 
complex Lie algebras, i.e., G and G' are "real forms" 
of the same complex Lie algebra. 

The following result is obvious from formula (7. 2). 

Theorem 7.2: If L is a subspace of G such that 
[L, L] C L, i.e., L is a Lie subalgebra of G with res­
pect to the Lie algebra [ , ], and if O'(L) := L, then L 
is also a Lie subalgebra with respect to the Lie 
algebra structure [, ]' on G defined by formula (7. 2). 
We can now apply these remarks to the problem of 
constructing examples of noncompact spectrum gen­
erating algebras from the compact ones. Let G be 
a compact semisimple Lie algebra; and suppose that 
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K, L are symmetric subalgebras of G, such that 
(G, K, L) satisfy the conditions (5. 3) needed to say 
that G is a "spectrum generating algebra". Let a be 
an automorphism of G which satisfies (7.1), such that 

a(L) = L, a(K) = K. 

Form the noncompact Lie algebra G' which is a real 
form of G via formula (7.2). Then, by Theorem (7.2), 
Land K form Lie subalgebras of G', that we call L', 
K'. Then, one sees readily that L', K' are symmetric 
subalgebras of G'. It seems likely that (G', L', K') 
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In case a group of symmetries of a classical mechanics system acts on a locally transitive wayan the energy 
surface, it is shown how the time evolution of the system is related to orbits of one-parameter subgroups of 
the symmetry group. In particular, this provides a group-theoretic interpretation of certain types of regulari­
zation of collisions. Generalizations of this phenomenon to quantum mechanics are also discussed. 

1. INTRODUCTION 

In Paper 11 we have discussed certain situations which 
are "maximally symmetric" in the sense that the 
group of symmetries act transitively on the under­
lying space. In this paper we will pursue further the 
study of such transitivity situations, concentrating 
attention on the case where there is a "local group" 
of canonical transformations which commutes with 
the Hamiltonian and which acts in a "local transitive" 
way on the energy surfaces. We will show how these 
symmetries enable one to discuss the "collision" 
properties of the classical equations of motion, 
generalizing material that is already known2 for the 
hydrogen atom-Kepler motion situation. We shall 
also discuss the question of extending a locally tran­
sitive group of Hamiltonian symmetries to a group of 
canonical transformations that act in a locally transi­
tive way on classical state space. Here we encounter, 
in a slightly different form, the phenomena discussed 
in Ref. 3 of a one-parameter group of symmetries of 
a system of differential equations, for which certain 
orbits are also solutions of the differential equations 
themselves. (The most classical version of this phe­
nomenon is the Lagrange rotating equilateral triangle 
solution of the three-body problem.) We will also 
briefly discuss in Sec. 4 this phenomenon in a quantum­
mechanical context. 

2. LOCALLY TRANSITIVE HAMILTONIAN 
SYMMETRIES 

Again, we will refer to Ref. 3 for the differential-geomet­
ric concepts and notations to be used here. Let M be 
an even dimensional manifold, and let w be a maximal­
rank, closed two-differential form on M. (For exam-
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ple,M could be4 ,5 the cotangent bundle of a "configu­
ration space" manifold N. In this case, there is a 
natural choice of two-form on M, whose associated 
"Hamiltonian-Jacobi theory" gives the usual material 
of classical mechanics.) 

A diffeomorphism ¢: M --7 M, such that 

¢*(w) = w (2.1) 

is called a canonical transformation. A local canoni­
cal transformation is an ordered triple (U, U' , ¢) con­
Sisting of two open subsets U, U' of M, together with a 
diffeomorphism ¢: U --7 U' which satisfies (2. 1). A 
vector field X E V(m) is an infinitesimal canonical 
transformation if 

X(w) = O. (2.2) 

The set of all such vector fields is denoted by V(w) 
and forms a Lie algebra with the Lie algebra bracket 
[,] just the Jacobi bracket3 of vector fields. Given an 
X E V(w), the integral curves3 of X define a family of 
local canonical transformations on M. Let G be a Lie 
subalgebra of V (w ), and let M' be a sub set of M. G is 
said to act in a locally transitive way on M' if the 
following condition is satisfied: 

Given pOintsP{,P2 EM' which are suffi­
ciently close together, there is a local 
canonical transformation generated by 
integral curves of an X E G which maps 
P1 intoP2. (2.3) 

Suppose, for example, that M' is a submanifold of M, 
and that G is tangent to M ', Le., 
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K, L are symmetric subalgebras of G, such that 
(G, K, L) satisfy the conditions (5. 3) needed to say 
that G is a "spectrum generating algebra". Let a be 
an automorphism of G which satisfies (7.1), such that 

a(L) = L, a(K) = K. 

Form the noncompact Lie algebra G' which is a real 
form of G via formula (7.2). Then, by Theorem (7.2), 
Land K form Lie subalgebras of G', that we call L', 
K'. Then, one sees readily that L', K' are symmetric 
subalgebras of G'. It seems likely that (G', L', K') 
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surface, it is shown how the time evolution of the system is related to orbits of one-parameter subgroups of 
the symmetry group. In particular, this provides a group-theoretic interpretation of certain types of regulari­
zation of collisions. Generalizations of this phenomenon to quantum mechanics are also discussed. 

1. INTRODUCTION 

In Paper 11 we have discussed certain situations which 
are "maximally symmetric" in the sense that the 
group of symmetries act transitively on the under­
lying space. In this paper we will pursue further the 
study of such transitivity situations, concentrating 
attention on the case where there is a "local group" 
of canonical transformations which commutes with 
the Hamiltonian and which acts in a "local transitive" 
way on the energy surfaces. We will show how these 
symmetries enable one to discuss the "collision" 
properties of the classical equations of motion, 
generalizing material that is already known2 for the 
hydrogen atom-Kepler motion situation. We shall 
also discuss the question of extending a locally tran­
sitive group of Hamiltonian symmetries to a group of 
canonical transformations that act in a locally transi­
tive way on classical state space. Here we encounter, 
in a slightly different form, the phenomena discussed 
in Ref. 3 of a one-parameter group of symmetries of 
a system of differential equations, for which certain 
orbits are also solutions of the differential equations 
themselves. (The most classical version of this phe­
nomenon is the Lagrange rotating equilateral triangle 
solution of the three-body problem.) We will also 
briefly discuss in Sec. 4 this phenomenon in a quantum­
mechanical context. 

2. LOCALLY TRANSITIVE HAMILTONIAN 
SYMMETRIES 

Again, we will refer to Ref. 3 for the differential-geomet­
ric concepts and notations to be used here. Let M be 
an even dimensional manifold, and let w be a maximal­
rank, closed two-differential form on M. (For exam-
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ple,M could be4 ,5 the cotangent bundle of a "configu­
ration space" manifold N. In this case, there is a 
natural choice of two-form on M, whose associated 
"Hamiltonian-Jacobi theory" gives the usual material 
of classical mechanics.) 

A diffeomorphism ¢: M --7 M, such that 

¢*(w) = w (2.1) 

is called a canonical transformation. A local canoni­
cal transformation is an ordered triple (U, U' , ¢) con­
Sisting of two open subsets U, U' of M, together with a 
diffeomorphism ¢: U --7 U' which satisfies (2. 1). A 
vector field X E V(m) is an infinitesimal canonical 
transformation if 

X(w) = O. (2.2) 

The set of all such vector fields is denoted by V(w) 
and forms a Lie algebra with the Lie algebra bracket 
[,] just the Jacobi bracket3 of vector fields. Given an 
X E V(w), the integral curves3 of X define a family of 
local canonical transformations on M. Let G be a Lie 
subalgebra of V (w ), and let M' be a sub set of M. G is 
said to act in a locally transitive way on M' if the 
following condition is satisfied: 

Given pOintsP{,P2 EM' which are suffi­
ciently close together, there is a local 
canonical transformation generated by 
integral curves of an X E G which maps 
P1 intoP2. (2.3) 

Suppose, for example, that M' is a submanifold of M, 
and that G is tangent to M ', Le., 
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For eachp' E: M, the set {X(P'): X E: G} 
= G(P ') generated by G is contained in 
M;" the tangent space to M' at p'. 

(2.4) 

Then, one sees readily that, if the following condition 
is satisfied, then G acts on a locally transitive manner 
on M': 

G(P') = Mp, for aUp' E: M'. (2.5) 

Example: Suppose that M is the state space of a 
classical mechanical system, with w the canonical 2-
form. Use w to define a Poisson bracket structure on 
F (M). Given I E: F (1\.1), let Xj E: V(M) be the vector 
field, such that 

dl=XjJw, 

Xj(w) = 0, Le"Xj is an infinitesimal canonical 
transformation, 

{/1 '/2} = -Xjl (f2) for 11'/2 E: F(M). (2.6) 

Let h be a fixed element of F (M), considered as the 
Hamiltonian of the system. Let 11 , ..• ,In be functions 
on M, such that {h ,fa} = ° for 1 ::;: a ::;: n. These func­
tions are called constants of motion. The vector field 
Xj then satisfies 

a 

0= [Xh,Xj ] = Xj (h), 
a a 

which indicates that the local canonical transforma­
tions generated by the Xj are symmetries of the 
equations of motion defin~d by h. Using (2.6), we now 
have the following result: 

Theorem 2.1: Suppose that dimM = 2m. If the 
values at each point of M of dl l' ... , din spans a 
space of covectors of dimension (2m - 1), then the 
Lie algebra of canonical transformations generated 
by the Xjl , .•. ,Xjn acts on a locally transitive manner 
on the energy surfaces h-1 (E), E E: R of M. 

For example, if h is the Hamiltonian of the hydrogen 
atom or the harmonic oscillator, then it is well known 
how to choose such constants of motion, which form 
(under Poisson bracket) finite-dimensional Lie alge­
bras [SO(4,R) for the hydrogen atom, U(3) for the 
oscillator ]. 

Suppose now that, in general, K is a Lie algebra of 
infinitesimal canonical transformations on M, each 
element of which generates a symmetry of h. For 
E E: R, set 

Let us assume that the "energy surfaces" ME are 
sub manifolds of M. Then, each X E: K is tangent to 
ME' Let us suppose also that K acts in a locally 
transitive manner on ME' Let X h be the vector field 
on M such that dh = X h .Jw. Then, the integral curves 
of X h are the solutions of the Hamilton equations, 
with Hamiltonian h. Since Xh(h) = {h,/} = 0, each in­
tegral curves also lies completely on one energy sur­
face ME' 

Theorem 2.2: The integral curves of X h that lie 
on an energy surface ME are characteristic curves 
of the 2-form w restricted to ME. (See Ref. 3 for the 
definition of a characteristic curve of a 2-form.) 

Proof: Since dh = XhJw, we see that XhJw = ° 
when restricted to ME (since dh = ° on ME)' which is 
the condition needed3 to assert that the integral 
curves of X h are characteristic curves. 

Theorem 2.3: If t -- aCt) is an integral curve of 
Xh> which lies on ME and if K acts locally transitively 
on ME , then there is an X E: K such that a is an integ­
ral curve of X. Further, if I E: F (M) is such that 
df = XJw,. and if IE denotes the function I restricted 
to ME' then each point of a is a critical point of IE' 

Proof: To say that K consists of symmetries of h 
is to say that 

X(h) = ° for all X E: K. (2.7) 

Hence, [X,Xh] = ° for all X E: K. 

Then, as was shown in Ref. 3, the one-parameter 
group generated by X maps an integral curve of X h 
into another integral curve. 

Let P be the point of ME such that a(O) = P. Then, our 
assumption that K acts in a locally transitive way on 
ME implies that there is an X E: K whose value atp 
is precisely the tangent vector to a at p. Let us sup­
pose that this tangent vector is nonzero. (The result 
is trivial in the case it is zero.) Then, as shown in 
Ref. 3, there is a coordinate system x l' ..• ,x m for 
M, valid in a neighborhood of p, such that 

a 
0=x1(P)='" =Xm(P), Xh =- (2.8) 

aX 1 

Suppose that, in this coordinate system, 

a a a 
X=A 1 -+A2 -+ ···+Am-. (2.9) 

aX 1 aX 2 aX m 

The coefficients A1' ... ,Am in (2.9) are then functions 
of Xl' ••• ,xm • Condition (2.7) implies that these 
functions depend only on x 2' ... , X m' The condition 
that Xh (P) = X(P) implies that 

A1 (0, ... , 0) = 1, 

A 2 (0, ... ,0)=0= .. · =Am(O, ... 0). 
(2. 10) 

The curve t -- aCt), as the integral curve of Xh start­
ing at P , is given explicitly as follows, in these coor­
dinates: 

t -- (t,O, "',0)=(x 1(t),x 2 (t), ".,xm(t). 

Then 

dx 1 - = 1 = A 2(0, ... ,0) = A 2(x2(t), ••• ,x m(t», 
dt 

dx 2 - = ° = A 2 (x2(t), ... ,xm(t)), 
dt 

dxm dt =0=A m (x2(t), ... ,x m (t». 

The relations then show, explicitly, that the curve 
t -) aCt) is also an integral curve of X, which proves 
the fir st part. 

Recall that a point P E: ME is a critical point of a 
function It: if dIE (p) = O. Suppose that dl = X/wand 
that t -- aCt) is a curve in ME , which is an integral 
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curve of both X and X h • Then, by Theorem 2.2, the 
curve t -7 aCt) is a characteristic curve of w restric­
ted to ME' 

Hence, 

dfE(a(t» = X(a(t»Jw restricted to ME 

= Xh(a(t»Jw restricted to ME 

= 0, 

which proves that each point of the curve t -7 aCt) is, 
indeed, a critical point of the function fE' 

Remark: The fact that f, restricted to the sub­
manifold ME' has a critical point can be phrased in a 
more symmetric way, using Lagrange multipliers. 
In fact, one sees that fE has a critical point at the 
point P E ME if and only if there is a real number A 
such that 

df + Adh = 0 at p . (2.11) 

(A is, of course, the Lagrange multiplier.) 

Another way of looking at this has been pointed out by 
Smale. 6 Consider the map M -) R2 which assigns 
to the point p the pair (f(P) , h(P» of real numbers. 
Then, the points PEN which satisfy (2.11) are ob­
viously the points at which this map is not of maxi­
mal rank, i.e., the singular points of the map. 

Finally, the general phenomenon encountered here­
solutions of differential equations which are also 
orbits of groups of symmetries of the equations-has 
been studied in various geometric contexts by the 
author. 3, 7,8 

3. REGULARIZATION OF SINGULARITIES OF 
DIFFERENTIAL EQUATIONS BY MEANS OF 
GROUP THEORY 

Let M continue to be an even-dimensional manifold 
with a closed, maximal-rank 2-form w. Let h be a 
Hamiltonian function on M, and let X h be the Hamil­
tonian vector field, such that 

An integral curve t -7 a(t) of Xh , defined over the in­
terval 0 ::; t < a, is said to have a singularity at t = a 
if it cannot be continued beyond the point t = a. For 
example, if M is the state space of a system of par­
ticles, a "collision" at t = a would be suel). a singu­
larity, since some of the momenta of the particles 
would go to infinity as t -7 a. 

Now, we must explain what is meant by "regulariza­
tion" of the singularity. Among the many possible 
meanings of this concept, we choose a "geometric" 
one: The energy surface ME on which the curve a 
lies is to be embedded as a submanifold of a manifold 
M', such that X h arises by restriction to ME of a vec­
tor field on M', and such that lima(t) exists in M' as 
t -7 a. 

For example, Moser2 has constructed such an em­
bedding for the case where h is the Hamiltonian of 
the hydrogen atom. In this section, we will discuss 
certain features of this problem that can be looked at 
in a group-theoretical way. 
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Let us suppose that K is a finite dimensional Lie alge­
bra of infinitesimal transformations oli. M, consisting 
of symmetries of h, i.e., such that X(h) = 0 for all 
XEK. 

Then,K acts on the energy surface ME = h-1 (E). Let 
us further suppose that it acts in a locally transitive 
way on ME' Then, as we have seen, if t -7 a(t), 
o ::; t < a, is an integral curve of X h which lies on 
ME' there is an X E K such that a is also an integral 
curve of X. We shall now describe a situation where 
this fact may be utilized to extend a beyond t = a. 

Definition: Let K be a finite-dimensional Lie alge­
bra of vector fields which acts in a locally transitive 
way on a manifold N. Let K be a connected Lie group 
whose Lie algebra is isomorphic to K. Then, the in­
tegration of the vector fields in K defines a "local" 
Lie group action of K on N. This action is said to be 
globalizabZe if there is a closed subgroup L of K and 
an embedding of N as an open subset of N = KIL, 
such that the action of K on N results from the res­
triction to N of the vector fields in K acting on the 
coset space KIL. 

Remark: If the action of K is globalizable in this 
way, then the geometric situation implies that an in­
tegral curve t -7 a(t), 0::; t < a, of an X E K, which 
lies in N, can always be continued beyond a (in fact, 
to -00 < t < 00), mto a curve lying inN' = KIL. In 
fact, this curve is just the orbit t -7 g(t)a(O) of the 
one-parameter subgroup get) = exp(tX) of K generated 
by the element X E K. 

Let us return now to the case where N = ME' and K 
results from the action of a Lie algebra of symmet­
ries of h. Then, if N' is such a globalization of N, it 
follows that the integral curves of X h can be continued 
into N'. For example, for the case of the hydrogen 
atom, Moser has constructed N' explicitly as 
SO(4,R)ISO(2,R). 

Now, unfortunately, there are as yet no general theo­
rems in the mathematical literature asserting when 
a locally transitive action of a Lie algebra on a mani­
fold N may be globalized in this way. (This would be 
analogous to the question-equally unknown-of the 
possible "completion" of an incomplete Riemannian 
metric.) However, at least these geometric remarks 
do provide one with a geometric framework in which 
to think of the problem, and provide us with a "geo­
metric" set of sufficient conditions for the "regulari­
zation" of singularities. 

4. THE QUANTUM MECHANICAL ANALOGS 

Part of our motivation for this work in classical 
mechanics was to develop ideas that had an analog in 
quantum mechanics. We will now develop this analogy 
explicitly, focusing attention on the phenomenon inves­
tigated above in a classical setting of orbits of one­
parameter groups of symmetries that are also solu­
tions of the Schrodinger equation. 

Let H be a complex vector space, with a real-bilinear 
form (1/11>1/12) -7 (1/1111/12) that is Hermitian symmet­
ric, in the sense that it satisfies the following condi­
tions: 

(1/11 11/12) = (1/1211/11)* for 1/11,1/12 E H, 

(c1/l1 1 1/12) == C*(1/I1 1 1/12) for C E C, 1/11,1/12 E H, 

(1/111/1) > 0 if 1/1 E H is '" O. 
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Such a structure will define H as a Hilbert space. 
(This is the terminology in physics; in mathematics 
one adds completeness.) 

Now let M be the projective space constructed from 
H, i.e., the space of one-dimensional linear subspaces 
of H. M should be considered as the quantum mecha­
nical state space. We will now discuss some of its 
differential-geometric properties. (It is one of a type 
of "infinite-dimensional manifolds," whose differen­
tial-geometric properties will be treated according 
to general lines discussed in Ref. 4.) 

Let 1T be the map: H - (0) ~ M which assigns to each 
nonzero Ij; E H the one-dimensional complex-linear 
subspace to which it belongs. For each Ij; E H - (0), 
denote by 1j;.L the orthogonal complement subspace to 
Ij;, i.e., the set of 1j;1 E H such that (1j;11j;1) = O. One 
can then regard the assignment Ij; ~ 1j;.L as defining 
a vector bundle over H - (0). Now, the fibers of this 
vector bundle are clearly constant on the fibers of 1T 
(since (clj;).L == 1j;.L for c E e), hence there is defined 
a vector bundle, which we denote by T(M) on M. 

As the notation "T(M)" should indicate, T(M) can be 
identified with the "tangent bundle" to the "infinite­
dimensional manifold M." [For 1T (Ij;) EM, denote by 
M,,(I/i) = Ij; the fiber of T(M) over the point 1T(Ij;).) To 
see this, suppose that t ~ Ij;(t) is a curve in H - (0), 
with Ij; (0) == Ij;. Assign to this projected curve 
t ~ 1T1j; (t) in M the "tangent vector," which is the 
orthogonal projection on Ij; of the derivative (dx/dt)(O). 
This element of 1j;.L == Mrr(I/i) is then independent of the 
lifting t ~ Ij; (t) chosen for the curve t ~ 1T(1j; (t». 
Clearly, two such curves have "first order contact" 
at t == 0 if their "tangent vectors" in M"(lJ!) == 1j;.L , 
assigned in this way, coincide. We will denote this 
orthogonal projection in 1j;.L by the notation 

1T * (~i (0)) . 

Let A: H ~ H be a Hermitian operator on H, i.e., 
(Ij; 11 AIj; 2) == (AIj; Illj; 2) for Ij; 11 Ij; 2 E H. Let us suppose 
that A generates a one-parameter unitary group act­
ing on H, denoted by U(t) == exp[- (it/Ii)A]. In other 
words, for Ij; E H 

~ U(t)1j; = _ iA (U(t)Ij;). 
dt Ii 

(4.1) 

U(t) permutes the one-dimensional linear subspaces 
of H, hence acts as a one-parameter transformation 
group on M. Let XA be the vector field on M defined 
by this one-parameter group. Using (4.1), we see that 
for Ij; E S, 

(4.2) 

In particular, note that XA (1T (Ij;» = 0, i.e., 1T (Ij;) is a 
"singular point" for the vector field XA , if and only if 
Ij; is an eigenvector of A. 

Each such Hermitian operator A also determines a 
real-valued function fA: M ~ R as follows: 

[Note that the right-hand side of (4. 3) is invariant 
under the transformation Ij; ~ clj; for c E e, hence 
(4.3) really does define fA as a genuine function on 

M.] Let us compute the "differential" dfA of fA: 
Suppose t ~ Ij;(t) is a curve inH,with 1j;(0) = Ij;. 
Then, 

Now, in this computation, we can suppose that the 
curve t ~ Ij;(t) has been normalized so that 

(Ij; 11j;) == 1, ~~ (0) E 1j;.L. 

With these normalizations, we then have 

= < ~~ (0) IAIj;) + < ~~ I AIj;) * 

(4.4) 

== <~~ (0) I iliXA(1T (Ij;)~ + <~~ (0) I iliXA (1T 1 (Ij;)~ * 

[using (4.2)] 

= iIi« ~~ (O)IXA(1T(Ij;)>>-< ~~ (0) IXA (1T(Ij;)) *). (4.5) 

To interpret this formula in an interesting differen­
tial-geometric way, let us define w as a real, skew­
symmetric bilinear form: Mrr(I/i) x M "(lJ!) ~ R, as fol­
lows: 

w (Ij; 11 1j;2) == iIi« Ij; 111j; 2)* - (Ij; 1 IIj; 2») 

for 1j;1' 1j;2 EM"(lJ!) = 1j;.L. (4.6) 

Then, (4. 5) can be rewritten in the following form: 

(4.7) 

Now, as Ij; varies, w defines a "2-differential form" 
on M. One can, in fact, prove that it is a "closed 2-
form" on the infinite-dimensional manifold M, when 
the "exterior derivative" is defined as explained in 
Ref. 4. As Ij; varies, Ij; ~ XA (Ij;) defines a "vector 
field" over M. The function fA' the vector field XA, 
and the 2-form ware then related-using Eqs. (4. 7), 
via the relation 

(4.8) 

This relation is then a typical "symplectic manifold" 
situation. 3 - 5 What we have done is to show that the 
reciprocity between "observables," i.e., "Hermitian 
operators" and "one-parameter unitary groups," i.e., 
"quantum symmetries," which is a typical feature of 
quantum mechanics, can be put into a "classical 
mechanics-symplectic manifold" framework by ana­
lyzing the differential geometric structure of M, the 
quantum mechanical state space. 

Mter these general remarks, let us turn to the quan­
tum-mechanical analog of Theorem 2.4 and relation 
(2.8). Let A and Ak be two Hermitian operators on H, 
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which commute and which generate one-parameter 
unitary groups,t ~ U(t), t ~ U (t),onH. (Ah may be 
thought of as the "Hamiltonian,f of the system.) Let 
11 (1/1) be a point of M which is a critical point of fA + VA 
where A is a real constant, i.e., d(fA + VA ) = 0 at 1/1. h 

h 
Relation (4.7) now implies, as it does in classical 
mechanics, that XA + AXA is zero at 11(1/1). Formula 

h 
(11.2) now implies that 1/1 is an eigenvector of 
A + AA h' In turn, this implies, using the relation 
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In order to understand the behavior of coarse-grained equations in the presence of a boundary, the following 
model is investigated. A homogeneous one-dimensional random walk is bounded on one side by some boundary 
conditions of rather arbitrary form. The corresponding master equation is approximated by the Fokker­
Planck equation plus partial differential equations for the higher orders. The boundary condition for the 
Fokker-Planck approximation is well known; but those for the higher order terms are here derived. To the 
second order they amount to a virtual displacement of the boundary. The case of a two-step random walk, 
however, gives rise to an unexpected complication, inasmuch as nonpropagating solutions of the master equa­
tion cannot be ignored in the boundary condition, although they do not contribute to the differential equations 
themselves. 

1. INTRODUCTION 

In recent years much effort in nonequilibrium stati­
stical mechanics has been devoted to the derivation 
of equations describing the time dependence of re­
duced distribution functions and macroscopic vari­
ables. These equations have been derived from the 
exact equations of motion and are particularly simple 
when some pertinent physical parameter is quite 
small. Examples are the Boltzmann equation for a 
low denSity gas, the Langevin and Fokker-Planck 
equations for heavy particles in a bath of light parti­
cles, and the hydrodynamic equations in systems with 
small spatial gradients. All ofthese equations canbe 
extended to situations where the parameter (e.g., the 
density) is still small, but large enough so that the 
lowest order equations are no longer valid. These 
extensions have resulted in the Choh-Uhlenbeck equa­
tion l for dilute gases and the generalized hydrodyna­
mic equations.2 

All of the derivations mentioned above were carried 
out in the thermodynamic limit and in the absence 
of boundaries. It would be of great interest to derive 
the transport equations for a system with boundaries, 
but little progress has been made in this direction. 3 (a) 

Phenomenological considerations do supply a clue to 
the expected results of such analyses, at least to the 
lowest order. Thus, for example, the hydrodynamic 
equations describing the bulk properties for non­
equilibrium fluids have the same form whether a 
boundary is present or not. The presence of the 
boundary merely imposes boundary conditions on 
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these equations. We emphasize that these boundary 
conditions are often not derived from molecular 
theory but imposed on intuitive phenomenological 
grounds. While the intuitive approach may work 
for the lowest order equations, there is no assurance 
that it will, and even less assurance that it will be 
valid for the extended equations. 

In this paper we study a number of discrete random 
walk models in the presence of boundaries. These 
models are of interest because they are fairly easy 
to analyze and because they have been widely used to 
describe stochastic processes in physics and chem­
istry. We expand the exact differential-difference 
equation (master equation) and find to lowest order 
the Fokker-Planck equation, and similar partial 
differential equations for the successive higher 
orders. The boundary conditions for these differ­
ential equations are also derived from the exact 
master equation. The form of the differential equa­
tions is not affected by the presence of boundaries. 
However, the boundary conditions which their solu­
tions must satisfy are not intuitive and can be deter­
mined only from a detailed study of the solutions to 
the master equation itself. 

2. THE RANDOM WALK MODEL 

By "random walk" we mean a stationary, continuous 
time Markov process whose range of possible values 
consists of integral numbers n. The random walk 
is unbounded when n ranges from - ac to + 00, and is 
bounded (on the left) when n takes on only the values 
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which commute and which generate one-parameter 
unitary groups,t ~ U(t), t ~ U (t),onH. (Ah may be 
thought of as the "Hamiltonian,f of the system.) Let 
11 (1/1) be a point of M which is a critical point of fA + VA 
where A is a real constant, i.e., d(fA + VA ) = 0 at 1/1. h 

h 
Relation (4.7) now implies, as it does in classical 
mechanics, that XA + AXA is zero at 11(1/1). Formula 
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(11.2) now implies that 1/1 is an eigenvector of 
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In order to understand the behavior of coarse-grained equations in the presence of a boundary, the following 
model is investigated. A homogeneous one-dimensional random walk is bounded on one side by some boundary 
conditions of rather arbitrary form. The corresponding master equation is approximated by the Fokker­
Planck equation plus partial differential equations for the higher orders. The boundary condition for the 
Fokker-Planck approximation is well known; but those for the higher order terms are here derived. To the 
second order they amount to a virtual displacement of the boundary. The case of a two-step random walk, 
however, gives rise to an unexpected complication, inasmuch as nonpropagating solutions of the master equa­
tion cannot be ignored in the boundary condition, although they do not contribute to the differential equations 
themselves. 

1. INTRODUCTION 

In recent years much effort in nonequilibrium stati­
stical mechanics has been devoted to the derivation 
of equations describing the time dependence of re­
duced distribution functions and macroscopic vari­
ables. These equations have been derived from the 
exact equations of motion and are particularly simple 
when some pertinent physical parameter is quite 
small. Examples are the Boltzmann equation for a 
low denSity gas, the Langevin and Fokker-Planck 
equations for heavy particles in a bath of light parti­
cles, and the hydrodynamic equations in systems with 
small spatial gradients. All ofthese equations canbe 
extended to situations where the parameter (e.g., the 
density) is still small, but large enough so that the 
lowest order equations are no longer valid. These 
extensions have resulted in the Choh-Uhlenbeck equa­
tion l for dilute gases and the generalized hydrodyna­
mic equations.2 

All of the derivations mentioned above were carried 
out in the thermodynamic limit and in the absence 
of boundaries. It would be of great interest to derive 
the transport equations for a system with boundaries, 
but little progress has been made in this direction. 3 (a) 

Phenomenological considerations do supply a clue to 
the expected results of such analyses, at least to the 
lowest order. Thus, for example, the hydrodynamic 
equations describing the bulk properties for non­
equilibrium fluids have the same form whether a 
boundary is present or not. The presence of the 
boundary merely imposes boundary conditions on 
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these equations. We emphasize that these boundary 
conditions are often not derived from molecular 
theory but imposed on intuitive phenomenological 
grounds. While the intuitive approach may work 
for the lowest order equations, there is no assurance 
that it will, and even less assurance that it will be 
valid for the extended equations. 

In this paper we study a number of discrete random 
walk models in the presence of boundaries. These 
models are of interest because they are fairly easy 
to analyze and because they have been widely used to 
describe stochastic processes in physics and chem­
istry. We expand the exact differential-difference 
equation (master equation) and find to lowest order 
the Fokker-Planck equation, and similar partial 
differential equations for the successive higher 
orders. The boundary conditions for these differ­
ential equations are also derived from the exact 
master equation. The form of the differential equa­
tions is not affected by the presence of boundaries. 
However, the boundary conditions which their solu­
tions must satisfy are not intuitive and can be deter­
mined only from a detailed study of the solutions to 
the master equation itself. 

2. THE RANDOM WALK MODEL 

By "random walk" we mean a stationary, continuous 
time Markov process whose range of possible values 
consists of integral numbers n. The random walk 
is unbounded when n ranges from - ac to + 00, and is 
bounded (on the left) when n takes on only the values 
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1, 2, 3, .. '. For the unbounded case we assume 
homogeneity, i.e., the probability per unit time ar , 
for making a jump of r units is independent of n. If 
the largest possible single jump is s units, we call 
it an s-step random walk. Then the master equa­
tion for the probability Pn (t) to be at site n at time t 
is 

s 

Pn(t) =2; arPn+r(t)· (1) 
r =-s 

If ar = a_r , the random walk is symmetric. We shall 
here restrict ourselves to the symmetric one-step 
and two-step cases. We assume a 1 "" 0 to ensure 
that all sites can be reached. [See Ref. 3(b).] 

For the bounded case we take the same Eq. (1) for all 
positive n excepting a finite number of them near 
the boundary. For the exceptional Pn special equa­
tions are required, whose precise form is descrip­
tive of the physical properties of the boundary. 
Clearly an infinite variety of boundaries is possible. 
We shall call a boundary reflecting when the boundary 
equations are such that total probability is conserved, 
and absorbing if total probability decreases. Among 
all varieties of absorbing boundaries one may single 
out a special case, to be called purely absorbing, 
which is the kind of absorbing boundary usually con­
sidered. [See Ref. 3(c).1 

It is not hard to choose the boundary equations such 
that the total probability increase s, at a rate pro­
portional to the probability already present at the 
neighboring sites; this kind of "stimulated emission," 
however, will be excluded. Moreover, for nonhomo­
geneous master equations, i.e., ar depending on n, it 
often happens that the process is automatically 
bounded due to the vanishing of a_ r (r = 1,2, ... , s) 
at n = 0; such "natural boundaries" are much easier 
to treat and are not the subject of this article. 

The bounded s-step random walk problem can be 
solved exactly, in the sense that all Pn (t) can be found 
for t > 0 when their initial values are prescribed. 
In particular, the reflecting and the purely absorbing 
case have been amply treated in the literature,5 the 
latter often in connection with first passage problems. 
However, for reasons explained in the Introduction, 
we are interested in developing an approximation 
scheme based on the smallness of the individual 
jumps. The first step of this approximation is the 
Fokker-Planck or diffusion equation with the well­
known boundary conditions, viz., the probability 
density vanishes on an absorbing boundary and has 
zero slope on a reflecting boundary. Highe r order cor­
rections to the Fokker-Planck equation have previous­
ly been obtained for the unbounded case. 6 This article 
is concerned with the higher orders in the presence 
of a boundary. It will appear that a nontrivial com­
plication arises for multiple step random walks. 
Rather than trying to provide an exhaustive treat-
ment of all possibilities, we shall confine ourselves 
to three special paradigms. 

It is convenient to define a pure boundary, meaning 
that the recursion relation (1) is valid for all 
n ? s + 1 (supposing that a_ s does not vanish), so that 
only the equations for PI' P2 , ••• ,Ps are modified. In 
the case of a pure boundary the following equivalent 
but more convenient way of formulating the boundary 
conditions is possible. Introduce s auxiliary vari-

abIes Po, P-l' P-2 , ••• , P- s+1 and stipulate that (1) is 
valid for all n ? 1, but that the auxiliary variables 
are connected with the actual variables PI' P2 , ••• 

by a set of s suitably chosen linear relations. How to 
choose these linear relations will become clear in 
the applications. Pure absorption will be defined as 
the special case that these linear relations have the 
simple form Po = P- 1 = ... = P- s +1 = O. 

3. ONE-STEP RANDOM WALK WITH PURE 
BOUNDARY-EXACT SOLUTION 

With suitable choice of time unit, Eq. (1) reduces, 
in the symmetric one-step case, to 

(2) 

In the case of a pure boundary this is valid for n = 
2,3, .. '. Inasmuch as only one-step jumps are per­
mitted, the special equation for PI must have the 
form 

(3) 

with a single parameter c. For the total probability 
W one finds 

dW d 00 

at = ([[ ~ Pn = - cPl' 

Hence the boundary is reflecting for c = 0 and absorb­
ing for c > O. The case c < 0 describes stimulated 
emission and will therefore be excluded. 

Equation (2) for n ? 2 together with (3) for n = 1 
may be expressed in an equivalent way by declaring 
(2) valid for n = 1 as well and putting 

Po = (1 - c)p!. (4) 

(Note that Po is merely an auxiliary quantity and is 
not equal to the probability that the particle has been 
absorbed.) 

According to the definition in Sec. 2 the boundary is 
called purely absorbing when c = 1. 

To solve this bounded random walk problem exactly 
first note that (2) is obeyed by 

(5) 

provided that z and A are connected by t he character­
istic equation 

A=2-z-1/z. (6) 

For fixed time constant A there are two roots z l' z 2 

and hence two solutions of the form (5); thus the 
general solution of (2) with time factor e- At is 

h(A)(t) - e-At(C zn + C zn) 
Yn - 1 1 2 2 • (7) 

We require that p~A) is bounded for n --7 00; it will be 
shown that that is sufficient for obtaining a complete 
set of normal modes. Hence one must have 
I z 11 "'" 1 and I z 21 "'" 1 (see, however, Appendix A). 
As z 1 Z 2 = 1 according to (6), we may write 

Note that in order to obey (2) for n = 2, 3, ... , it is 

(8) 
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necessary that (7) holds for n = 1, 2, •. '. Thus owing 
to the fact that the boundary is pure, all Pn (t) have to 
be of this form. J is related to A by (6), or 

A = 2 - 2 cosJ = 4 sin2~J. (9) 

This covers the values ° ~ A ~ 4, which determines 
the eigenvalue spectrum of our bounded problem. 

The constants C l' C 2 are now chosen such that (3) 
is satisfied: 

Equivalently one may use (4) to obtain 

It follows that 

(lOc) 

The normal mode solutions of the bounded random 
walk are now fully determined by (7), (9), and (10). 

It is instructive to write the result in a more familiar 
form. Write S(J) = e 2in (J) for the right-hand side of 
(lOc); note that IS(J)I = 1 and 1] is real. With suitable 
normalization the normal mode solution (7) may then 
be written 

Pn(A)(t) = e- At (2/1T)1/2 sin[Jn + 1](J)]. (11) 

Thus 1](J) is the phase shift due to the boundary and 
S(J) is the "s matrix". Note, however, that this S­
matrix is always unitary, regardless of whether total 
probability is conserved or not! The orthogonality 
and completeness of these normal modes is shown in 
Appendix A. Consequently the final solution may be 
written in terms of an evolution operator 

0() 

Pn (t) = ~ Unm(t)Pm(O), 
m=l 

Unm(t) = ~ f sin[Jn + 1](,90)] 
1T 0 

(12) 

x sin[Jm+ 1](J)]e-4tSin2(J/2)dJ. 

4. ONE-STEP RANDOM WALK WITH PURE 
BOUNDARY-APPRO~TETREATMENT 

Following the program outlined in the Introduction 
we now investigate the approximations that are appli­
cable when the individual jumps may be treated as 
small compared to the distances that one is inter­
ested in. Accordingly we set 

En = X, Pn (t) = EP(X, f), (13) 

and expand in E. In other words, we are interested 
in an approximation method for solutions that vary 
slowly compared to the size of the jumps. Of course 
the result can be found directly by expanding the 
exact result (12); but our aim is to find an independent 
method for solving the problem in this approximation. 

The master equation (2) gives for P(x, t), 

P(x, t) = P(x + E, t) + P(x - E, t) - 2P(x, t) 

02p E4 04p 
-E2_- +--- + .... 
- OX2 12 ox4 
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Using the new time variable T = E2t and expanding P, 

P = p(O) + EP(1) + E2p(2) + . ", 

one finds successively 

oP (0) 02 p(O) 

aT=~' 

op(2) a2p(2) 1 a4p(0) 
--=--+---

i3T ax2 12 ox4' 

These equations apply to all x > 0. 

The boundary condition (4) translates into 

P(O, T) = (1 - C)P(E, T), 

which, on expanding in E, amounts to 

P (0) = (1 - c)P (0) , 

p(1) = (1 - c)p(1) + (1 - c)p(O)', 

(14a) 

(14b) 

(14c) 

(15a) 

(15b) 

p(2) = (1 - c)p(2) + (1 - c)p(1)' + ~(1 - c)p(O)". 

(15c) 

(Here and in the future we abbreviate the notation by 
writing p(O) for p(O)(O, T), etc., and p(O)' for ap(O) 
(x, T)/aX evaluated at x = 0.) The conclusion from 
these equations depends on whether or not c vanishes. 

First for c ;t. 0, one concludes 

p(O) = 0, p(1) = [(1 - c)/c]p(O)', 

p(2) = [(1- c)/c]p(1)',···. (16a) 

In the last equation we have used the fact that p(O)" 
= ° as a consequence of p(O) = ° and Eq. (14a). Thus 
we find that to lowest order, P(x, T) obeys the familiar 
boundary condition for an absorbing boundary when­
ever c does not vanish. The reason is that any absorp­
tion, however small, is sufficient on our slow time 
scale to absorb everything that reaches the boundary. 
The next two orders in (16a) may be written in the 
form of the boundary condition 

P(O, T) = E[(l - c)/c ]p'(O, T) + ~*3). 

That is, to first and second order the value of P(x, T) 
on the boundary differs from zero by an amount 
proportional to its slope. The proportionality con­
stant 1 = E(l - c)/ c has been called the slip coeffi­
cient. 3.7 In the next order, however, the boundary 
condition can no longer be expressed in terms of a 
single slip coefficient; rather one finds 

P(O, T) = E[(l - c)/c]P'(O, T) + E3[(1 - c)(3 - 2c)/6c 2] 

x pili (0, T) + ..•. 

For the reflecting boundary c = 0, Eq. (15a) is moot, 
while (15b) and (15c) yield 

p(O)' = 0, p(l)' = _ ~p(O)II. (16b) 

The same pattern continues in higher orders, e.g., 
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P ''')' lpcV" lpCO)"'- !.p(1)" "" =-2 -6 --2 • (16c) 

Equations (14), together with the boundary conditio~s 
(16) constitute the desired approximate treatme~t III 
successive powers of E. In order to compare thIS 
with the exact solution in Sec. 3 we write (11) in terms 
of the continuous variable x, setting" = Ek, 

EP ,Jx, T) = e- At (2/71) 1/2 sin(kx + 1)). (17) 

If one now expands A as given in (9), 

A == E2k 2 - -r\E 2k4 +"', 

one finds that, indeed, (17) obeys (14) in successive 
orders. 

To verify the boundary conditions, expand 1) as given 
by (10): 

1) == 1m 10g{1 - (1 - c)e-i£k} 

= Er(l - c)/c]k + 0(E3). 

Substituting this in (17), one finds again that the suc­
cessive orders of (17) obey the boundary conditions 
(16a). Note that, to second order, 1) is proportional to 
k, which according to (17) simply amounts to a dis­
placement of the point where P(x, T) vanishes from 
x = 0 to x = - I. This is equivalent with the existence 
of a slip coefficient and does not go through in higher 
orders. 

In the reflecting case one finds by taking c = 0 in (10), 

1) = ~1T - ~Ek + 0(E3). 

On substituting this in (17) one easily finds agree­
ment with (16b). Here again one may represent the 
effect of the boundary in first and second order as a 
shift of the boundary. The probability denSity P(x, T) 
has no longer zero slope at x = 0, but at x = ~E. The 
concept of a slip coefficient does not apply to the 
reflecting boundary. 

In spite of this agreement it is not true that the approx­
imate treatment leads to a convergent power series 
expansion of the evolution operator (12). The solutions 
of (14) involve all wave numbers k, whereas the inte­
gral in (12) contains values of k only up to 7I/E. The 
solutions that we have added incorrectly are func­
tions that vary appreciably within a distance E and 
are therefore meaningless; they decay in time like 
e- t rather than e- r• Of course this kind of error is 
inevitable in any approximation in terms of continu­
ous functions, and presumably in any approximation 
based on coarse graining. It demonstrates that the 
expansion in powers of E can only be an asymptotic 
expansion. 

5. EXAMPLE OF ONE-STEP RANDOM WALK WITH 
IMPURE BOUNDARY 

Suppose a particle jumps randomly between neigh­
boring pOints of a one-dimensional lattice, but the 
transition probabilities between the endpoint n = 1 
and its neighbor n = 2 differ from the others: 

Pn = Pn +1 + Pn - l - 2Pn , n = 3,4, ... , (18a) 

(18b) 

P1 = bP2 - aP1• (18c) 

Note that the total probability W is conserved. 

To find the normal mode solutions we first solve 
(18a) by setting PnO,J equal to (7) for all n ?o 2. As to 
P (A) we know its time dependence, 1 , 

piA)(t) = e-Atq; 

but its amplitude q is not determined by (18a). The 
two boundary equations (18b) and (18c), however, 
state 

(1 + b -A)(C1z1 + C2z~) == C1z1 + C2z~ + aq, (19a) 

(19b) 

These equations determine C l' C 2' and q uniquely up 
to an arbitrary normalization constant. 

In order to make the transition to the continuous 
limit we set 

En == x, E2t = T, Pn (t) == EP(x, T) for n ?o 2. 

Equation (18a) leads again to (14). Equations (18b) 
and (18c) serve to determine P1(T) and also to find 
the boundary condition for P(x, T). We shall now use 
the dot for differentiation with respect to T, so that 
the time derivatives pick up a factor E2. Thus (18b) 
and (18c) become 

E2 P(2E) = P(3E) + (a/ E)P1 - (1 + b)P(2E), 

EP1 = bP(2E) - (a/ E)P1 • 

Order E-1 merely states pia) = O. Order EO yields 

ap(1) = bP(O) 1 , 

but does not yet lead to a boundary condition for 
pCO). Order E1 yields 

o = - bP(l) + (1 - 2b)P(O)' + api2), 

o = bPCl> + 2bP(O)' - api2). 

(20) 

(21) 

Hence p~O)' = 0 and ap}2) = bP(1). Thus to zeroth 
order P obeys the diffusion equation with the boundary 
condition for a reflecting wall. According to (20) the 
probability for occupying site 1 is proportional to the 
value of the continuous probability density at the wall. 
The proportionality factor contains a factor E owing 
to the fact that site 1 is only one state among a dense 
aggregate of other states. To the next order one finds 

p(1)' = (b / a - ~)P(O)", 

ap?) = bP(2) + b(2b/a - b - 1/a)PCO)n. 

6. TWO-STEP RANDOM WALK WITH PURE 
BOUNDARY 

The symmetric two-step random walk is described 
by the master equation 

In the presence of a pure boundary this recursion 
relation applies to n = 3, 4, . .. and has to be supple­
mented by two special equations for Pl and P2 • We 
take 
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P2 = aP4 + P3 + PI - bp2, 

PI = aP3 + P2 - aPI' 

with two positive constants a and b. 

(23a) 

(23b) 

For the total probability one finds from (22) and (23), 

W = (a + 2 - b)P2 + (a + 1 - a)Pl" (24) 

Hence the boundary is reflecting when 

a = 1 + a, b = 2 + a. (25) 

Smaller values of a or b will not be considered as 
they correspond to stimulated emission. Larger 
values correspond to an absorbing boundary. An 
equivalent formulation of the boundary conditions is 
obtained by declaring (22) valid for all n ? 1, and 
setting 

Po = [(2 + 2a - b)/ a ]P2 == BP2, (26a) 

P-l = [(2 + 2a - a}/a]pI - [(2 + 2a - b)/a 2]p2 

== API - (B/ a)P 2 • (26b) 

The constants A and B are simply abbreviations. 
Note that one must have 

B "" 1, A "" 1 + 1/ a. 

The equality sign corresponds to the reflecting case. 
The purely absorbing boundary is characterized by 
A =B = O. 

Solutions of (23a) are obtained by taking Pn (t) equal 
to (5), where A and z are now related to each other by 

A = 2 + 2a - z - (l/z)- az 2 - (a/z 2). (27) 

To each A correspond four roots z 1, z 2' Z 3' Z 4' so that 
the general solution is 

e- At (C 1z1 + C2z~ + C3z~ + C4za). 

When one of the roots has absolute value greater than 
unity this solution grows exponentially for n -7 00, 

unless the corresponding coefficient is zero. On the 
other hand, there are two boundary conditions (23), or 
equivalently (26), which can be satisfied only if at least 
three constants C are available. 

The full discussion of the roots of (27) is elementary 
but laborious (Appendix C). When studying the contin­
uous limit, however, one is interested only in the low 
values of A. In that case it is easy to see that, in 
addition to the roots z 1 = e iJ , z2 = e- iJ given by 

A = 2 + 2a - 2 cosJ - 2a cos2J, (28) 

there is another I?air of roots z 3' z4 with 1 z 31 < 1, 
and IZ41 = 1/lz31 > 1 (see Eq.39 in Appendix D). 
Hence 

p~A)(t) = e-At(CleiJn + C2e- iJn + C3z~). (29) 

The term with z~ decreases exponentially with in­
creasing n, and is therefore nonpropagating. The 
phase shift TJ is still determined by e2i 1/ = - CdC2' 

Going to the continuous limit as before one obtains 
from (23a) 
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ap(O) a2p(O) 
-- = ( 1 + 4a)--

aT ax2 ' 
ap(1) a2p(1) -- = (1 + 4a)--

aT ax2 ' 

ap(2) = (1 + 4a)a 2p(2) + 1 + 16a a4p(O) 
aT ax2 12 ax4 

(30a) 

(30b) 

(30c) 

The reason why the exponentially decreasing term 
does not show up here is that z~ = z~/£ collapses 
into the origin. In this connection it is essential to 
note that 1 z 31 remains less than unity for E -7 O. 
In fact, one has from (27) with J = d, 

A = E2 k 2 + "', 

so that 

Z3(A) = z<~) + f2z~) + .... 

Here zf[}) = z 3(0) is the third root of (27) for i\ = 0, 
which is readily seen to lie between - 1 and O. 

On the other hand, it is clear that one does not have 
the freedom to impose two boundary conditions at 
x = 0 on the solutions of (30). The nonpropagating 
mode associated with z 3 is necessary in order to 
satisfy these boundary conditions. Thus even in the 
limit one needs more detailed information concern­
ing the recursion relation (22) than just the form of 
its continuous approximation (30).8 

To find the boundary condition for P(x, T) at x = 0, it 
is convenient to study the individual modes separately 
for each time factor e- At• Any factor A that may arise 
in the boundary condition will ultimately be replaced 
with (- a/at), so that the boundary condition applies 
to all normal modes and therefore to P(x, T) itself. 
Accordingly we substitute in (26), 

p~A)(t) = e-At(EPA (nE) + C3z~). 

To lowest order this leads to two equations for C~O) 
alone: 

C
(O) _ BC(O) (0)2 
3 - 3 Z3 , 

C
(O) (0)-1 _ AC(O) (0) _ (B la)C(O) (0)2 
3 Z3 - 3 Z3 I' 3 Z3 . 

It follows that C~O) = 0, because BZCf:) 2 < 1. 

The next order yields two equations for p10) and C ~l): 

(1 - B)P~O) + {1 - Bz(~)2} C~) = 0, (31a) 

(1 - A + B!a)p;O) + U~)-l - Az~) 

+ (B/a)z~)2} C~) = O. (31b) 

Unless the determinant vanishes, the onlv solution is 
p~O) = C~) = O. Thus to this order the exponentially 
decreasing solution does not come in, and plO)(x, T) 
obeys the diffusion equation with the usual boundary 
condition for an absorbing boundary. In the reflect­
ing case (25), however, one has 1 - B = 0 and 
1 - A + B/ a = 0, so that the determinant of (31) 
does vanish. Hence there is a nontrivial solution 

P~O) arbitrary, CP) = O. 

In this case, therefore, (31) does not lead to a boundary 
condition. It is shown in Appendix D that the reflect-
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ing boundary is the only case in which the determinant 
is zero. 

To second order (26) gives 

(1 - B)p~l) + {I - Bzl~)2} c~) == 2BP~O)', (32a) 

(I-A +B;a)p~l)+ [i~)-1 -Az~)+ (B/a)z~)2)C~) 
== (1 + A - 2B/a)P~O)'. (32b) 

By solving these equations one obtains the boundary 
value of p(1)(x, T) in terms of the slope of p(O)(x, T) 
at x = O. For instance, in the case of pure absorp­
tion A = B = 0, one finds successively 

pO) = _ [i~) /(1 _ z(~~]plO)', 

C(2) _ [ (0);(1 _ (O»]plO)' 
3 - Z3 Z3 >..' 

p(2) = [z(~)/(1 _ z~~]p(l)', 

C~) = [i~)/(1 - Z~~]p~l)'. 

This may again be interpreted in terms of a slip 
coefficient 

l = - E[i~)/(1 - z~~], 

or alternatively as a displacement of the boundary 
point to 

x = - l = E[z~)/(1 - z~)]. 

In the reflecting case both coefficients of p~l) in (32) 
are zero and the only solution is c~) = p~O) = 0 
(see Appendix D). After somewhat lengthy com­
putations one finds in the next order 

pll)' __ ~plO)" C(3) _ plO)"[1 _ lO)2]-1 
- 2 , 3 - >.. z3' (33) 

7. THE TOTAL PROBABILITY 

In this section we investigate the behavior of the total 
probability in the successive orders of E. Provided 
that the boundary is pure, one may use the Euler­
Maclaurin formula 

00 "" 

W = :6 Pn (t) = E :6 P(nE, T) 
n;l ,,;1 

== JOO P(X, T)dx - ~EP(O, T) o . 

- ~E2P'(0, T) + 7~oE4P"'(0, T) + .... 
Hence the successive orders of Ware 

W(O) == ~"" p<O>(x, T)dx, (34a) 

W(l) == 1000 

p(l)(x, T)dx - ~P(O), (34b) 

w(2) = 1000 

P (2)(x, T)dx - ~p(1) - -i2p(O)t. (34c) 

Consider the one-step random walk treated in Secs. 3 
and 4. Using (14) one obtains, for the derivatives with 
respect to T, 

W (0) = _ P (0)' , 
W(1) = _ p(l)' _ ~p(O)", 

W(2) = _ p(2)' _ ~2P(1)" _ ~p(O)'" 
6 • 

For the reflecting case each term duly vanishes when 
the boundary conditions (16b) and (16c) are inserted. 
For the absorbing case the equations reduce to 

W(O) = - p(O)' W(1) = _ p(l)' , , 
W(2) == - p(2)' - [(3 - 2c)/6c]P(0)"'. 

These equations may be combined into 

W = - P'(O, T) - E2[(3 - 2c)/6c]P"'(0, T) + 0(E3). 

Consider the two-step random walk with pure bound­
ary treated in Sec. 6. One now has, for each normal 
mode, using A = E 2k2 , 

W>..(T) == e- k2T (E~ P>..(nE) + C 31 ~3 ). 
n;l Z 3 

From this one finds, taking into account that C
3
(0) = 

CP) = 0) 

W(O) = - (1 + 4a)P(0)', 

W(1) = - (1 + 4a)p(1) - ~(1 + 4a)P(O)t', 

W>..(2) == e- k2T[_ (1 + 4a)p>..(2)1 - ~(1 + 40')P>..(1)" 

- i(1 + 10 a)P}O)fff - k 2C3(2) z3(O?l (1 - zlO»). 

For t.he reflecting, boundary it is clear that W(O) = 0 
and WW = 0, see (33). It is now easier to find the 
next higher order boundary condition for the reflect­
ing case from the conservation of probability, since 
we found already C~) = 0, 

p(2)1 == _ ~p(1)". 

Again this can be interpreted by saying that to second 
order in E the slope of P(x, T) vanishes at x == ~E 
rather than at x = O. 

For the two-step random walk with purely absorbing 
boundary, one finds for the total probability 

W(O) = - (1 + 4a)P(0)/, W(1) == - (1 + 4a)p(1)/, 

and to second order 

W>..(2) = e- k2T - (1 + 4a)p>..(2)' + ~2 a 3 p(o)'" 
[ 

1 4 z (0) 

1 _ z~o) >.. 

_ 1 + lOa p(O)'" _ k2 ( z3(0) \ 2 P(O)t] 
6 >.. 1 _ z§o)/ >.. • 

Hence, 

W(2) = - (1 + 4a)P( 2) 

+ (
1 + 40' Z(30)(1 + z(30» ) 

_ 1 +6100' p(O)": 
2 (1 _ z~»2 

Finally consider the impure boundary case of Sec. 5. 
One now has 

00 

W == PI + E:6 P(nE) 
n~2 

== PI - EP(E) + r' P(x, T)dx 

° 
- ~EP(O, T) - f2 E2P'(O, T). 

From this one finds that, indeed, the total probability 
is conserved in successive orders of E: 

w(O) = f
o
"" p(O)(x, T)dx = - p(O)1 = 0, 

WW = pP) _ p(1)1 _ ~p(O) 

= (b/a)P(O)" - (b/a - ~)p(O)" - ~p(O)" = O. 
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8. CONCLUSIONS 

(i) Expansion of the master equation of a random 
walk leads to the familiar diffusion equation for the 
zeroth and first order, and to diffusion equations with 
inhomogeneous term for the higher orders. These 
differential equations are valid at all interior points 
of the accessible interval. 

(ii) In the case of a pure boundary, the continuous 
probability density P(x, T) obeying these equations 
constitutes a full description of all probabilities; in 
the case of an impure boundary one or more separate 
quantities PI (T), P2 (T), .•• are needed for the pro­
babilities at the sites near the boundary. 

(iii) For one-step processes the boundary conditions 
on P(x, T) are obtained by substituting in the discrete 
master equation simply Pn (T) = EP(nE, T), possibly 
with separate values for PI (T), P2 (T), • • •• For s - step 
processes, however, one has to add linear combina­
tions of s - 1 additional nonpropagating modes of the 
homogeneous master equation. 

(iv) To zeroth order the result is: The slope of P (x, T) 
vanishes at any boundary that conserves probability, 
but P(x, T) itself vanishes as soon as there i3 some 
absorption. To second order the same boundary con­
ditions apply but at a slightly displaced point. In 
higher orders the boundary condition cannot be stated 
in such simple terms. 
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APPENDIX A 

In addition to the solutions (7) where z p z 2 are given 
by (8), there may be solutions with IZll < 1, IZ21 > 1, 
and C2 = O. According to (10) this requires that 
z 1 = (1 - e )-1, which is consistent with 1 z 1 1 < 1 only 
when e > O. The corresponding time constant ~ is 

A* = e + 1 + 1/(e - 1). 

This is an isolated point of the spectrum because 
A * > 4. The corresponding normal mode solution is 

Note that one has z 1 = e iJ *, where 8-* is a pole of the 
5 matrix in the upper half of the complex 8- plane. 
More explicitly, 8-* = 1T + iK with e" = c -1. This 
additional isolated solution has to be included when 
c > 2, in order that the solutions are complete. How­
ever, this fact is not relevant when studying the con­
tinuous limit, because that limit involves only low 
values of A. 

To investigate the completeness of the set of solu­
tions (11) with 0 :;; 8- :;; 1T, we verify the completeness 
relation, or to put it differently, we compute Unm(O): 

~ f sin[ 8-n + 1)(8-)] sin[ 8-m + 1)(,90) ]d,9o 
1T 0 

= 1- J2n (eIJ(n-m) _ eiJ (n+m)+2i~(J»d8-
21T 0 

= 6 - 21 J2~ 5(8-)e i (n+m),9o dJ.. 
nm 1T 0 

The integration path may be extended by adding the 
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line from ioo to 0 , and the line from 21T to 21T + irfJ, 
because their contributions cancel owing to the per­
iodicity. Furthermore the integrand vanishes at irfJ 
since 5(,90) ~ e IJI, whereas n + m ? 2. For 0 <s c :;; 2, 
there are no poles in the upper half plane, so that the 
integral vanishes and the desired completeness rela­
tion is obtained. For c > 2 there is a pole "* = 1T + iK, whose residue yields for the integral 

c(e - 2)e- K (n+m). 

This shows that for c > 2 one has to include the iso­
lated solution 

p~*)(t) = e-A*t[c(e - 2)]1/2(e _1)-n. 

APPENDIXB 

From (19) follows on eliminating q and expressing A 
through (9), 

_ ~l = _ e- iJ 1 + (a + b - 2)e- iJ + (1 - b)e-2iJ • (Bl) 
C 2 1 + (a + b - 2)e iJ + (1..,.. b)e2iJ 

Again denoting this quantity by e 2 i~ (J), one sees that 
the normal mode solutions are given by (11) for 
n ? 2, and in addition one has 

P(A) _ -At(2/ )1/2 b sin[2J + 1)(J)] 
1 -e 11 a-~. 

The denominator vanishes for A = a, but so does the 
numerator. 

The denominator of (B1) has one zero in the upper 
half plane when a + 2b > 4 and otherwise none. The 
zero is given by 

e iJ = {2 - a - b + [(a + b)2 - 4aJI/2}/2(1 - b). 

When going to the limit one has" = Ek, so that in 
terms of k the pole moves to + ioo when E tends to 
zero. This is the reason why the corresponding 
normal mode does not appear in the expansion in 
powers of E; but it also demonstrates that the expan­
sion can only be an asymptotic one. 

APPENDIXC 

To solve (27) for z put z + z-1 = 2w: 

4aw2 + 2w + (A - 2 -4a) = O. (Cl) 

Either solution of this quadratic equation for w gives 
rise to two roots z to be found from 

Z2 - 2wz + 1 = O. 

Thus the four roots of (27) consist of two pairs Z l' Z 2 

and z 3' z4' such that z 1Z2 = 1 and z3z4 = 1. In 
order that there are at least three roots with I z j I 
:;; 1, it is necessary that at least one pair has the 
form e iJ , e- iJ with real J.. Hence all admissible 
values of A are of the form (28), and lie therefore 
between 0 and 

2 + 4a + 1/4a = [(40)1/2 + 1/&)]2. (C2) 

This upper bound is also the condition that the two 
solutions of (C 1) 

w± = {- 1 ± [(4a + 1)2 - 4Q1A]1/2}/4Q1 
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are real. In addition it is necessary that at least one 
of these has the form cos.9-, i.e., that it lies between 
- 1 and + 1. 

To' investigate this condition we have to distinguish 
between the two cases 0' .; t and 0' > t. In the case 
0' .; t, one readily finds that w _ < - 1, while Iw + I .; 1 
holds only for 0 .; A .; 4. This determines the spect­
rum of the bounded two- step random walk with 
0' .; t; to each A in (0,4) belongs a single normal 
mode solution. 

In the case 0' > t, the same nondegenerate spectrum 
exists; but in addition one finds that for A between 4 
and the upper bound (C2) both w + and w _ lie in the 
interval (- 1, + 1). Hence for these values of A there 
are four admissible roots Z j , and therefore two 
linearly independent solutions of the bounded two­
step random walk with 0' > t. For the low values of 
A relevant for the continuous limit this complication 
cannot occur. 

APPENDIXD 

The determinant of (31) is 

1-B 1-Bz2 

1 -A + B/O' z-l -Az + (B/0')z2 

where z stands for z ~o). After subtracting the left 
column from the column on the right, a factor 1 - z 
splits off. Subsequently multiplying the top row with 
1/0' and adding it to the bottom row, and adding the 
left column to the right one, we get 

\ 

1-B 
(1 - z) 1 + (1/0') - A 

1 + Bz I 
(l/z) +1+1/0' . 

The two elements of the left column are nonnegative 
and will be denoted by R = 1 - B, S = 1 + 1/0' -A. 
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We determine entirely the nobody nonlocal potentials, parameters of a given Lagrangian field theory, in terms 
of a set of independent functionals of the many-body propagators. These functionals are more suitable for the 
description of self-generating interactions than the many-body propagators themselves. 

1. INTRODUCTION 

In previous papers, 1,2 De Dominicis and Englert set 
up a formalism for a systematic study of self-gener­
ating interactions in Lagrangian field theory. 

The following procedure was adopted: One considers 
the limiting case in which the set of all nobody non­
local interaction potentials (n 2: 2), the parameters of 
a given nonlocal Lagrangian field theory, vanishes. 2- 5 

One then analyzes the structure of the n-body propa­
gators in this limit. The possible existence of non­
trivial (i.e., nonfree field), nobody propagators would 
give rise to self-generating interactions. 

In other words, starting from a free Lagrangian field 
theory, one first simulates an interaction by a set of 
nonlocal potentials vn' n 2: 2. Then, in the limiting 
case of the whole set vanishing, one searches an un­
conventional solution for the n-body propagators, 
which exhibits some residue of the original inter­
action; this would imply self-generating interactions. 

In order to make such an idea useful, the authors of 
Ref 1 were led to consider the following problem: 

Is it possible to characterize ab initio a Lagrangian 
field theory by all its Green's functions, namely to 
deduce from them the set of all nobody potentials? 
This problem was solved1 in a formally simple 
manner: 

The n -body potentials were expressed by the set of all 
corresponding connected Feynman graphs, with con­
nected Green's functions as vertices and fully dress­
ed propagators, with reversed sign, as internal lines. 

Putting these potentials to zero enables one, in prin­
ciple, to search for self-generating interactions. 

However, the inversion formula, 1,6 inspite of its 
great formal Simplicity, is not useful in realizing 
this program, essentially due to the enormous com­
plexity of the set of all connected Feynmann graphs 
contributing to the n-body potentials. For this reason 
one introduces a set of independent r variables, 2 

equally suitable to characterize a given field theory 
as the original Green's functions, and closely related 
to them. 

They are obtained from the corresponding Green's 
functions, by undressing their external lines with suit­
able functionals of lower order propagators (a pre­
cise definition will be given in Sec. 2). 

The crucial point is that the inversion formula, when 
expressed in te:rms of these new variables, takes a 
much simpler form than the original one. Indeed, 
the potentials may now be expressed in terms of a 
very restricted family of diagrams, thus making it 
feasible to search for self-generating interactions. 

Our aim in this work, is to determine explicitly the 
nobody potentials in terms of the r variables. In 
Sec. 2 we give a set of definitions which will be used 
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throughout this work and in particular a precise 
definition of the r variables. 

Together with the inversion formula, this yields the 
functional relations relating the potentials to the r 
variables. 

If the equations obtained by putting the whole set of 
potentials th, n ~ 2 to zero in these functional rela­
tions, have a nontrivial solution for r, then these r 
will characterise the self-generating interactions. 

These equations are derivable 2 from a stationarity 
principle on a functional, which involves only the 
n-body potentials expressed in terms of the first n 
r variables namely vn (rz, •.. , rn ), r m = 0, m > n. 
Hence, the structure of the equations, characterizing 
the self-generating interactions, depends crucially 
on these particular functionals; their explicit form 
has been announced in Ref. (2) and we shall concen­
trate on rigorously determining these. 

In other wordS, we shall express diagrammatically 
the functional relations connecting the potentials to 
the r variables, taking into account the condition 
r m = 0, m > n, denoted from now on by (modrn ). 

As we have mentioned, we shall find that only a very 
restricted set of diagrams will contribute to vn ' The 
set of all other graphs will be eliminated by two dis­
tinct mechanisms. 

The first is related to the particular functional 
dependence of the potentials in terms of the r vari­
ables, which determines the numerical coefficient 
with which a given graph appears in the expression 
for 1.k; this coeffiCient, called the weight of the given 
graph, may be zero. In that case, of course, this 
particular diagram disappears from the set of con­
tributions to the potential. 

The second mechanism is completely independent 
of the functional relation and is of a purely topological 
nature; namely, we shall prove that a large class of 
diagrams is topologically forbidden. 

The weight of an arbitrary graph is obtained in Sec. 3, 
where a general equation is given. 

In Sec. 4, a systematic investigation is made of the 
weights of graphs belonging to various families. 

Section 5 is devoted to the topological problem. 

2. DEFINITIONS 

Among the following definitions, some are of secondary 
importance for the development of subsequent work; 
since these were completely defined in Ref. 1, we 
shall herein merely give a brief indication to make 
this paper self-contained. Only the rigourously given 
definitions will be numbered. 

Let <I»(x) be a spinless charged boson field (Heisen­
berg operator). 
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Let G2n (Xt' ... , xn; Yl' •••• Yn) = (n I T¢ (Xl) •.• ¢+(Yl) 
••• ¢+(yn) n), n ~ 2 denote the n-body propagator or 
Green's function; I n) is the normalized physical 
vacuum and T the time-ordered product operator. 

is the fully dressed one-body propagator. 

Let G2n (X l , ••• , xn; Yl" • " Yn ) be that part of G2n , not 
containing independent propagations of any subset of 
m < n particles; if G2n is expressible in terms of 
Feynman diagrams, G2n is the completely connected 
part of G2n • 

Let C2n(X l , • •• , xn; Yl' .•• , Yn), n ~ 2, denote G2n with 
the 2n external lines removed. 

Let Wzn(x ll ••• , xn;Yl"" ,.Yn), n ~ 2, denote any set 
of nonlocal interaction potentials, symmetrized in 
both X and Y variables. 

Represent by ifin (Gl ; W2m), m ~ 2, the functional of the 
potentials represented diagrammatically by the sum 
of all connected Feynman graphs drawn with W's as 
vertices and Gl as internal oriented (from an x to a Y 
variable) lines, having 2n external (oriented) lines. 
Furthermore, each diagram is accompanied by the 
numerical coefficient 1/ g, where g denotes the order 
of its symmetry group. This group is, as usual, 
defined as the set of all permutations of the internal 
lines of a given graph which leaves it topologically 
unchanged. 

Represent by if in (G l ; W2m) the same functional as the 
previous one, but with the 2n external lines amputated 
from all graphs. 

To denote the corresponding families of diagrams 
(and not the sum of all its members), we use the 
same symbols but without the superscript ~. 

Denote by if == Un if 2n the set of all connected Feynman 
diagrams (of any order). 

In the same way, ff == Un ff 2n' 

Definition 1: The dimension dimG of a given graph 
G E tf is the number of external lines of G; if G E ff, 
then dimG is the number of external stumps of G. 

Definiti(!,.n 2: A 2p-subdia~ram or a 2p-part of a 
given G E 5' is a member of 5' 2 obtained frol!! G by 
cutting 2p (internal or external) lines; if G E 5', the 
same definition holds but after redressing G by exter­
nal lines. 

We now define the three following classes of connect­
ed diagrams 2: 

Definition 3: g 2n (Gl ; Wzm) c if 2n (Gl ; Wzm)' m ~ 2, 
satisfies the following requirements: 

(i) Each member of i 2n contains at most one Wzn and 
no W2m, m 2: n; 

(ii) Let G2P be an arbitrary 2p-part of a diagram 
belonging to if2n , P < n, then G2P E l2P' 

Examples of graphs belonging and not belonging to 
if are given in Fig. 1. 

Definition 4: 12n(Gl ;Wzm) C if2n (G 1 ;W2m), m~ 2. 
The members of this set are called irreducible dia-

grams and are defined by the following reqUirements: 
Let G2P be an arbitrary 2p part of a diagram belong-
ing to 12n, p::s n, then G2P E iI2P' except for the whole 
diagram (Fig. 2). 

Definition 5: R2n (Gl ;W2m)C if 2n (Gl ;Wzm), m ~ 2. 
The members of this set are called reducible dia­
grams and are defined by (Fig. 2) 

where we will always use the symbol e for the com­
plement (in the usual sense). 

All these definitions hold for the corresponding 
graphs with external lines cut. In the latter case we 
use the same symbols with superscript-instead of ..... 

Let Gi E if, V i. H the Gi have a common subdiagram, 
then they are said to intersect. 

With these definitions in mind, we can now give an 
exact definition of the r variables mentioned in the 
introduction. 

r 2n (Xl' •• Xn; Yl •• , Yn ), n ~ 2, are the functions 
symmetrized in both x and Y variables which satisfy 
the functional relations 

m ~ 2, (2.1) 

or, with external lines removed 

m ~ 2, (2.2) 

On the other hand, the inversion formula, expressing 
the n-body potential in terms of the connected Green's 
functions, reads 

w. 
w. 

w. 

(al (bl (cl 

FIG.1. (a) Graph belonging to i 6' (b) Graph belonging to is. (c) 
Graph not belonging to is; the dotted loop indicates the 4-part not 
contained in g 4' 

W." 
w. 

w. w. 
Ws 

Ws 

)-----u w. 

lal Ibl ICI 

FIG. 2. (a) Graph belonging to i 6 • (b) Graph belonging to i
4

• (c) 
Graph belQnging to R 6; the dotted loop indicates the 4-part not con­
tained in g 4 • 
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m::=:: 2, (2.3) 

the notation - Gl indicates that the evaluation of the 
diagrams is done in the conventional way, but attri­
buting the value (- Gl ) instead of (+ Gl ) to each inter­
nal line. 

Combining (2. 2) with (2. 3) yields 

v2n = g=:fn(- Gl;g~m(Gl; r21», m,l ::=:: 2. (2.4) 

This is the basic functional relation connecting the 
n-body potential v2n to the set of r variables. 

We shall now make this relation explicit diagram­
matically (modr2n ), by determining the weight of an 
arbitrary graph (drawn with the r as vertices) in 
the expression for the potential. 

3. THE WEIGHT OF AN ARBITRARY GRAPH 

.!:et GN be an arbitrarily chosen member of the family 
n'2n (Gl ; r 2m); N stands for the number of internal 
lines of the graph G. To alleviate our notation, we 
shall henceforth drop indices whenever there is no 
danger of confusion. 

14 
I tj I 

i 
I a 14 : 

14 

r:i 

( a ) ( C) 

FIG.3. (a) The graph G; the two lines belonging to a particular 
e i(e = 2) are marked by 0 and the four lines belonging to another 
e/e = 4) are marked by x. (b) A connected 2-support (but not 2-
support) .• denotes a stump. The dotted loop indicates the 4-part of 
the 2-support not contained in i 4 • (c) A nonconnected 4-support. 

(hi (el 

888 
Y3 Y, 13 Y, 12 13 

X~Xl 
Y2 

X2 

lei (II 

FIG. 4. (a) the graph G; the 
three lines belonging to a 
particular ei(e = 3) are mar­
ked by O .. denotes a stump. 
(b) A nonconnected 3-support 
of G. (c) a 3-skeleton attached 
to the 3-support in (b). (d) A 
structure which is not a 3-
skeleton. (e) A different 3-
skeleton attached to the 3-sup­
port in (b). (f) A 3-skeleton 
identical to the one in (c), by 
symmetry properties of r 4' 
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Our task consists in determining the weight of the 
given diagram. 

With G we associate a set Ec defined as follows: 
EG is the set whose elements ed are the various sub­
sets of the N internal lines of G, including the empty 
subset cp; e denotes the number of constituent lines 
and i fixes the particular choice of these lines. Thus 

{
OSeSN 

1 sis (f)' 

We shall also need to consider the family 5: whose 
elements are the subsets of W. 

The dimension 2m of an element 12 m E 5: is defil!ed 
to be the sum of the dimensions of all graphs in r 
We define a mapping F G: EG -7 5:: e~ H FG (eb) cLefined 
iJl ijle following manner: FG(ed) is an element 12 (n+e) E 

n'; 12 (n+e) is obtained from G by amputation of the e 
lines of ej; 2e is the number of stumps resulting from 
the above mentioned amputation. 

A given element 1 E 5:, image by FG of one or more 
ej E EG w!11 be called e-support (es ) of G, unless each 
graph of I is contained in a famHyg(G l ; r)(cf.Def. 3). 

(Clearly all the elements in F(;l(t) contains the same 
number of lines so e is the same). In the latter case, 
it will be called e-support of G, res), Fig. 3. A particu­
lar ere)-support of G will be denoted esa(es

a ). 

Let BG == Fal { U ea }. 
aile,a s 

Clearly BG ~ EG 

Each es(es) defines a set of e-skeletons (e-skeletons) of 
G obtained from es(es) by attaching to its 2e stumps, 2e 
variables {xi'Y i }' 1 sis e, in all possible ways, sub­
ject to the following conditions: 

(i) The insertion of e oriented lines joining Xi to Yi 
for each i must yield back the graph G. 

Notice therefore that each e-skeleton has the same 
topological structure as the corresponding es but its 
stumps are labeled with 2e variables according to the 
above prescription. 

(ii) Two e-skeletons are considered to be distinct if 
their respective assignments of the 2e variables to 
stumps are distinct, modulo the symmetry properties 
of the r (Fig. 4). 

It follows from these definitions and from the nature 
of the functional relation (2.4) that the number of dis­
tinct mechanisms leading to G, in the expression for 
the n-body potential v2n is the number of distinct es; 
each one of these mechanisms can be realized as 
many times as there are distinct e-skeletons attached 
to a given es • 

We define the partial weight Pe (G) relative to a given 
es to be the contribution to the weight of G, due to this 
es ; clearly the weight of G equals the sum of all partial 
weights. 

We now proposed to determine P- (G). es 
From (2.4), it follows that 

(3.1) 
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where Ne = number of distinct e-skeletons attached 
to the given Cs ;ge = order of the symmetry group of 
es ; and gv[gJ = order of the symmetry group of the 
graph, representing the functional which achieves the 
insertion operation defined previously. We shall 
determine successively each of these quantities. 

The following two situations may arise: 

(1) es is connected. 

(2) es is not connected. 

We first consider (1). 

853 

(i) Suppose that each element of F;?(e) contains 1; lines, picked out from a set of k; lines on which are defined 
gi symmetry operations of G; 

l~l;~k;, l~i~m, ~l;=e. 
i 

We clearly see here that for each element in Fe/(es) the numbers 1i' ki,g; are the same. 

It is clear that 

N-= (e)(e -11~ (e -il -1~ (e - 11 -12 - .. . -lm-I) =~; 
ell l··· l OZ.! 

1 23m I I 

(iii) Cs being connected, the functional gv[gJ is represented by the graph of Fig. 5. 

Hence 

gvL~] = e!. 

Inserting (3.2), (3.3), and (3.4) in (3.1), we obtain 

1 (k I ! 1 ) ( k 2 ! 1 ) (km ! 1) (- l)e k. 
= g (- l)e (kl -11)! I;l (k2 -[2)! 12! ... (km -lm)! Q = --g f} (//)' 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Since D( ~~) is the number of elements of Fe/ (es), we attribute to each one of these elements the value (- 1) e , and 
, I 

the partial weight in question is the sum of these values: 

(3.6) 

We now consider Case (2). Let r be the number of connected components of es ; the latter are mi-supports of r 
distinct 2p-parts of G, jOined in G by c lines;hence (Fig. 6) 

r 

Em; = e -c. 
;=1 

(i) The number N e is clearly the product of the N m .• Denote by l/, k/, 1 ~ j ~ 11i , 1 ~ i ~ r, the analogs of l;, k i 
in Case 1. Then I 

n· 

Nih; = mi!I;Q1 1/!, 

so that 
r r mil 

N-=ON-=O--. 
e ;=1 m; i=1 n; 

(ii) Clearly, 

o [it 
j =J. J 

If the c lines, joining the r connected components, define K symmetry operation of G: 

(iii) es being nonconnected, the functional g v [g] is represented by the graph in Fig. 7 and 

r 

gv[g] = K PI mil. 

Inserting (3.9), (3. 8), and (3.7) into (3.1),we obtain 

(3.7) 

(3.8) 

(3.9) 
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r m.l [ki(ki-1) .. ·(ki-li+1)] .. ·[ki.· .. (ki.-li.+1)] 
p_ (G) = n _. -'-K n, n, n, ~_I_(_I)e 

es ,~1 n, K n I n [.il g . mi' 
j~1 J • , 

[ki (ki - 1)'" (ki -[1i + 1) [ki. '" (ki. _[i. + I)J (1) n· (ki) 
= 

(- 1)e nr n nne r , J 
--------____ .. • t t t = -=-- n n . 

g i=1 [i I li I g i~1j=1 lJ' . (3.10) 
l' n.· 

rI fi (k~~i) 
i~lj ~1 

being the number of elements contained in FG'l(es ), 

the result is identical to the analogous case in Case 1. 

Since the total weight P(G) is the sum of all partial 
weights, we obtain the basic relation 

P(G):::: L; (- 1)e. 
eEBb 

(3. 11) 

Therefore, the weight of G is entirely determined by 
the structure of Ee. 

The basic formula (3.11) leads to the following. 

Theorem: If GN , N", 0, is such that EG =: EG , then 
P(G) = O. 

Indeed, the number of elements of Ee being I;~~o(~), 
it follows from (3.11) that 

N 

P(G) = I; (~ (- 1)e :::: O. 
e~O 

The case N :::: 0 corresponds to the diagram construc­
ted with only one f Zn ; in this case, Er contains just 

2n 
one element viz. cp, so that e = 0; trivially, 

E =E r 2n - f2n 
and 

P(f2n ) = (- 1)0 = 1. 

~ 

e 
FIG. 5. The graph representing the functional which achieves the 
insertion operation (cf. Sec. 3). The hatched circle stands for the 
connected l!-support. 

(a) ( b ) 

(i) 

FIG. 6. (a) the graph G; 
(b) A nonconnected 4- sup­
port. The c = three lines 
disconnecting the graph G 
(by amputation) are marked 
byQ. 
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, 

FIG. 7. Insertion opera­
tion (cf. Sec. 3) for a non­
connected e-support. The 
hatched circles stand for 
the connected components 
of the e-support. The total 
number of vertical lines is 
c. 

4. THE WEIGHT OF VARIOUS FAMILIES OF 
DIAGRAMS 

A. The Weight of a Diagram Belonging tog 

Theorem 4. 1: If G E g, then 

P(G) == O. (4.1) 

To prove this theorem we need the following lemmas: 

Lemma 1: If G2n E ltzn • each 2p-part (even if 
p ~ n) is contained in !J2P' 

Indeed, let P2n be a 2n-part of G: 

(i) P2n contains no fZm' m > n, and at most one 
f Zn ; 

(U) Each 2l-part of PZn ' l < n, being a 2l-part of G, 
is contained in g 21; hence 

(a) 

ConSider now a 2(n + 1) part Pz (n+l) of G: 
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(i') P2 (n+l) contains no r 2m , m 2: n + 1. 

(ii') Every 2l part of P2 (n+1)' 1 < n + 1 is contained in 
it 21 by (a). Hence 

P 2 (n+1) E g2(n+1) 

and so on by induction. 

We note that this property is independent of modr2n • 

Lemma 2: If G2n E it2n , then E;; == Ee' Consider a 
1-support of G, which is the image under the mapping 
Fe' of the element e E Ee containing a single internal 
line 1 of G. 

This line defines two types of subdiagrams of G : H a 

and Hb, which, respectively, do or do not contain las 
an internal line. 

For an arbitrary subdiagram H of G, let Fe (H) be the 
part of the 1- support obtained from H by amputating 
the line linG. 

Fe (H) is either a subdiagram of the 1-support, or a 
pair of subdiagrams (according to whether Fe (II) is 
connected or not). 

Clearly, Fe (H~m) == H~m so that by Lemma 1, we have 

Consider further the set naHa. 

Each subdiagram of naHa is, by construction, and Hb 
subdiagram of G. Hence, each subdiagram S2m of 
Fe (n fla) belongs to it 2m' V m 

Thus 

Fe(n Ha) EO g. 
a 

For an arbitrary Ha, Fe (Ha)contains one or more 
subdiagrams containing Fe (n aH a) and hence is con­
tained in it; it follows that the 1-support of G, asso­
ciated to the line l, is contained in g. 

Each e-support of G being a 1-support of an (e - 1)­
support of G, the above property is valid by induction 
for all es ' This completes the proof of Lemma 2. 

Theorem (4.1) is an immediate corollary of the two 
lemmas. 

B. The Weight of an Irreducible Diagram 12 n 

Our first step will be to show that Lemma 1 also 
applies to I 2n , modr2n • 

To achieve this, we need the following: 

Lemma 3: Given anI2n , each 2p-part (even when 
P > n) is contained in if 2p (modr2n ). 

Indeed, let P2 (rz+1) be a 2(n + 1)-part of I 2n • Then: 

(i) P2 (n+l) contains no r 2m, m 2: n + 1 by modr2n • 

(ii) Every 2l-part of P2 (n+l)' 1 < n + 1, being a 2l­
part ofI2n , is contained ing21 ;hence 

(a) 

Consider now a 2(n + 2)-part P 2 (n+2) of I2n : 

(i') P2 (rz+2) contains no r 2m, m 2: n + 2, by (modr 2n)' 

(ii') Every 2l-part of P2 (rz+2)' 1 < n + 2 is contained 
in g21 by (a) and so on by induction. 

Therefore the structure of subdiagrams of I and g 
is identical (mod r 2n ). By a reasoning already used 
in Lemma 2, we find that each 2p-part (p arbitrary) 
of an es of I 2n , is contained ing2P; since moreover, 
dimes = 2(n + e), es E i 2 (rz+e)(modr2n ) and e.> 0; 
(if es is not connected, each one of its connected 
components is contained ing). 

Thus, 

Lemma 4: Each es ' e > 0, of an irreducible graph 
I 2n , is an £is (modr2n ). 

On ly Fe (0) rt g 2 n and therefore 

If[ == E[. 
e"'O 

From (3.11), 

P(I2n) = ~ (- 1)e = -£ (~ (- 1)e = - 1. (4.2) 
eEE[ e =1 

C. Reducible Graphs 

An important class of reducible diagrams consists of 
what we shall call the coverings RN. 

Definition: We shall say, that a graph RN is a 
covering, if it is made up of a family {Ii}, 1:s i :s N, 
of irreducible graphs, such that Vi=' j, with 
Ii n Ii '" cpo 

The Ii are called irreducible components of RN 
(Fig. 8). 

An N convolution eN is a particular RN subject to the 
following restriction: 

Each Ii intersects exactly two others, except for two 
of them, called endpoints, each one of which intersects 
exactly one Ii. 

A linear N convolution LN is an N convolution satis­
fying: dimI i = dimIj , V i, j. 

Our next task is to determine the weight of an LN. 
Consider a particular LN subjected to the following 
condition: n (Ii, Ii +1) == r 2n for each i. Let I be an 
irreducible endpoint component of LN. 

Let {li}, 1:s i :s L be the L internal lines of I. Con­
sider the two sets ~N and ~N-l; to each element 
e E ELN-l, we associate a subset Be C ELN consisting 
of: 

(a) the L elements (e, li)' 1 :s i S L; 

(b) Th~ W elements (e, li' lj)' i 7 j, 1 S i, j S L; 

() The element (e, l1' l2' •.• , ~). 

FIG. 8. A possible R 5; the circles stand 
for irreducible components of R 5. 
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u By Lemma 4, 8e CELN;furthermore,ELN -
eEE N-l 8e so that, by (3.11) L 

P(LN) = I; [L(- 1)e+l +(t)(- 1)e+2 
eE~N-l 

+ ... + (t)(- 1)e+L] 

I; (-l)e[L(-l) + (t)(-1)2 
eE'EiN- 1 

= 

+ ... +(f)(- 1)L] 

= _ P(LN-l). 

On the other hand, we have shown before that pel} = 
- 1; the solution of the above recurrence relation is 
therefore 

P(LN) = (- 1)N. (4.3) 

Let us now consider an arbitrary reducible CN and a 
set of 0 :s K < N internal lines of C; to this set we 
associate the set EK in the manner that EG is associ­
ated with the N internal lines of C. 

Let us introduce a subset E; C EK , satisfying the 
following conditions: 

To each element e* E E;, we associate a subset 
8e* C Eo containing the following elements: 

(a) the element e *; 

(b) the M elements (e *, li)' 1 :s i :s M; 

. 
() the element (e *, 11, 12, •.. ,1M); 

where li are the M N - K internal lines of C, not 
contained in the above mentioned set of K lines. 

(I) 

I" 

FIG.9. (a) Graph for which 
E; does not exist; the ele­
ment containing the lines 
marked 0 satisfies (i) but 
not (ii) in the definition of 
E~ (cf. Sec. 4). (b) Graph 
for which E~ exists. 

FIG. 10. A diagram of type 112; [1, 12 are the two irreducible graphs; 
Sl S'l and S2 S'2 are subdiagrams of 11 and J2, respectively. 
Fi~re 9(b) i; a particular case of this general configuration. 
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The sets 8e* are restricted by the following two con­
ditions: 

(i) 

(ii) 

8e* C EG , V e * E EJ; 

U 8e* == EG• 
e*EE6 

For a given diagram C, the set E; mayor may not 
exist, according to the structure of C (Fig. 9) (If it 
exists it is in general not unique). 

Theorem 4.2: If the reducible graph C is such 
that a set E~ exists, then P(C) = O. 

Indeed, it follows from the definition of EJ and the 
basic relation (3.11), that 

P(C) = I; f(_ l)e* + M(- l)e*+1 + (M)(_ 1)e*+2 
e*EEc L 2 
+ '" + (M)(- 1)e*+M J 

M 

= I; (- 1)e*[ I; (M)(_ l)mJ = O. 
e*EE* m~O m 

G 

In the case K = 0, the existence of E; implies by con­
struction 8q, = EG = EG , so that we recover a pre­
viously obtained result. 

We shall now apply this result to particular reducible 
graphs. 

ConSider first a reducible diagram, obtained by dress­
ing an irreducible graph either (a) by a second 
irreducible diagram, or (b) by a member of g. 
(a) The general structure of such a graph (denoted 
[12) is shown in Fig. to, and a particular example is 
given Fig.9(b). 

The two irreducible graphs [I and [2 have no common 
subdiagram, since otherwise they would form a con­
volution whose weight has already been calculated. 

We shall first demonstrate that every subdiagram of 
[12 of type 5 12 (Fig. 10) is necessarily contained in g; 
indeed, suppose this were not the case: two cases 
may then arise: 

(i) All subdiagrams of 512 (which are either entirely 
contained in [I, or in [2, or are of type 5'12) are con­
tained in g; in this case,512 is by definition a irre­
ducible diagram and [12 would be a convolution. 

(ii) There exists at least one sub diagram of 512, not 
contained in g, which by Lemma 3 is necessarily of 
type 5'12,5'1 C 51,5'2 C 52; 5'12 must in turn 
necessarily contain a subdiagram of type 5"12, since 
otherwise [12 would be a convolution, and so on; 

This procedure must clearly come to an end; indeed, 
from a certain stage onwards, the subdiagrams are 
entirely contained either in [lor in [2, so that, by 
lemma 3, they are members of g. 

Thus the existence of a subdiagram 812, not contain­
ed in g, is incompatible with the fact that [12 is not a 
convolution. It follows that E7i2 exists and 

where (~1, EPLstands f2.! the totality of couples 
(el> e2)' e1 E Ell, e2 E E? 

Hence by Theorem 4.2, 



                                                                                                                                    

SELF-GENERATING INTERACTIONS 857 

P (112) ::::: O. 

This property can be immediately extended to a 
more general reducible diagram [12' "m shown in 
Fig. 11; indeed, 

* - - - -Ep ... m = (E]l,E?, .•. ,E]m), 
hence 

P(I12'" m) = O. (4.4) 

(b) The general structure of such a graph denoted 
rg is indicated in Fig. 11 (b) and a particular exam pIe 
is given Fig.l1(c). Clearly, 

* -­E]g = E] 

so that 

P(Ig) = O. (4.5) 

More generally, for eve ry reducible graph G, obtained 
by dressing a covering RN by a diagram contained in 
g, or by juxtaposition of m coverings, the re exists a 
set E;: In the first case 

E* == Tf N 
G '""'R' 

while in the second 

The weight of such diagrams is therefore zero. 

Thus the only reducible diagrams of nonzero weight 
are the coverings RN, but we shall show that only a 
very restricted subclass thereof are topologically 
permissible and contribute to the n-body potential 
v 2n , 

This is the content of Theorem 5. 1 in the following 
section. 

I' I' 

CJ[Jl(JI--·--------TIJ - - - -- - - -- - - -- - - -- - - -

I" - m 
(i) 

CI~ 0 
[b) 

FIG.Il. (a) Diagram of type [12 ... m ;[1,]2, ..• ,1 m are the m irredu­
cible graphs. (b) A diagram illustrating the dressing of an irredu­
cible graph I by a member of if. (c) A particular case of the general 
configuration l1(b). 

5. TOPOLOGICAL ANALYSIS OF COVERINGS RN. 

Theorem 5.1: The only topologically permissible 
coverings RN of dimension 2n, are the linear convolu­
tions LN (modr 2n)' 

Denote by M and M1 an arbitrary irreducible com­
ponent of maximal dimension in RN and CRNM, res­
pectively. 

Clearly dimM 2': dimM l . 

Lemma 5: For any covering RN, we have 

dimRN:"S dimM, 

the equality may hold only if 

(i) dimIi = dimN, 1:s: i, j :"S N, 

(ii) there is no subdiagram common to more than 
two Ii, 

(iii) there is no contribution to dim R N, originating 
from intersections of Ii, 

(iv) all intersections of Ii and their relative comple­
ments are connected, 

(v) no internal line of RN is simultaneously external 
to more than one Ii, 

(vi) there is no couple (M,M 1 ) such that CRN(M,M
1

) 

is connected and contributes to dimR N • 

We show (Appendix A), that the lemma is verified for 
N = 2, and we proceed by induction to extend it for 
allN. 

The induction hypothesis (Hi) is the following: Lemma 
5 holds for each RL, L < N. 

The following two cases may arise. 

Case 1: CRN(M,M 1) is connected (Fig.12). 

We have 

dim R N = me + m I + m 

dim n (M,C) = IJ. + Il, 

dim n (MI,C) = 1J.1 + Ill' 

dimM 1 = m I + Vl> 

dimM = m + v. 

Suppose that ::J (i, j) such that 

dimIi ~ dimIj. (5.1a) 

We shall show that the condition dimRN 2': dimM leads 
to a contradiction. 

Indeed,if dimRN?- dimM, and ajortiori dimRN?­
dimMl' then 

On the other hand, Hi applied to the coverings 
Ml U CRN(M,M1 ) and M U CRN(M,M1 ) leads to 

ml +mc+IJ.:"S.ml + Ill' 

m + me + IJ.I :"S m + Il, 

SO that 

(5.1b) 

J. Math. Phys., Vol. 13, No.6, June 1972 
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(5.3) 

(5.4) 

The equalities in (5.3) and (5.4) are mutually exclu­
sive; indeed, by (5.1a), the two coverings to which we 
apply Hi cannot simultaneously satisfy condition (i) 

m, 

C(k 

FIG. 12. A typical con­
figuration illustrating Case 
1, Sec. 5;m,ml' me are con­
tributions to dimRN due to 
M,Ml,CRN(M,M1), respec­
tively; Il and III are the 
number of lines internal to 
M,Ml , respectively, and 
external to CRN(M,,'VI1 ); 11 

and III are the number of 
lines external to M and 
M1 , respectively, and inter­
nal to C0(M,M 1 ). 

6 

FIG. 13. A graph illustrating (RM; J1,12, ... ,Ik are the boundary 
components of (R M; fJ l' fJ 2 , ••• , {J k are contributions to dim(R M but 
not to dimRN; 1\ is the number of external lines of (RM contributing 
to dimRN. 

m" 

FIG. 14. A typical configuration illustrating Case 2, Sec. 5; m,m1 , 
m12 are contributions to dimRN due to these connected components 
of C0(M,M1 ) which intersect only M,M l' and both, respectively; 
the remaining symbols have the same meaning as in Fig. 12 . 

• J. Math. Phys., Vol. 13, No.6, June 1972 

of Lemma 5. Hence, 

(5.5) 

Combining, respectively, (5.1)-{5. 4) it follows that 

which implies 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

The equalities in (5. 8), (5. 9) being mutually excl u­
sive. 

Since now n (M, C) (Fig. 12) is a (p + vt-part of M, it 
must belong to gll+1J and can contain 

(i) at most one r M and no r L' L > M, whenever 
(5.8) is an equality, 

(ii) no r L' L:::- M, whenever (5.8) is an inequality. 

The same analysis applies to n ~W l' C). From the 
mutually exclusive character of the equalities in (5.8) 
and (5.9), it follows that n (M, C) and n (M1 , C) cannot 
simultaneously contain arM and arM ' respectively; 

1 

the above situation is therefore compatible with the 
irreducibility of M and M l' only if 

JJ. + m 2: M, 

which implies 

JJ. 2: V, 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

From the previous discussion, it follows that the 
equalities in (5.12), (5.13) are, as usual, mutually 
exclusive, so that 

(5.14) 

The desired property follows from (5.14) and (5.5). 

Case 2: CRN(M,M1) is not connected (N > 3) 
(Fig. 14). 

We have 

dimRN = m + m 1 + m 12 + a + al , 

dimM = JJ. + v + a, 

dim M 1 = JJ.l + VI + a 1 • 

Suppose that condition (5.1a) holds. By repeated 
application of Hi' we obtain 

a + v + m :-:; JJ. + v + a, 

(5.15) 

(5.16) 

(5.17) 
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The equalities in (5.15)-(5.17) are mutually exclu­
sive. Indeed, by (5.1a) the three coverings to which 
we apply H; cannot simultaneously satisfy (i) of 
Lemma 5. Summing (5.15)-(5.17), we have there­
fore 

dimRN < M. 

This completes the proof of Lemma 5, in the case 
where condition (5.1a) is satisfied. 

If dim Ii = dimIi for all i, j between 1 and N, then 
since we can arbitrarily pick out M and M l' we can 
follow the procedure of either Case 1 or Case 2, 
depending on our choice. It is easy to see that the 
procedure of Case 2 leads to a condition less res­
trictive than does Case 1; we shall therefore choose 
M and M1 such that CRN(M,M 1 ) is connected. 

We intend to show that 

dimRN = M 

leads to a contradiction, only if 

The proof follows the same pattern as in Case 1, 
except that (5.1) and (5.2) are replaced by equalities, 
and (5.3) and (5.4), and (5.6) and (5.7) are not mutual­
ly exclusive. 

By suitably combining these relations, we obtain 

(5.18) 

(5.19) 

Equations (5.18) and (5.19) are contradictory only if 
me "" 0; therefore, dimRN =M can only be realized if 
me= 0 

The condition dimRN > M leads of course to a con­
tradiction in all cases. 

This completes the proof of (i) and (vi) of Lemma 5. 

Conditions (ii)- (iv) have their origin in the corres­
ponding properties of a covering R2 (Appendix A). 

To prove (v), it suffices to remark that a covering 
RN containing l such lines, is strictly equivalent, as 
regards our analysis, to a topologically identical 
covering, but of dimension dimRN + 2l. 

Lemma 6: there exists no irreducible graphs I 
such that dimI > 2n, (modr2n ). This lemma is an im­
mediate consequence of the definition of an irreduc­
ible diagram. 

Lemma 7: Let RN be a covering of dimension 2n, 
and Ii its irreducible components. Then dimIi == 
dimli = 2n for each i,j (modr 2n); in addition, condi­
tions (i)- (vi) of Lemma 5 are fulfilled. 

This lemma is a corollary of Lemmas 5 and 6; It 
expresses a very restrictive condition on the struc­
ture of a covering RN of dim2n(modr2n). We shall 
show that, under this last condition,RN in fact satis­
fies a stronger condition. 

To show the latter, we define the partial convering 
ffiM of an RN to be a covering consisting of M irre-

ducible components of RN, M < N. We call the boun­
dary components of ffiM, the Ii ERN containing lines 
external to ffiM(internal or external to RN). 

By lemmas 7 and 5, if dimRN = 2n, then 

dimffiM:"" 2n. (5.20) 

We shall prove that (5.20) is always saturated. 

Lemmo 8: Each partial covering ffiM of a 2n­
dimensional RN is of dimension 2n(modr2n ). We shall 
first prove (Appendix B) that the only permissible con­
figuration of an ffiM, is the one represented on Fig. 13. 

Let 11,12, ... ,Ik be the boundary components of ffiM. 
By hypothesis 

k 

dimRN= 2n =6 OL; + Ii. 
;=1 

On the other hand, by Lemma 7, 

Yi + (3i = 2n, 1 :"" i :"" k. 

Summing (5.21) and (5.22), 
k k 

6 (O'i + 'Yi) + 6{3; + Ii = (k + 1)2n. 
;=1 ;=1 

By Lemma 5, 

0'; + Yi :"" 2n, 
k 

1:"" i :"" k, 6 (3; + Ii :"" 2n. 
i~l 

(5. 21) 

(5.22) 

(5.23) 

(5.24) 

Equations (5.23) and (5.24) can be compatible, only 
if (5.24) are saturated. 

Hence 

dimffiM = 2n. 

Le mma 9: Let R N be a covering, and I k, II two 
arbitrary irreducible components. There exists (in 
R N) at least one convolution whose endpoints are I k 

and II. This property follows from the connectedness 
ofRN. 

Define C (Ik) to be the set of all endpOints of convolu­
tions, whose second endpoint is I k. Our aim is to 
prove that c (]k) =0 RN. In the first instancec(Jk) ""~; 
indeed. ::J j such that] k n Jj "" ~ by definition of RN. 

If C (I k) contained only] k and Ii, R N would be noncon­
nected. Hence, C (I k) contains at least a third element 
1m and so forth. Step by step, we shall thus encom­
pass in c (J k) all irreducible components of R N. QED 

It follows from Lemmas 5 and 8, that any convolution 
in RN contains no external lines (external or internal 
to R N) other than the ones external to the endpoints. 

A corollary of this last property and of Lemma 9 is 
that the whole covering RN takes the form of a linear 

"', 

FIG. 15. A typical LN; ai' fli refer, respectively, to the number of 
lines external to Ii and internal to 1'-1 and 1'·1; only a" {l N contri­
bute to dim LN. 
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convolution. This completes the proof of Theorem 
5.1: The only topologically permissible 2n-dimen­
sional coverings RN are the linear convolutions LN 
(modr 2n)' It follows from the preceding discussion 
that only the two endpOints of LN contribute to dimLN. 
In addition the LN have the interesting property of 
conserving the number of lines. Indeed (Fig. 15), by 
Lemmas 8 and 5, 

ai + {3 i = 2n, 1 :s i :s N - 1, 

dimL N == a 1 + {3N == 2n. 

Thus 

1 :s i,j :s N. 

We also have 

1 :s i :s N, 

which leads to 

1 :s i,j :s N. 

On the other hand, by the property 

a 1 == a 2 ={31 ={32 =n 

of L2 (Appendix A), it follows that 

From this property and from the structure of an 
irreducible diagram, it follows that each irreducible 
component contains two r 2n located inside its respec­
tive intersections with its neighbors, except for the 
endpoints, which contain one r 2, in the intersection 
and one r 2n in its complement ~Fig. 15). 

In conclusion, we have demonstrated that only a very 
restricted set of Feynman diagrams survives in the 
complete expression for the w-'body potential in terms 
of the r variables (modr 2n)' 

That is, collecting all previously obtained results: 
00 

(G r ) r ] E +" (-1)NL N
2n

E, V2n 1; 2m = 2n- 2n L..J 
N=2 

r 2m =0, m>n. 

Except for the Single r 2n' the only survivors are the 
irreducible graphs, which appear either isolated or 
as building blocks of generalized ladder diagrams, 
i.e., our linear convolutions. The latter exhibit the 
property, that the number of lines entering at one end­
point is conserved from one element to the next, all 
the way to the second endpoint. 
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APPENDIX A 

Let us consider the 2-convolution C2 shown in Fig. 16: 

J. Math. Phys., Vol. 13, No.6, June 1972 

C[l(n (11,12» == II, 

CJdn(Il,J2))== [2, 

dim n (J1, J2) = y + 0 + P = r, 

diml1 = a + y + I.L = p, 
diml2 = 0 + {3 + I.L = q, 
dimI1 = a + 0 + P + I.L = p, 

diml2 = y + {3 + P + I.L = q, 

a +{3=m. 

Theorem AI: For any convolution C2, we have 

dimC2 :s max[p, q]- 21.L. 

The equality holds only if the following conditions 
are satisfied: 

(i) p = 0, 

(ii) P == q, 

(iii) y == 0 = a + I.L = (3 + I.L, 

(iv) n (J1,I2),J1, and 12 are connected. 

We shall show that the contrary leads to incom­
patibility between the structures of the two irre­
ducible components of C 2. 

Case 1: 
~ p - p - 21.L < m, 

1 q-p- 21.L<m 

under these conditions 

The following two possibilities may arise: 

(i) y "" 0 say y < 0, which implies that 

jj == y + a + I.L < 0 + a + I.L -s p. 

(A1) 

Since 11 is a p -part of ]1, it is contained in i p and can 
therefore contain no r s ' s 2': p; on the other hand, by 
(A1), 

r = y + 0 + p < a + I.L + 0 + P == p. 

n (I1,12), being an r-part off1, is contained in g,.. and 
can therefore contain no r s ' s ? p; therefore neither 
11 nor its complement, relative to 11 , viz. n (11 ,12 ), 
can contain a r s ' s 2': p; this contradicts the irreduc­
ibility of ]1. 

The situation y > 0 leads to the same result. 

(ii) y = 0, 

which implies 

jj = y + a + I.L = 6 + a + I.L :s p, 

where the equality only holds if p = 0. 

Therefore, if p = 0,11 can contain at most a single 
rp and no r s ' s > p, whereas if p "" 0,11 can contain 
no r s ' s 2': p; on the other hand, by (A1), r < p, and 
n (II, 12) can contain no r s ' s 2': p; once more we have 
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a contradiction to the definition of [I. We must thus 
reject Case 1. 

Case 2: {
p - p - 21l = m 

q-p- 21l<m' 

This can be shown to be incompatible with the irre­
ducibility of [I and [2, by a similar analysiS, 

Case 3: 

Case 4: 

Case 5: 

{
. p - p - 21l > m . 

q -p - 2/-L < m 

j P -p - 2/-L > m 

1 q - p - 21l = m' 

~ P - p - 21l >m 

lq-p- 21l>m' 

Take, e,g., Case 4; we have 

{
0-JJ.>f3, 

Y-/-L=Ct 
(A2) 

The following situations may arise: 

(i) Y > 0, which implies 

q==o+f3+/-L<y+f3+Il:=:q 

and so [2 can contain no rs ' s 2: q. 

On the other hand, by (A2), 

r=y+o+p>y+f3+Il+p==q 

and n ([1, [2) can contain more than one r or r 
q s> 

s > q, while simultaneously belonging to gr;this con­
dition is then compatible with the irreducible charac­
ter of [2. On the other hand, if y 2: 0 + p, we have 
p 2: P and by (A2) r = p, 

Thus, whenever y 2' 0 + p, the situation is compatible 
with the irreducibility of [1, as well, and so Case 4 is 
realizable. 

Cases 3 and 5 can be analyzed in the same manner, 
and lead to analogous conclusions. 

Case 6: 
J P - 211- P == m 

1 q - 211 - P = m' 

Under these conditions, 

SO-Il==f3 

lY-Il=Ct' 
(A3) 

y = O. 

This implies p :=: p, the equality being realized if 
p = 0, [1 can therefore contain at mo~t one rp and no 
r s ' s > p, if p = 0; in the event p '" 0, [I can contain 
no r s ' s 2: p. On the other hand, by (A3), r = p, so that 
n (11, [2) can contain at most one rp' Consequently, 
this situation is compatible with tile irreducibility of 
]1, only if p = O. Such is also the case for ]2, under the 
same condition. 

Whatever p and Il may be, the situation'Y '" 0 is not 
realizable, 

It remains to show that the inequality is never satu­
rated if n (]I, ]2) or [1, f2 are nonconnected (Fig. 17). 

Consider the case where n (II, ]2) is nonconnected and 

suppose, e.g., that it contains three connected pieces 
Cl'C 2 ,C 3 : 

dim [I = Ct + Ct 1 + Ct 2 + Ct 3 = P, 

dim[2 = f3 + f3 1 + f3 2 + f3 3 = q, 

dim!l = Ct + f3 1 + f3 2 + f3 3 =P, 
dim 12 = f3 + Ct 1 + Ct 2 + Ct 3 = q, 

dim n ([1,12 ) = Ct 1 + Ct 2 + Ct 3 + f3 1 + f3 2 + f3 3 = r, 
Ct+f3=m 

1:=:i:=:3. 

FIG. IS. A typical 2-convolution C2; J.l. is the number of lines internal 
to C2 while external to 11 and 12; p is the contribution to dimC2 
originating from n(fl,I2). 

oc 

( a ) ( b) 

FIG. 17. (a) An R2 with nonconnected n(J1,12) consisting of three 
pieces. (b) An R2 with nonconnected C [1 n (11,12) and C [2 n (J1,12). 

at, 

FIG.18. (A configuration where two distinct boundary components 
(namely fl,12) of ffiM intersect the same connected component of CRNffiM• 
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~ p < m. Case 1: 
q<m 

Under these conditions, 

\ C/ 1 + C/ 2 + C/ 3 < 13, 
(131 + {32 + 13 3 < C/ 

:B {3. < ~ C/. , 
i t i 1. 

(A4) 

which entails p < p and by (A4), r < p and a fortiori 
dimCj < p. 

This situation is therefore incompatible with the 
EYpothesis of irreducibility of 11; the situations 
[j {3j > ~ a i and:B {3i = ~ a i can be handled in the same 
way so that Case I is never realizable. The analyses 
of Cases 3-5 can be carried out in the same fashion 
and lead to the same conclusion; only the result of 
Case 6 is different 

~ 
p = m. 

Case 6: 
q=m 

In these conditions, 

(A5) 

which entails p = p and, by (A5), r = p, so that 

dimCi < p, i = 1,2,3, 

and this case is not realizable. 

1 F. Englert and C. De Dominicis, Nuovo Cimento 53A, 1007 (1968). 
2 See Ref. 1. p. 1021. 
3 F. Englert, R. Brout, and H. Stern, Nuovo Cimento 58A, 601 (1968). 
4 R. Brout and F. Englert, Bull. Am. Phys. soc.n, 21 (1966). 

Case (b) can be treated in precisely the same manner. 
This completes the proof of the theorem. 

APPENDIX B 

Let RN be a 2n-dimensional covering and (HM a partial 
covering of RN. We shall prove the following lemma: 

Lemma Bl: Each connected component of CRN(HM 

can have intersections with no more than one boun­
dary component of (HM. 

In fact, since the inequality of Lemma 5 is saturated, 
conditions (i)- (vi) hold and it is easy to convince one­
self that the latter restrict drastically the number of 
possible configurations. 

So as not to burden the reader with inessential de­
tails, we shall only give a brief sketch of the argu­
ment. 

A possible configuration violating Lemma Bl is 
shown in Fig.18. 

By hypothesis, 
k 

dimRN= a 12 + L c/. = 2n 
i~ 3 ' 

and, by Lemma 7, 

')Ii + {3i = 2n, 1 :5: i :5 k. 

Summing these relations, 

k k 

[C/ 12 + ')11 + ')12] +:B [ai + ')Ii] +:B {3t = (k + 1)2n. 
i=;:! ;=1 

Now, by Lemma 5, each of these k brackets are :5 2n. 
So that this configuration is not realizable. 

By similar reasonings, we are led to Lemma Bl. 

5 R. Brout, Topics in Bootstrap Theory, Cargese Lectures (Gordon 
and Breach, New York,1966). 

6 C. de Dominicis and P. C. Martin, J. Math. Phys. 5, 31 (1964). 

Calculation of a Certain Type of 6j-Symbol 

E. de Vries and A. J. van Zanten 
Instilule jor Theoretical Physics, Unil'ersi/v o( Groningell, The Ne/herlands 
(Received 16 December 1971; Revised Manuscript Received 28 January 1972) 

It is shown that, for an arbitrary finite simply reducible group, it is possible to express a certain type of 6j­
symbol in which one of the representations is one-dimensional in terms of 3j-symbols {j k I}. 

For an arbitrary finite simply reducible group, the 
6j-symbol in which one of the irreducible represen­
tations is the trivial one (II) can be expressed in 
terms of 3j-symbols [see Ref. 1, Eq. (18b)]. We prove 
here the following similar result: 

fj1hj3} 1 
l' . 1 = (- 1}2h+h(8\(1;) -(. J VI h Ij}{ji j2 h}· (I) 
~h J2 i h 

In this equation (- l)j3(8\(Ii ) is the phase factor be-

J. Math. Phys., Vol. 13, No.6, June 1972 

longing to the irreducible representation, which is the 
Kronecker product of the irreducible representation 
(h) and the arbitrary one-dimensional representation 
(Ii)' The 3j-symbol {j k l} denotes the number of 
times that the irreducible representation (l) is con­
tained in (j) (59 (k). 

Proof: We start from Eq. (27a) of Ref. 1, taking 
(j' = (h) and (j) = (1 i)' and substitute in the rhs T = 
SR. This gives 
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~ p < m. Case 1: 
q<m 

Under these conditions, 

\ C/ 1 + C/ 2 + C/ 3 < 13, 
(131 + {32 + 13 3 < C/ 

:B {3. < ~ C/. , 
i t i 1. 

(A4) 

which entails p < p and by (A4), r < p and a fortiori 
dimCj < p. 

This situation is therefore incompatible with the 
EYpothesis of irreducibility of 11; the situations 
[j {3j > ~ a i and:B {3i = ~ a i can be handled in the same 
way so that Case I is never realizable. The analyses 
of Cases 3-5 can be carried out in the same fashion 
and lead to the same conclusion; only the result of 
Case 6 is different 

~ 
p = m. 

Case 6: 
q=m 

In these conditions, 

(A5) 

which entails p = p and, by (A5), r = p, so that 

dimCi < p, i = 1,2,3, 

and this case is not realizable. 

1 F. Englert and C. De Dominicis, Nuovo Cimento 53A, 1007 (1968). 
2 See Ref. 1. p. 1021. 
3 F. Englert, R. Brout, and H. Stern, Nuovo Cimento 58A, 601 (1968). 
4 R. Brout and F. Englert, Bull. Am. Phys. soc.n, 21 (1966). 

Case (b) can be treated in precisely the same manner. 
This completes the proof of the theorem. 

APPENDIX B 

Let RN be a 2n-dimensional covering and (HM a partial 
covering of RN. We shall prove the following lemma: 

Lemma Bl: Each connected component of CRN(HM 

can have intersections with no more than one boun­
dary component of (HM. 

In fact, since the inequality of Lemma 5 is saturated, 
conditions (i)- (vi) hold and it is easy to convince one­
self that the latter restrict drastically the number of 
possible configurations. 

So as not to burden the reader with inessential de­
tails, we shall only give a brief sketch of the argu­
ment. 

A possible configuration violating Lemma Bl is 
shown in Fig.18. 

By hypothesis, 
k 

dimRN= a 12 + L c/. = 2n 
i~ 3 ' 

and, by Lemma 7, 

')Ii + {3i = 2n, 1 :5: i :5 k. 

Summing these relations, 

k k 

[C/ 12 + ')11 + ')12] +:B [ai + ')Ii] +:B {3t = (k + 1)2n. 
i=;:! ;=1 

Now, by Lemma 5, each of these k brackets are :5 2n. 
So that this configuration is not realizable. 

By similar reasonings, we are led to Lemma Bl. 

5 R. Brout, Topics in Bootstrap Theory, Cargese Lectures (Gordon 
and Breach, New York,1966). 

6 C. de Dominicis and P. C. Martin, J. Math. Phys. 5, 31 (1964). 
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E. de Vries and A. J. van Zanten 
Instilule jor Theoretical Physics, Unil'ersi/v o( Groningell, The Ne/herlands 
(Received 16 December 1971; Revised Manuscript Received 28 January 1972) 

It is shown that, for an arbitrary finite simply reducible group, it is possible to express a certain type of 6j­
symbol in which one of the representations is one-dimensional in terms of 3j-symbols {j k I}. 

For an arbitrary finite simply reducible group, the 
6j-symbol in which one of the irreducible represen­
tations is the trivial one (II) can be expressed in 
terms of 3j-symbols [see Ref. 1, Eq. (18b)]. We prove 
here the following similar result: 

fj1hj3} 1 
l' . 1 = (- 1}2h+h(8\(1;) -(. J VI h Ij}{ji j2 h}· (I) 
~h J2 i h 

In this equation (- l)j3(8\(Ii ) is the phase factor be-
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longing to the irreducible representation, which is the 
Kronecker product of the irreducible representation 
(h) and the arbitrary one-dimensional representation 
(Ii)' The 3j-symbol {j k l} denotes the number of 
times that the irreducible representation (l) is con­
tained in (j) (59 (k). 

Proof: We start from Eq. (27a) of Ref. 1, taking 
(j' = (h) and (j) = (1 i)' and substitute in the rhs T = 
SR. This gives 
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.. = 6 x (h)(T)x(h)(RT-1R) 
{

j1 j2 j3} (- 1)2 (1i) . . 

11 12 Ii g2 RT' 

X X(1i) (TR-1)x(j3) (R) 

(- 1)2 (1i) 
= ~X(h)(T)X(j2)(Rr-1R) 

g2 RT 

X X(li)(T)X(li)(R)XU3)(R) 

(- 1)2 (li) 
= 6X( 1)@(1i)(T) 

g2 RT 

X X(J2)(RT-1R)X U3)@(li)(R), (2) 

where we used the facts that (1 i) is a one-dimensional 
representation and that the characters are real. 

Now there are two possibilities for (j1) @ (1;). 
(a) (j2) is not contained in (j1) @ (1 i). In this case the 
6j-symbol in the lhs of Eq. (2) vanishes. 
(b) (j2) is contained in (j1) @ (Ii), and, because (Ii) is 
a one-dimensional representation, one even has (h) = 
(j1) @ (Ii)· 

From (a) and (b) we see that X(h)@(1i)(T) can be re­
placed by {i1 j2 l;}x<i2 )(T). We furthermore ex­
press the characters in terms of matrix elements 
and apply the definition formula of 3jm-symbols and 
an orthogonality relation (cf. also Ref. 2) and obtain 

{
j1 j2 j3 t (- 1)2 (1i) . . ' 
.. 1 (= {11 J2 1 .} ~D(lz)(T)D(1z)(R) 

11 12 i) g2 ' RT aa By 

X D <i2h (T)D ( 2)(R)D(h)®(1;l (R) 
Ey E B ~~ 

= (- 1)2 (1 i ){j1 h 1 i} licxf liay [j~] 

X (h h is@li)*(j2j2is@li) 
(3E 11 y{31/ 

(3) 

1 E. P. Wigner, "On the Matrices Which Reduce the Kronecker 
Product of Representations of S.R. Groups" (Princeton, 1951), in 
Quantum Theory of Angular Momentum edited by L. C. Biedenharn 
and H. van Dam (Academic, New York, 1965). 

By applying a symmetry relation for a 3jm-symbol 
and an orthogonality relation, we get 

{
j1j2j3} ( 1)2· ... ·@(1.) 1 { .. 1}{' .. I} . . 1 = - 11 13 '-['] 11 J2 i 12 12 J3@i· 
11 12 i 12 (4) 

The last 3j-symbol in Eq. (4) can be replaced by 
{j1 j2 is}, because (j2) @ (Ii) = (j1) if the 6j-symbol 
does not vanish. For the same reason [j1] = [j2]' 
which gives Eq. (1). 

It is not difficult to check that the rhs of Eq. (1) is 
symmetric in j1 and j2 as it must be. 

Equation (1) can be used, e.g., for the calculation of 
the 6j-symbols of the Dirac matrix group, which play 
a role in Fierz transformations (see Ref. 3). 

Along the same lines as in the proof of Eq. (1) one can 
derive an expression for the square of a more general 
6j-symbol in terms of 3j-symbols 

For the derivation of Eq. (5) one has to start from 
Eq. (27) of Ref. 1. 
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We prove that solutions to the equations rJk: 1= 0 and gij; k = 0 exist locally when RiJkl "0. Previously this was 
only shown for the special case of Rijkl = O. 

1. INTRODUCTION AND SOLUTION OF INTEGRA-
BILITY EQUATIONS 

In a previous paper,l we introduced a four-dimen­
sional nonsymmetric 2 Lorentz invariant field theory. 
We showed that solutions to the equations 

ari 
~ + rmr i - r i rm - r i rm = r i - 0 a x 1 jk m 1 mk j 1 j m k I - j k : z - , (1) 

agik 
--I - rfjgim - r'Jizgim = gik'Z = 0 ax . 

(2) 

exist locally. The problem of local existence depends 

on showing that there exists a consistent set of field 
components at the prescribed origin pOint. 3 This is 
not a trivial matter since the consistency conditions 
(integrability conditions) involve more equations than 
there are field components. 

We introduce e a
i by means of 

, . ae cxj r. = e ,--, 
Jk cx axk 

gij = e cx
i e{3j g cx{3, 

where gcx{3 is the Minkowski metric. We get from 

(3) 

(4) 
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a2e a
j a2e a

j 

axjax k = axkaxj 

the following consistency conditions (integrability 
conditions) : 

Equation (6) implies, as well, that all the mixed 
derivatives of gjJ, r;k' e a j are symmetric. Com­
bining (6) with (l),we get 

t· t· r· r t r· r t 0 rijrJkm - rijrh.k + 1m jk - h jm = . 

These are 96 relations for 64 rJk' In our previous 
paper, we showed by explicit construction that non­
trivial solutions to (7) exist. This means that solu­
tions to (1), (2),and (6) exist locally. 

In our previous work, we noted the possibility of a 
theory based on (1) and (2),but not (6) and (3). In 
this case, the consistency takes the form 

(5) 

(6) 

(7) 

These equations follow from the requirement that all 
mixed derivatives of tensor functions of g i)' rJk be 
symmetric. In this paper, we show that solutioriS to 
(8) and (9) exist when Rijkl ;" O. Thus,in fact,the 
field theory based on (1) and (2), but not (6), also 
has solutions existing locally. Equation (8) consti­
tutes 60 equations and Eq. (9) is 384 equations (there 
is anti symmetry in the indices p and l. Thus, we 
have considerably more equations to solve than for 
the RiJkl = 0 case. 

By trial and error, we have come up with solutions 
of (8) and (9). We first write 

rJk = aajaBjQ'ykrg)x), 

g'j = aai aBjgaB(X)' 

(10) 

(11) 

At the prescribed point P, we choose gaB (P) to be the 
Minkowski metric (1,-1,-1,-1) and rgy (P) is chosen 
to have the following nonvanishing components: 

q3 =- r13 , 

r~3 = r83' 
rfo =- no' 

r80 = qo. 
(12) 

The aa.(p) are chosen arbitrarily. Under these 
circumtstances,we findRi kl ;" 0 and (8) and (9) are 
satisfied. 4 Furthermore, ill 64 rJk and all 16 gij in 
(10) and (11) can be made nonzero. This occurs,for 
example, when we take aai(p) .to be 

all=0.8, 
a 2

1 = 0.65, 
a3

1 = 0.72, 
aOI = 0.4, 

aI2=0.6, 
a 2

2 = 0.9, 
a3

2 = 0.58, 
a02 = 0.2, 

a l
3 = 0 .. 5, 

a23 = 0.25, 
a33 = 0.13, 
a03 = 0.1, 

a l
O = 0.15, 

a 2
0 = 0.55, 

a30 = 0.62, 
aOo = 2.0, 

(13) 

We also take rh = 0.3, rfo = o. 4, r~3 = 0.5, 
r80 = 0.27. By means of a finite difference approxi­
mation, and with the help of a computer, we have 
also found that gi·' r~k all vary from point to point 
[using (13)] and, !bus', constitute a nontrivial theory. 
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Furthermore, we have found, in all cases considered, 
that the field values are independent of path within 
a tolerance of nine decimal places. (The distance 
from the origin was taken to be of the order of 0.1). 

2. INTEGRABILITY AND LOCAL EXISTENCE 

We have made the statement that once we demon­
strate integrability, then local existence will follow. 
We can ask, what does our computer work have to say 
about this statement. 80 far as the computer mapping 
is concerned, the only problem with respect to the 
existence of a computer finite-difference solution is 
whether the field value at a point is independent of 
path from the origin. Thus, the existence of computer 
solutions to the field equations in the vicinity of the 
origin (where the field is taken to be finite) depends 
only on integrability. Furthermore, so far as the 
computer solutions are concerned, we can continue, 
in principle, to lower the grid size indefinitely. Then, 
the finite difference system would go into the exact 
field equations [Eq. (2.3) of Ref. 1]. For any grid 
size, the only problem with respect to existence of 
solutions to the computer program is integrability. 
Therefore, when dx l is infinitesimal, we conclude 
that the exact mathematical solutions exists pro­
vided that integrability can be established. This is a 
local result since we cannot infer that the field 
remains finite everywhere. 

We also point out that once the integrability equations 
are established at the origin, then they hold in the 
vicinity of the origin as well. We define 

AikJP1 =r:"kRmJPI + rJkRmjPI - rjl,RimPl ' (14) 

This has been established to be zero at the origin. 
Note that since qk;l = O,it follows that Ai kjpl;m = O. 
Thus, it follows that aA "kj P zI ax m = 0 when we use 
AikJP1 = 0 at the origin. We can do the same for all 
higher derivatives that are finite. Thus, the integra­
bility equations are satisfied in the vicinity of the 
origin, once they are satisfied at the origin. 

We may also prove that solutions to the field equa­
tions exist locally once integrability has been estab­
lished, as follows. The field is assumed finite at the 
origin point. By means of the field equations, we can 
compute the higher derivatives of rJk entirely in 
terms of qk at the origin point. In a similar fashion, 
the higher derivatives of g ii are given in terms of 
r;k and gij at the origin point. Due to the finiteness 
of the field at the origin, at least a finite number of 
derivatives will be finite as well (since they are 
given by finite products of the field at the origin). 
When we set up the field equations in Ref. 1, we 
assumed continuity for all finite tensor functions. 
Thus, the conditions for Taylor's theorem are satis­
fied (see Apostol,5 Theorems 5-14 and 6-21) 
Taylor's theorem says5 that the field can be approxi­
mated by a polynomial of degree n -1 if the nth -order 
derivative exists in the region containing P and R 
(where R is close to P). Thus, we may write 

r~k(R) = r! k(P) t-~ dxi + - __ J_k_ 
ori) 102r~) 

J J oxi P 2 dXmaXn p 

x dxmdxn + . . . . (15) 

Now, by the field equations we see qk(R) is entirely 
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given in terms of the field at the origin point P. Thus, 
we can calculate r;k(R)[and by similar arguments 
gij (R)] provided a consistent set of qk exists at P. A 
consistent set of r; k at P must satisfy the require­
ment that the mixed derivatives6 of all functions of 
q k and gJj be symmetric. These relations are just 
given by t;qs. (8) and (9). Thus, we conclude that 
local existence depends on being able to obtain solu-

1 M. Muraskin, Ann. Phys. (N .Y.) 59,27 (1970). This reference 
gives background material for the present paper. 

2 We shall make a few comments about the r;k = rikJ situation. 
For symmetric r i k' we can make a general coordinate trans­
formation so that Jrik '" 0 at the origin. Then it might appear that 
r i

k
", 0 at all point~ as a consequence of (1) and, thus, no non­

tr'ivial solutions would be possible for symmetric r;k' However, 
this argument is not correct since Eq. (1) is not covariant under 
general coordinate transformations. Thus, the transformation 
that leads to r;k = 0 at the origin also implies r;k; I ,,< O. 

3 See Sec. II for detailed discussion. 

tions to (8) and (9) which, in fact, we have already 
found. A solution to (8) and (9) is given by (10),(11), 
and (12). 

3. CONCLUSION 
Thus,nontrivial solutions to (1) and (2) with R.ijkl ;;t 0 
exist locally. Further investigations of the qk; I = 0, 
gij;k = 0 field theory appear elsewhere. 7 

4 R 1 230 = - R 1203 is nonzero. 
5 T. Apostol, Mathematical Analysis (Addison-Wesley, Reading, 

Mass., 1957),pp. 96,123. 
6 The problem of consistency when the field depends on a number 

of parameters as well as x, y, z, xO is discussed in L. Eisenhart, 
Continuous Groups of Transformation (Dover, New York, 1961), 
Chap. 1. 

7 M.Muraskin and T.Clark,Ann.Phys.(N.Y.) 59,27 (1970). 
M. Muraskin,J. Math. Phys.12, 28 (1971); Intern. J. Theoret. 
Phys. 4, 49 (1971). 
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It is shown how a new class of stationary electromagnetic vacuum fields can be generated from solutions of 
Laplace's equation. These fields are a stationary generalization of the static electromagnetiC vacuum fields 
of Weyl, Majumdar, and Papapetrou, and are plausibly interpreted as exterior fields of static or steadily mov­
ing distributions of charged dust having numerically equal charge and mass densities. 

1. INTRODUCTION 

Coulomb's law and Newton's law of gravity are for­
mally identical apart from a Sign. Hence, claSSically, 
any unstressed distribution of matter can, if suitably 
charged, be maintained in neutral equilibrium under 
a balance between the gravitational attraction and 
electrical repulsion of its parts. 

Indications that this obvious Newtonian fact has a 
relativistic analog first emerged when Weyll obtained 
a particular class of static electromagnetic vacuum 
fields, later generalized by Majumdar2 and Papape­
trou3 to remove Weyl's original restriction to axial 
symmetry, and further studied by Bonnor4 and 
Synge. s The Papapetrou-Majumdar fields are to all 
appearances the external fields of static sources 
whose charge and mass are numerically equal (in 
relativistic units: G = c = 1). That they are indeed 
interpretable as external fields of static distributions 
of charged dust having equal charge and mass densi­
ties has been shown by Das,6 who has examined the 
.corresponding interior fields. 

Astrophysical bodies are electrically neutral to a 
good approximation, and the Papapetrou-Majumdar 
solutions have up to now received little attention. It 
seems to us, however, that they can playa useful, if 
limited, astrophysical role in providing simple qua­
sistatic analogues for complex dynamical processes 
like the disappearance of asymmetries in gravita­
tional collapse or the collision of black holes. In 
reality, such a process always involves large kinetic 

energies and at present can only be handled by elabo­
rate numerical integrations under the assumption of 
small departures from spherical symmetry. 7,8 How­
ever, for charged bodies in neutral equilibrium the 
process can be made arbitrarily slow, and the details 
easily followed as a sequence of stationary configura­
tions. While this procedure prevents us from con­
sidering features of undeniable observational impor­
tance, such as the emission of gravitational waves, it 
is for that very reason ideally suited for isolating and 
elucidating certain basic issues of prinCiple relating 
to the final phases of the process. 

Some of these questions are pursued in detail else­
where. 9 Our purpose here is to demonstrate that the 
Papapetrou-Majumdar class can be extended straight­
forwardly from the static to the stationary realm. 

2. STATIONARY FIELDS 

The metric of an arbitrary stationary field is con­
veniently expressed in the form lO 

ds 2 = g""dxJ1.d,x" = - f-ly mn dxmdxn 

+ I(wmdx m + d,x4)2, (1) 

in which I, Y mn , and W m are independent of the time 
coordinate X4. The inverse of gllIJ is given by 

gil" ~ _0_ = _ Iymn _0 __ 0_ + 21w m _0 __ 0_ 
OXIl ox" ox m oxn ox m ox 4 

02 
+ (f-l-Iw 2 ) (ox 4 )2' (2) 

J. Math. Phys., Vol. 13, No.6, June 1972 



                                                                                                                                    

LOCAL EXISTENCE OF SOLUTIONS 865 

given in terms of the field at the origin point P. Thus, 
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found. A solution to (8) and (9) is given by (10),(11), 
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3. CONCLUSION 
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a balance between the gravitational attraction and 
electrical repulsion of its parts. 

Indications that this obvious Newtonian fact has a 
relativistic analog first emerged when Weyll obtained 
a particular class of static electromagnetic vacuum 
fields, later generalized by Majumdar2 and Papape­
trou3 to remove Weyl's original restriction to axial 
symmetry, and further studied by Bonnor4 and 
Synge. s The Papapetrou-Majumdar fields are to all 
appearances the external fields of static sources 
whose charge and mass are numerically equal (in 
relativistic units: G = c = 1). That they are indeed 
interpretable as external fields of static distributions 
of charged dust having equal charge and mass densi­
ties has been shown by Das,6 who has examined the 
.corresponding interior fields. 

Astrophysical bodies are electrically neutral to a 
good approximation, and the Papapetrou-Majumdar 
solutions have up to now received little attention. It 
seems to us, however, that they can playa useful, if 
limited, astrophysical role in providing simple qua­
sistatic analogues for complex dynamical processes 
like the disappearance of asymmetries in gravita­
tional collapse or the collision of black holes. In 
reality, such a process always involves large kinetic 

energies and at present can only be handled by elabo­
rate numerical integrations under the assumption of 
small departures from spherical symmetry. 7,8 How­
ever, for charged bodies in neutral equilibrium the 
process can be made arbitrarily slow, and the details 
easily followed as a sequence of stationary configura­
tions. While this procedure prevents us from con­
sidering features of undeniable observational impor­
tance, such as the emission of gravitational waves, it 
is for that very reason ideally suited for isolating and 
elucidating certain basic issues of prinCiple relating 
to the final phases of the process. 

Some of these questions are pursued in detail else­
where. 9 Our purpose here is to demonstrate that the 
Papapetrou-Majumdar class can be extended straight­
forwardly from the static to the stationary realm. 

2. STATIONARY FIELDS 

The metric of an arbitrary stationary field is con­
veniently expressed in the form lO 

ds 2 = g""dxJ1.d,x" = - f-ly mn dxmdxn 

+ I(wmdx m + d,x4)2, (1) 

in which I, Y mn , and W m are independent of the time 
coordinate X4. The inverse of gllIJ is given by 

gil" ~ _0_ = _ Iymn _0 __ 0_ + 21w m _0 __ 0_ 
OXIl ox" ox m oxn ox m ox 4 

02 
+ (f-l-Iw 2 ) (ox 4 )2' (2) 
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where ymn is the 3 x 3 symmetric matrix inverse to 
Y mn , w m = ymnwn and w2 = ymnwmwn . The determi­
nants of gil V and Ymn are related by 

(3) 

The 3-vector wm in (1) is arbitrary up to an additive 
gradient am.\(xl,x2,x3), corresponding to the possi­
bility of making arbitrary time translations x4 -7 x4' = 
x4 - .\(x"1,x2,X3). However, we can derive from it an 
invariant "torsion vector" 

in terms of a three-dimensional vector calculus em­
ploying Ymndxmdxn as base metric. 

We next consider a stationary electromagnetic field 
FjlV = avAjl- ajlAy in the space-time (1). The condi­
tion of time independence a4AIl = 0 yields for the 
"electric" components 

(5) 

while the source-free Maxwell equations 

( 6) 

for fJ. = m give the" magnetic" components 

(7) 

in terms of a magnetic scalar potential <1>. All remain­
ing components are then conveniently expressed in 
terms of these six; for example, 

(4) Fn4= wm (4) Fmn + F4 m ymn, ( 8) 

an identity which follows readily from (1) or (2). 
Equation (6) with jJ. = 4 now yields, on substituting (8), 
(7), (5) and (4), 

(9) 

Next, writing F mn (= anAm - amAn) in terms of (5) and 
(7) and expressing the cyclic identity Emnp apF mn = 0, 
we obtain 

(10) 

If we now introducell the complex scalar potential 

\}J = A4 + i<l>, 

then (9) and (10) combine to give 

div (f-1 '\7\}J) = i 1-2 T· 'i7-.J! . 

We have thus reduced the entire set of Maxwell's 
equations to the single complex equation (12). 

3. GRAVITATIONAL FIELD EQUATIONS 

The Ricci tensor 

(11) 

(12) 

for the general stationary metric (1) is conveniently 
expressed in terms of a complex 3-vector G, defined 
by 
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2/G = 'i7/ + iT. (13) 

Then12 

_/-2 R44 = div G + (G* - G)' G, (14a) 

- 2i/-2 (4)R'4 = y-1/2 Empq(aqCp + CpC;), (15a) 

/-2(YpmYqn (4)Rmn_ YJqR 44 )== Rpq(Y) + CpC; + C;Cq• 

(16a) 
Here, RJq (y ) denotes the Ricci tensor formed from the 
3-metric Ymndx mdxn• 

For the electromagnetic energy tensor 

one derives from the formulas of the previous sec­
tion 

~FjlvFIlV == ('i7<1»2 - ('i7A 4)2, 

81T/-1 T 44 = ('i7<1»2 + ('i7A4)2, (14b) 

41T /-1 (4)TJ{' == y-1I2 Empq(ap<l>)(aqA 4 ), (15b) 

- 4n /-1 (4)Tmn = (amq,)(anq,) + (amA4)(anA4) 

- i ymn[('i7<1»2 + ('i7A4)2] (16b) 

with am = ymn an' 

We can now impose the Einstein field equations 
R/lV == - 8n Tjlv' From (15a), (15b), we find 

curl T = - 4'V<I> X 'VA 4 

= i cur1(\}J'V\}J* - \jJ"*'V\}J), 

so that the equation 

T + i(\}J*'i71J1 - ~*) = 'Vl/I (17) 

defines a real scalar l/I up to an additive constant. 

We next define a complex function ll 

8 == / - \}JIJI* + il/l. 

By virtue of (13) and (17), 

/G = i 'i7 8 + 1JI*'i7IJ1. 

(18) 

(19) 

Substituting (19) into the field equations (14a), (14b) 
and employing (12) leads toll 

while (12) itself can be written 

and we note from (18) that 

/ = 1 (8 + 8*) + \}J\}J* . 

(20) 

(21 ) 

(22) 

Finally the field equations (16a), (16b) reduce to 

-J2Rmn (y) == i 8 (,,,8~n) + \}J8.lm\}J~n) + \}J* 8~(m-.J! .n) 

- (8 + 8*)\}J.(m-.J!~n)' (23) 

in which, for example, 
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The complete system of electromagnetic and gravita­
tional field equations for an arbitrary electromagne­
tic vacuum field are summed up in (20), (21), and (23). 

4. GENERALIZED PAPAPETROU-MAJUMDAR 
SOLUTIONS 

So far, our considerations have been quite general. 
We now examine whether solutions of the system (20), 
(21), and (23) exist for which the background metric 
Ymndxmdxn isflat. In this case equations (23) [with 
Rmn (y) = 0] are satisfied if and only if there is a 
linear relation 

>II = a + b&, with a* b + ab* = - i 

(as one easily verifies, for example, by choosing 
8 = xl and 8* = x 2 as coordinates). Both 8 and >II 
contain arbitrary additive constants, and it is con­
venient to adjust these so that 8 --) 1 when >II --) O. We 
thus obtain 

>II = i e ia (l_ 8), (24) 

in which the arbitrary real constant Q' represents the 
"complexion" of the electromagnetic field. We can 
submit this field to any constant duality rotation with­
out affecting the geometry. 

If we now substitute (24) into (20) and (21), both reduce 
to 

(25) 

which is Laplace's equation in Euclidean 3-space. 

We conclude by summarizing the procedure for ob­
taining the complete field. (a) Write down a solution 
of (25) in terms of any convenient coordinates xm. 
Suppose the Euclidean line element takes the form 
Ymndxmdxn in these coordinates. (b) Obtainj, T, and 
w from the equations 

j = {(I + 8)(1 + 8*), 

ij-l T = V{ln[(1 + 8)/ (1 + 8*)]}, cur I w = - r 2 T. 

The space-time metric is given by (1). (c) Obtain 
'l< = A4 + i<I> from (24). The electromagnetic field 
can be found from (5) and (7). 

* Work partially supported by the National Research 
Council of Canada. 
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5. EXAMPLE: CHARGED KERR-LIKE SOLUTIONS 

The Kerr-Newman solution with m 2 = e 2 corresponds 
to the simplest complex solution of (25). We choose 

2/(1 + 8)::::: 1 + m/R, with R2 =x2 + y2 + (z - ia)2, 
(27) 

where a and m are real constants and x, y, z Cartesian 
coordinates. In terms of oblate spheroidal coordi­
nates r, e, cj> defined by 

x + iy ::::: [(r- m)2 + a2)1/2 sine ei¢,z =(r-m) case, 

the Euclidean 3-metric becomes 

ymndxmdxn = [(r-m)2 + a2 cos2e]{dr2/[(r-m)2+ a2] 

+ de 2}+ [(r- m)2 + a2] sin2edcj>2. 

Further, we find 

R = r - m - i a cose, 

j = [(r - m)2+ a2 cos2ell(r2 + a2 cos2e), 

>II = eia m/ (r- i a cose), 

and, after a somewhat lengthy calculation, 

wmdx m = {[(2mr-m2)a sin2 e]![(r -m)2 

+ a2 cos2 e]} dcj>. 

Putting everything together, we recover the charged 
Kerr metric with m2 = e2 in its usual form.13 

As a natural generalization of (27), one may consider 
2 n m 

--=1+.6 _k, 
1 + 8 k~l Rk 

where Rl = (r - c k)2, r is the Euclidean pOSition vec­
tor, and c

k 
an arbitrary set of constant, complex vec­

tors. The resulting metric will represent the field of 
a set of arbitrarily spinning, charged Kerr-like par­
ticles in neutral equilibrium. For the static analog of 
this solution, representing a set of Reissner-Nord­
strom particles with e k = m k ; see Ref. 5. 

Note added in proof: The stationary extension of 
the Papapetrou-Majumdar solutions has since been 
obtained independently by Z. PerjE~s, Phys. Rev. Letters 
2'7,1668 (1971). 

10 Greek indices run from 1 to 4, Latin indices from 1 to 3. Lower­
ing and raising of Latin indices is always carried out with y mn 

and its inverse y mn unless specifically noted by a left super­
script 4. Thus, if F~" is a given covariant tensor, we write 
Fab =yamybnFmn and (4)FQb =ga~gb"F~". 

11 Cf., for the special case of axial symmetry, F. J. Ernst, Phys. 
Rev. 168, 1415 (1968), where the idea of a complex potential is 
first introduced. We have been informed that B. K. Harrison 
(1968, unpublished) has cast the stationary electromagnetic 
vacuum equations into a form similar to that given in Sees. 2 
and 3. See also B.K.Harrison,J.Math.Phys.9,1744 (1968). A 
recent publication by Ernst, J. Math. Phys.12, 2395 (1971) treats 
the general stationary vacuum case. 

12 Z. Perjes, J. Math. Phys.ll, 3383 (1970). 
13 See, e.g., B.Carter, Phys.Rev.174,1559 (1968). 
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A new.meth?d is proposed for constructing examples in relativistic classical particle mechanics, starting with 
the POincare group and space reflections as transformations of position and velocity variables for two free 
particles and deriving equations for Lorentz covariant position variables for two interacting particles. The 
advantages are that the equations do not couple the position variables of the two particles. and solutions yield 
the particle world lines directly. Solutions are obtained for a special case. 

I. INTRODUCTION 

Requirements of relativistic invariance for interac­
tions of classical particles have been developed, for 
example, as nonlinear partial differential equations 
for the force functions of Newtonian equations of 
motion. l - S Examples of physically acceptable solu­
tions of these nonlinear equations have been difficult 
to find. s.G 

Here we propose a new method of constructing ex­
amples in relativistic classical particle mechanics. 
A relativistic system of particles is a Poincare group 
of transformations of pOSition and velocity variables. 
We begin with Poincare and space-reflection trans­
formations of free-particle variables and look for 
functions of these variables to use as position vari­
abIes for interacting particles. Lorentz covariance 
requirements in the form of nonlinear partial differen­
tial equations are the only nontrivial conditions these 
functions have to satisfy. 

One advantage is that these equations do not couple 
the position variables of different particles, unlike 
the Lorentz-covariance conditions for Newtonian 
equations which do couple the forces of different par­
ticles. l - S Another advantage is that the solutions of 
these equations yield directly the particle world 
lines. This makes it possible to study their asympto­
tic properties. 

In the next section we derive these equations for two 
particles. In Sec. m we obtain their solutions for a 
special case. Section IV contains conclusions and dis­
cussion. 

II. EQUATIONS FOR RELATIVISTIC POSITIONS 

We shall have occasion to consider only one particle 
at a time. Let its position be y. After a Lorentz 
transformation with velocity tanhE in the kth direc­
tion, the jth component of the transformed pOSition at 
time zero in the transformed frame is 

Y j + EYkYj 

to first order in E, where y and yare the position and 
velocity at time zero in the original frame. S.7.8 (Dots 
denote time derivatives.) We can use a bracket­
generator symbol [ , K] for Lorentz transformations 
and [ , H] for time derivatives, 9 and write 

k,j=1,2,3. (ILl) 

The first-order part of the Similarly transformed 
velocity is S•7 - 9 

(II. 2) 
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We shall use a Poincare group of transformations de­
fined for two free particles with positions x(n)(t) and 
velocities v(n)(t). Thus 

x(n)(t) = x(n) + v(n)t, 
(II. 3) 

[v~nl,K.] = v~n)v~n) - 0 ... 
J t t J tJ 

We also use a space-reflection transformation under 
which as usual x(n) and v (n) are odd. Then we have 
Poincare and space reflection transformations of the 
correct number of independent variables for two in­
teracting particles. It remains to find position vari­
abIes for the interacting particles. 

For the position of each of the interacting particles, 
we write lO 

y = xU) + IV(l) + gV(2) + hx, (II. 4) 

where x = x(1) - x(2). We assume the usual transfor­
mations of positions for space translations, rotations, 
and reflections. This means that I, g, and hare 
scalars invariant under space translations. We can 
take them to be functions of the independent variables 

O!l =x'vU ), 0!2 =X'V(2), 0!3 =x2, 

0!4 = 1-V(l)2, O!s = 1- v(2)2, (II. 5) 

O!G = 1 - V(U·v (2). 

The whole problem now is to satisfy the Lorentz­
transformation condition (II. 1) for the position (II. 4). 
This is 

or 

[xJU,KJ + vJl)[t,K i ] + v;2)[g,K i ] + xj[h,KJ 

+ I [v;l),Ki ] + g[v}2),Ki ] + h[xj,Ki ] 

= (xU) + Iv~l) + gv(2) + hx,.)[v~l) + (j + h)v~l) 
t t t J J 

+ r.g - h)v~2) + hx j ], (n.6) 

where [t,K i ] can be calculated as [t,K i ] =:0j (olloO!j) 
[O! j' K i] with [OJ, K i] calculated using the bracket re­
lations of x and v(n). We get 

(j,K;] = x~1)j + v~1)Dd + v~2)Dd + xiD3/, 

where 
a a a 

Dl = O!l -- + 20!4 -- + O!G --, 
'Oa l o0!4 oaG 

(II. 7) 
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o 0 0 
D - 20' --- 0' --- 0' --
3- 20 6 a 5 a ' 

0'3 0'1 0'2 

o 0 a d 
D4 = 20'1--- 0'4 --- 0'6 -- = D3 +-

00'3 aO'l 00'2 dt 

Then substituting (II. 7) and the bracket relations for 
x and v(n) in (II. 6) we obtain a tensor equation 

Tij = 0, (II. 8) 

where T ij consists of ten terms with scalars multiply-
." (1) (2) t mg Uij,XiXj,XiV j 'XiV j ,e c. 

We can extract equivalent scalar equations from the 
tensor equation (II. 8) by choosing a convenient set of 
three linearly independent vectors a(m), m = 1,2,3. 
Then we obtain nine scalar equations 

"Ba(m)T .. a(mt)-smmt-O m,m'=1,2,3. (II. 9) 
i.j i tJ j - -, 

One choice for a(m) is a(l) = y(l), a(2) = :Y(2), and 
a (3) = X.10 This has the advantage of giving equations 
with the least number of terms. 

They are 

Dd - f(D4 - D3)! - (f + g)(C 4/D) - h! = 0, 

D1g - f(D 4 - D3)g - (f + g)(C 6/D ) + h! = 0, 

D1h - f(D4 -D3)h - (f + g)Ct!D = 0, 

D2! - g(D4 - D3)! - (f + g)(C 6/D) - g(h + 1) = 0, 

D 2g-g(D4 -D3)g- (f + g)(C 5/D) + g(h + 1) = 0, 

D2h - g(D4 - D3)h - (f + g)C 2/D = 0, 

D3! - h(D4 - D3)! - (f + g)(Ct!D) - h(h + 1) = 0, 

D3g- h(D4 -D3)g- (f + g)(C 2!D) + h(h + 1) == 0, 

D3h - h(D4 - D3)h - (f + g)C 3/D == 0, (II. 10) 

where 

t-·' 1- 0'6 

.'J D = det 1- 0'6 1- 0'5 0'2 

0'1 0'2 0'3 

and C i are the cofactors of 0' i or 1 - 0' i in D. 

To solve these equations, we first bring the differen­
tial operators D i to a simple form by making a trans­
formation of independent variables. 

If 
f31 =~, f32 =~, f35 = 0'6/"/0'40'5, 

f3 3 = [(0'10'6 - 0'20'4)/(0'40'5 - O'~)]ffls, (II. 11) 

f34 = [(0'20'6 - 0'10'5)/(0'40'5 - O'~)]~, 

and 

f36 = 0'3 + [(0'~0'5 + 0'~0'4 - 20'10'20'6)/(0'40'5 - O'~)], 

o 
D3 = f3 1 -, 

0{33 

a 
D4 = f3 2 -· 

of3 4 

(II. 12) 

We now face the second difficulty in the solution of 

Eq. (n. 10). This is the presence of the determinant 
D, which is clearly difficult to integrate. The sim­
plest way out is to ignore this term by imposing the 
condition! + g = 0. In the next section we shall 
obtain solutions for this case. 

The determinant is just (v(l) x v(2)·x)2. Its presence 
is a direct consequence of the choice of vectors a (m), 

i.e., y(l), y(2), and x. This can be remedied by mak­
ing another choice, e.g., v(1), V(2), and x, which is 
equivalent to expanding v in terms of y(n) and x in­
stead of v(n) and x as in (n. 4).10 This trick does give 
equations which have no determinant, but the corres­
ponding differential operators like Di are more com­
plicated. It is quite difficult to bring these operators 
to a simple form by a transformation analogous to 
(n.ll). We have so far not succeeded in finding such 
a transformation, and the equations remain highly 
intractable. 

m. SOLUTIONS FOR THE SPECIAL CASE,! + g == ° 
After imposing the condition! + g = 0, the equations 
for! and g coalesce into the following six equations: 

(III. 1) 

(D1 -D2)g + 2g(D4 -D3)g-g(2h + 1) == 0, 
(m.2) 

D3g- h(D 4 - D3)g + h(h + 1) = 0, 

(D 1 + D 2 )h = 0, 

(D1 - D2)h + 2g(D4 - D3 )h == 0, 

D3h - h(D4 -D3)h = 0. 

(Ill. 3) 

(Ill. 4) 

(Ill. 5) 

(Ill. 6) 

We now make another transformation of independent 
variables (with hindsight): 

Y1 = 2f32' Y2 = f3 2/f3l> Y3 = (f3 2/{:31){:34, 

Y4 == ({:32/{:31){:34 + {:33' Y5 = {:35' 1'6 = (:36' 

Then 

and 
Y1 a 

D4 - D3 =="2 a'Y3 

(Ill. 7) 

The solution of (Ill. 1) and (Ill. 4) is trivial and gives 

g(Yl> Y2 ••. Y6) = (1/yJJg('Y2 •.• Y6) 

h(Yl>'Y2 ••• Y6) = h(Y2 '" 1'6) 

The remaining four equations take a simple form 
after a change of dependent variables from g to ep: 

g == [ep + 2(Y3 - 'Y4)]h. (Ill. 8) 

Then the equations are 
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2(Y2 _il_ + Y3 _0_ + Y4 _o_)[tJ - ¢ _o_[tJ = 0 
\' oY2 oY3 oy 4 OY3 

and 

---h-1:...-0 o [¢] - 0 [rhJ 
oY4 h oY3 h - . 

(III. 9) 
(III. 10) 

(III. 11) 
(III. 12) 

Two cases arise according to whether o¢/oY3 is zero 
or not. 

Case I: o¢/oY3 ~ 0: In this case h can be elimina­
ted via (III. 11). Then (III. 12) becomes 

o2¢(o¢)2 o¢ o¢ 02¢ (o¢)2 o2¢ 
oy~ oY3 - 2 oY4 oY3 oY4 0Y3 + oY4 ay~ = O. 

(III. 13) 

After we use li in terms of ¢ from (III. 11), in (III. 10) 
we use (III. 9) also and get 

(~+~) ~ (~)2 _ 0 
\OY4 aY3 aY4 aY3 -. 

(III. 14) 

Then (III. 9), (III. 13), and (III. 14) can be solved com­
pletely to give 

which means that 

Case II: o¢/oY3 = 0: In this case 

¢(Y2 ••. Ys) = ¢O (Y5' Ys) 

and if we define 

Eq. (III. 9)-(II1. 12) become 

oli = 0 
aa 2 

and 
oli = h ali . 
015 4 015 3 

Then 

li(Y2 ... Ys) = h(a3, 15 4, Y5YS) 
and 

g(Y2 ... Ys) = (¢O + 2Y3 - 2Y4)li 

= 2c5 2 (¢o + 63 - c5 4 )h. 

(III. 15b) 

(III. 16a) 

(III. 16b) 

(III. 17a) 

(III.17b) 

Some solutions can be obtained in this case by trial 
and error, e.g., 

* Supported in part by the U.S. AtomiC Energy Commission under 
Contract No.AT-(30-1)-3829. 

1 D.G.Currie,Phys.Rev.142,817 (1966). 
2 D. G. Currie and T. F. Jordan, Phys. Rev. Letters 16,1210 (1966). 
3 R. N. Hill, J. Math. Phys. 8, 201 (1967). 

J. Math. Phys., Vol. 13, No.6, June 1972 

(III. 18) 

One can try to get general solutions by expanding h 
in a power series, 

(III. 19) 

Then, substituting in (III. 16b), one gets the following 
recursion relation for aj (prime denotes 0/(63 ): 

n 

.E ap~_j = (n + 1)an +1 • (III. 20) 
J~O 

Once ao is specified, all other aj can be obtained in 
terms of it via (111.20). However, summing the series 
(or knowing if it converges) is yet another problem. 

If we assume ao = eOs and use all. 20), it turn!,! out 
that e-osh depends only on 64 e 0 3. Using this one can 
integrate (III. 16b). The solution is given by the im­
plicit equation 

(III. 21) 

where the integration constant c depends only on Y 5 

and Ys' 

IV. CONCLUSIONS AND DISCUSSION 

We have two classes of solutions. The first is 
(III. 15b), (III. 15c). Now Y3 is the variable which 
carries time dependence. From (111.15) it is clear 
that the position function (11.4) is linear in Y3' There­
fore it is linear in time. Hence the second time deri­
vative of the position, the acceleration, is zero. Thus 
this set of solutions describes only free particle 
motion. 

In the second case we know two sets of solutions, 
(III. 18) and (III. 21). For (III. 18) the pOSition (11.3) 
looks quadratic in 15 3 (which carries time dependence), 
but due to cancellations it is really linear in time so 
that again we have only free particle motion. 

The solution (III. 21) gives nonzero acceleration. But 
as t ~ ± 00 (Le., 15 3 ~ ± 00) 

h~t 
t .... oo 

~ 0 or I tin, n ~ 1. 
t~- 00 

Hence the position function goes quadratically with 
time as t ~ + 00 and thus does not reduce to free 
motion asymptotically. As t ---7 - 00 the position could 
behave either as a free-particle position or as I tin, 
n ~ 2. The latter is undesirable. 

Thus of the two possible subcases of the special 
case when! + g = 0, one is completely solved. These 
solutions describe only freely moving particles. In 
the second subcase we have obtained only two solu­
tions. These either describe free-particle motion or 
do not satisfy the asymptotic condition. 

It seems possible that even for the special case 
! + g = 0 there would be some solutions which are 
completely physical. 

4 D. G. Currie and T. F. Jordan, Phys. Rev. 167, 1178 (1968). 
5 D. G. Currie and T. F. Jordan, in Lectures in Theoretical Physics. 

Vol. XA (Proceedings of the Tenth Boulder Summer Institute for 
Theoretical Physics), edited by A. O. Barut and W. E. Brittin 
(Gordon and Breach, New York, 1968), p. 91. 
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7 D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod. Phys. 

35,350 (1963). 
8 D. G. Currie, J. Math. Phys. 4, 1470 (1963). 
9 T. F. Jordan, Phys. Rev. 166, 1308 (1968). 
10 Instead of expanding in terms of x and v(n) in (II. 4) one could ex­

pand in terms of i = (v<1) x V(2»)(V(1l x V(2)'x)-1, y(l) = 

(V(2) X x)(v(ll X v(2)'xt1 and f(2) = (x X V(l»)(v(ll x v(2)·xt1. 
Then we would have 

y = X(l) + FV(ll + Gf(2) + Hi. 

These F, G, and H are linear combinations ofj,g, and h with coef­
ficients which depend on the 0' i' 
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Solution of the SchrodingerEquation* 
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Department oj Physics, C. W. Post College, Greenvale, New York 11548 
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Scattering by a short-range potential is described by the wavefunction l/J having the asymptotic form 
l/J --> e ik ' r + 5'e i kr, r --> r:IJ, where 5' has the series representation 5' = j(k, ki)/r + g(k, kij/r2 + .... When 
only the first term in this series is taken into account, the requirement that the particle current be conserved 
leads to the optical theorem. By taking into account all of the remaining terms, we obtain a sequence of iden­
tities involving the coefficients j,g, .. '. These identities are formally analogous to the optical theorem, which 
is seen to correspond to the first identity in the sequence. 

1. INTRODUCTION 

Scattering by a short-range potential is described by 
the wavefunction 1/1 having the asymptotic form 

1/1 --7e ik•r + g:e ikr , 

where 

r--700, 

g: :::; f(k, ki)r- I + g(k, kr)r-2 + 0 (r -3). 

(1. 1) 

(1. 2) 

Although the scattering amplitude f(k, kr) is the only 
coefficient in the expansion of g: with physical signi­
ficance,1 neglect of the higher-order terms may not 
always be justified. Such a situation arises, for ex­
ample, in the analysis of the regularization tlZ '= Tr 
[exp(- (3H) - exp(- (3HO)] of the divergent partition 
function Tr exp(- (3H). 

In particular, the continuum contribution to t:>.Z is 
given by2 

lim (27T)-3 J dk e-BEk(2k)-1 § o(r) da C, 
r-+oo 

where Ek = (fi2/2m)k2 and 1/10 = e ik.r ; a(r) denotes 
the surface of a sphere of radius r centered at the 
origin, and the dot and prime denote differentiation 
with respect to k and r, respectively. Since the area 
of a(r) increases as r2, the asymptotic expansion of 
C must be correct through terms of order r -2. Such 
an expansion is clearly not obtained if only the first 
term on the right-hand side of (1.2) is used. 

When only the first term in the expansion of g: is 
taken into account, the requirement that the particle 
current be conserved leads to the optical theorem 3 

J drl f(k,kr)12 = (47T/k) Imf(k,k), (1. 3) 

the symbol I di denoting integration over all direc­
tions i. The purpose of this paper is to determine 
the consequences of particle current conservation 
when account is taken of the remaining terms in the 
expansion of g:. 

The analysis is confined to the system consisting of 
a nonrelativistic, spinless particle of mass m moving 
in a short- range potential V(r). There is no pretense 

of mathematical rigor. In Sec. 2, the fundamental 
identity (2. 8) involving the surface integrals X and 
X5 is derived. Asymptotic expansions for XS and X 
are obtained in Secs. 3 and 4, respectively. These are 
used in Sec. 5 to arrive at the identities4 (5.8) and 
(5.9) which constitute the consequences referred to 
at the end of the preceding paragraph. 

2. THE FUNDAMENTAL IDENTITY 

The wavefunction 1/1 = 1f;(k, r) having the asymptotic 
form given by (1. 1) and (1.2) is a solution of the 
time- independent Schri:idinger equation 

[(- fi2/2m)('\7 2 + k2) + V(r)]1/I = O. (2.1) 

Since the potential V(r) is real, it follows from Eq. 
(2. 1) that the quantity 

J'= (1/I*V1f;) - c. c. (2.2) 

satisfies the condition 

VoJ = O. (2.3) 

Integrating both sides of Eq. (2. 3) over the volume 
T(R), with T(R) a sphere of radius R centered on the 
origin r = 0, and then using the divergence theorem, 
one obtains 

(2.4) 

where a(R) denotes the surface of T(R). 

Let 1/1 be written in the form 1/1 = 1/10 + 1/Is, with 1/10 = 
exp(ikor) denoting the free-particle wavefunction and 
1/15 = 1f;s(k, r) denoting the scattered wave part of 1f;. 
Substitution of this decomposition of 1f; into Eq. (2. 2) 
then yields for the integrand of Eq. (2.4) the expres­
sion 

ioJ = ioJo+ W + Ws, (2.5) 

where JO is the free-particle counterpart of J and 
where 

W'= [1/Io*(~~s)-1/Is(a~;*)J - c.c., (2.6) 

J. Math. Phys., Vol. 13, No.6, June 1972 
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Scattering by a short-range potential is described by the wavefunction l/J having the asymptotic form 
l/J --> e ik ' r + 5'e i kr, r --> r:IJ, where 5' has the series representation 5' = j(k, ki)/r + g(k, kij/r2 + .... When 
only the first term in this series is taken into account, the requirement that the particle current be conserved 
leads to the optical theorem. By taking into account all of the remaining terms, we obtain a sequence of iden­
tities involving the coefficients j,g, .. '. These identities are formally analogous to the optical theorem, which 
is seen to correspond to the first identity in the sequence. 

1. INTRODUCTION 

Scattering by a short-range potential is described by 
the wavefunction 1/1 having the asymptotic form 

1/1 --7e ik•r + g:e ikr , 

where 

r--700, 

g: :::; f(k, ki)r- I + g(k, kr)r-2 + 0 (r -3). 

(1. 1) 

(1. 2) 

Although the scattering amplitude f(k, kr) is the only 
coefficient in the expansion of g: with physical signi­
ficance,1 neglect of the higher-order terms may not 
always be justified. Such a situation arises, for ex­
ample, in the analysis of the regularization tlZ '= Tr 
[exp(- (3H) - exp(- (3HO)] of the divergent partition 
function Tr exp(- (3H). 

In particular, the continuum contribution to t:>.Z is 
given by2 

lim (27T)-3 J dk e-BEk(2k)-1 § o(r) da C, 
r-+oo 

where Ek = (fi2/2m)k2 and 1/10 = e ik.r ; a(r) denotes 
the surface of a sphere of radius r centered at the 
origin, and the dot and prime denote differentiation 
with respect to k and r, respectively. Since the area 
of a(r) increases as r2, the asymptotic expansion of 
C must be correct through terms of order r -2. Such 
an expansion is clearly not obtained if only the first 
term on the right-hand side of (1.2) is used. 

When only the first term in the expansion of g: is 
taken into account, the requirement that the particle 
current be conserved leads to the optical theorem 3 

J drl f(k,kr)12 = (47T/k) Imf(k,k), (1. 3) 

the symbol I di denoting integration over all direc­
tions i. The purpose of this paper is to determine 
the consequences of particle current conservation 
when account is taken of the remaining terms in the 
expansion of g:. 

The analysis is confined to the system consisting of 
a nonrelativistic, spinless particle of mass m moving 
in a short- range potential V(r). There is no pretense 

of mathematical rigor. In Sec. 2, the fundamental 
identity (2. 8) involving the surface integrals X and 
X5 is derived. Asymptotic expansions for XS and X 
are obtained in Secs. 3 and 4, respectively. These are 
used in Sec. 5 to arrive at the identities4 (5.8) and 
(5.9) which constitute the consequences referred to 
at the end of the preceding paragraph. 

2. THE FUNDAMENTAL IDENTITY 

The wavefunction 1/1 = 1f;(k, r) having the asymptotic 
form given by (1. 1) and (1.2) is a solution of the 
time- independent Schri:idinger equation 

[(- fi2/2m)('\7 2 + k2) + V(r)]1/I = O. (2.1) 

Since the potential V(r) is real, it follows from Eq. 
(2. 1) that the quantity 

J'= (1/I*V1f;) - c. c. (2.2) 

satisfies the condition 

VoJ = O. (2.3) 

Integrating both sides of Eq. (2. 3) over the volume 
T(R), with T(R) a sphere of radius R centered on the 
origin r = 0, and then using the divergence theorem, 
one obtains 

(2.4) 

where a(R) denotes the surface of T(R). 

Let 1/1 be written in the form 1/1 = 1/10 + 1/Is, with 1/10 = 
exp(ikor) denoting the free-particle wavefunction and 
1/15 = 1f;s(k, r) denoting the scattered wave part of 1f;. 
Substitution of this decomposition of 1f; into Eq. (2. 2) 
then yields for the integrand of Eq. (2.4) the expres­
sion 

ioJ = ioJo+ W + Ws, (2.5) 

where JO is the free-particle counterpart of J and 
where 

W'= [1/Io*(~~s)-1/Is(a~;*)J - c.c., (2.6) 
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(2.7) 

Since Eq. (2.4) is valid for JO as well as for J, it fol­
lows from Eq. (2.5) that 

fo(r) da(W + ws) = X + XS = O. (2.8) 

(It should be noted that this equation is valid for all 
values of r, and is therefore an identity in r.) 

3. ASYMPTOTIC FORM OF XS 

The quantity 5' defined by (1. 1) is assumed to have 
the series representation 

co 

5' - ~ f r-(n+1) 
- Un' 

n=O 
(3.1) 

with In = !,.(k, ki), and with 10 = I and 11 = g. Using 
Eq. (3.1) and the relation 5 

one can easily show that 

al/l s 
-7 5' e ikr ar 1 , 

where 

5'1 = ik5' + a5' 
ar 

00 
- ~ 'V r-(n+1) 
-Urn' 

n=O 

'Yn = ikln -nln-1' 

(3.2) 

(3.3) 

(3.4a) 

(3.4b) 

(3.4c) 

Substituting (3.2) and (3.3) into Eq. (2.7), and then 
using Eqs. (3. 1) and (3. 4b), we find that ws has the 
asymptotic form 

Ws -75'2 - c.c., 
where 

co 

5'2 = 5'*5'1 = L; cnr-(n+2) , 
n"O 

n 

cn = L; I/'Yn-j" 
j~ 

The asymptotic form of the surface integral 

XS = f daWs 
otr) 

is therefore given by 

where 
- J ~ *) f3 n = dr(cn - cn • 

4. ASYMPTOTIC FORM OF X 

(3.5) 

(3. 6a) 

(3.6b) 

(3.7a) 

(3.7b) 

The asymptotic form of W, obtained by substituting 
(3.2) and (3.3) into Eq. (2. 6), is 

W -7 5' 3 e i kr(l -Il) - c. C., 

00 

5'3= 5'1 +ikJ.l5' = 6 an r -(n+l), 
n=O 

an = ik(1 + Jl )In - nln-l> 

(4.1) 

(4.2a) 

(4.2b) 

where J.l = Ii·y and where Eqs.(3.1) and (3.4) have 
been used. Introducing the usual spherical polar 
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coordinates, with Ii as polar axis, we have from (4.1) 
and Eq. (2. 8) that 

x = fo(r) daW = r 2 J;1f d¢ .C dJ.l W 

-7 J021f d¢e ikr r2J - c.c., 

where 

I = J 1 dJ.l 5' e- ikrll . 
-1 3 

(4.3a) 

(4.3b) 

(4. 3c) 

Substitution of Eq. (4. 2a) into (4. 3c) and interchange 
of the order of summation and integration then yields 
for J the series representation 

where the functional J is defined by 

J[w] = l~ d/.W-ikrllw. 

(4.4) 

(4.5) 

Integrating by parts N times, with N an arbitrary 
positive integer, we obtain for J the asymptotic 
series6 

N 

J[wl = L; Pn[wl(ikrtn + (ikr)-N J[w tN)], (4.6a) 
n=l 

where the functional Pn is defined by 

1

-1 
P [wl = e-ikrJl w(n-1) 

n l' 
(4.6b) 

and where w (m) denotes the mth derivative of w with 
respect to J.l. 

Consider now the decomposition 

J = S N + RN , N ? 2, 

of the series (4.4), with 
N-2 

SN = L; J[anl r\.n+1) 
n=O 

(4.7a) 

(4.7b) 

and with R N denoting the sum of the remaining terms 
in the series for J. From Eq. (4. 6a), it follows that 
R N is of order r- (N + 1). It also follows from Eq. (4. 6a) 
that in order to obtain S N correct to order y-N, the 
coefficient J[anl in Eq. (4. 7b) must be correct to 
order r- (N-n-1). We therefore make the substitution 

N-n-1 
J[an ] = L; Pj[alll (ikr)-j + o (rN+n) 

j=1 

in Eq. (4. 7b). This leads, after some algebra, to the 
relation 

N-2 
SN = L; qn r-(n+2)+ O(r-N- 1), 

n=O 
where 

n 
qn = 6 (ik)-(n- j +l) Pn_j+l[aj ]. 

j=O 

(4.8a) 

(4. Bb) 

The asymptotic series for r2 J, correct to order r N 

for any N ? 0, is therefore given by7 
N 

r 2J = 6 qnr-n, 
n=O 

and, in view of (4. 3b), the corresponding series for X 
is 

N 

X ---7 6 (un - u=) r-n , (4.9a) 
n=O 

(4.9b) 



                                                                                                                                    

IDENTITIES INVOLVING COEFFICIENTS 873 

5. IDENTITIES INVOLVING THE COEFFICIENTS 1n 

Since the relation X + XS = ° is satisfied identically 
for all values of r [see the remark at the end of Sec. 
2],. it follows from (3.7a) and (4. 9a) that the equation 

(5. 1) 

holds for all integers n from ° to N. Since N is arbi­
trary, however, Eq. (5. 1) must hold for every non­
negative integer n. 

Substituting Eqs. (4. Bb) and (4.6b) into Eq. (4. 9b), we 
see that un can be written in the form 

n 
un = 6 (i!?)-(n-j+1)j2'1f dcpeikr[e-ikrllaj(n-j)]n. 

j=O 0 

In view of the fact that the integrand is independent 
of cp, it follows that 

(5.2a) 

where 
n 

an =6 (ik)-(n-j+1) aj(n-j) (5.2b) 
1=0 

and where an (± 1) = an 111= ±1' Substitution of Eq~(5. 2a) 
into Eq. (5. 1) then yields 

f3 n + 21T[a:(I)- an (1)] + 21T[e2ikran(-I)- c.c.] = 0. 

Since this relation must hold for every value of r, we 
conclude that 

f3n = 21T[an(l) - c.c.] = 41Ti Iman (1) 

and that 

a n (- 1) = 0. 

(5.3) 

(5.4) 

Equations (5.3) and (5.4) are the essential results of 
this paper. Our final task is to express them directly 
in terms of the coefficients In' 

From Eqs. (3. 6b) and (3. 4c), we find after performing 
some elementary manipulations on the summations 
that the integrand of Eq. (3. 7b) is given by 

n n 

en - c: = 2ik 6 I/In-j + ~ (n - 2j + 1)/,,~j:0-1' (5.5) 
J=O J=1 

* Work supported in part by the Research Committee of C.W. Post 
College. 

1 M. Lieber (private communication). 
2 S. Servadio, Phys.Rev. A 4,1256 (1971). 
3 See, for example, L. Schiff,Quantum Mechanics, 3rd Edition 

(McGraw-Hill, New York, 1968), Chap. 5. 
4 Equations (5.8) and (5.9) are identities in the sense that the opti­

cal theorem is an identity in the scattering amplitude. 

To express the quantity an in terms of the In' it 
should first be noted that the coefficient an defined 
by Eq. (4. 2b) is, in addition to being explicitly depen­
dent on J.1., implicitly dependent on it through the fac­
tors In and I n- 1. With this in mind, the relation 

m ;0 1, 

(5.6) 

may easily be established by mathematical induction 
on the integer m. Substituting Eq. (5. 6) into Eq. (5. 2b) 
and juggling the summations, we obtain 

n n 

an = (1 + J.1.) ~O (ik)-j In<.!.} - ~1 (ik)-1(n - 2j + 1)1n<.!j-l). 
J- J- (5.7) 

It then follows from Eqs. (3. 7b), (5.5), and (5.7) that 
Eqs. (5. 3) and (5.4) can be written as 

n 

2ik ~ {J di :0*lrrj - (41T/k) Im[ (iktj/"Vj (I)]) 
J=O 

n 

+ ~ (n - 2j + 1){j di 1n~1 :0-1 
J=1 

+ 41Ti Im[(ik)-j/J~?) (I)]} = 0 (5.8) 

and 
n 
6 (n - 2j + l)(ik)-11n~r1)(- 1) = 0, (5.9) 
r1 

respectively. 

When n = 0, Eq. (5. 3) reduces to 

2ik J di 1~/0 = 81Ti Im/o(I), 

which is equivalentS to the optical theorem [see Eq. 
(1. 3)], and Eq. (5.4) is satisfied identically since 
a o = (1 + J.1.)/0 • Forn = I,Eq. (5.4) is again satisfied 
identically since a 1 is also proportional to (1 + J.1.), 
and Eq. (5. 8) becomes, after some rearrangement of 
terms and the substitution of I for 10 and g for / 1 , 

J di (f*g + Ig*) 

= (41T/k) Img(l) - (41T/k2) Re/,(I). (5. 10) 

5 Hereafter, the notation "x --. y" will be understood to mean 
"x --) y as r --) oc:;" • 

6 We are using the convention that a finite sum of the form 6.=~ 
is zero when m > N. 

7 Note that N is being replaced by N + 2, so that the condition 
N <> 2 [see Eq. (4. 7a)] becomes the one just specified. 

8 When 11. = 1 (- 1), i is parallel (antiparallel) to Ii. ThUS, we have 
1(1) '" I 1~=1 = I(k,k) and/{-l) =/(k, - k). 
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All tensors of contravariant valency two, which are divergence free on one index and which are concomitants 
of the metric tensor, together with its first two derivatives, are constructed in the four-dimensional case. 
The Einstein and metric tensors are the only possibilities. 

1. INTRODUCTION 

In the general theory of relativity the Einstein field 
equations in vacuo are frequently introduced by solv­
ing the following problem: To construct all tensors of 
valency two, the components Ahk of which are: 

(a) concomitants of the metric tensor gij and its 
first two derivatives, i.e., 1 

Ahk - Ahk(g . g g ). 
- ij' ij,r ij,rs , 

(b) divergence free, i.e., 2 

Ahk == O' I k , 

(c) symmetric, i.e., 

Ahk == Akh; 

(d) linear in the second derivatives of gij" 

The field equations in vacuo are then assumed to 
take the form 

Ahk == O. 

(1. 1) 

(1. 2) 

(1. 3) 

(1. 4) 

Cartan3 and Weyl and Vermeil4 have shown that the 
only Ahk with the properties (a)-(d) is 

Ahk == aGhk + bg kk, (1. 5) 

where a, b are constants and G hk is the Einstein 
tensor,5 in which case (1. 4) gives rise to the usual 
Einstein field equations with the cosmological term. 

Recently the problem of constructing explicitly all 
Ahk which satisfy (a)-(c), without insisting on the 
severe restriction (d), was solved, 6 the general 
solution being 

i ••• i 
where a (jJ)' a are constants and {j/-"j~ is the general-
ized Kronecker delta. By virtue of ' the fact that if 
n < N, then 

(1. 7) 

it is easily seen that, for n == 4, (1. 6) reduces exactly 
to (1. 5). Consequently (a)-(c) and the assumption of 
the four-dimensionality of space implies the linearity 
condition {d), in which case, in general relativity, the 
apparently crucial assumption (d) is superfluous. 

It is the purpose of this note to show that in the jour­
dimensional case the symmetry condition (c) is also 
superfluous, in the sense that it is a consequence of 
(1. 1) and (1. 2). More exactly we shall prove the 
following. 

Theorem: If Ahk s?_tisfies (1. 1) and (1. 2), then 
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Ahk == aGhk + bghk 

is an inevitable consequence for n == 4. 

We should stress that no assumptions are made with 
respect to the first index of Ahk (for instance, we do 
not assume that Ahk I h = 0). 

2. PROOF OF THE THEOREM 

The purpose of this section is to construct, for n = 4, 
all tensors Ahk which satisfy (1. 1) and (1. 2), without 
insisting that (1. 3) be satisfied. 

By virtue of the fact that Ahk is a tensor satisfying 
(1. 1) the quantities 

Ahk;rs,tu == aAhk (2: 1) 
agrs,tu 

are the components of a tensor of contravariant 
valency six with the following symmetry properties, 8 

Ahk;rs,tu == Ahk;sr,tu == Ahk;rs,ut, 

Ahk;rs,tu + Ahk,ru,st + Ahk;rt,us = 0, 

from which it can be shown that 

Ahk;rs, tu == Ahk;tu, rs. 

(2.2) 

(2.3) 

Furthermore, it is easily seen that (1. 2) is equivalent 
to the condition 

Ahk;rs, tu + Ahu;rs,kt + Ah t ;rs,uk == O. (2.4) 

In view of (2.3), Ahk;rs,tu satisfies a cyclic identity 
similar to (2.4) on the indices krs. 

We introduce the tensor Ahk;'rs,tu;ab,cd defined by 

aAhk;rs ,tu 
A hk;rs,tu;ab , cd. == -".--­

agab,cd 
and, since 

Ahk;rs,tu;ab,cd = Ahk;ab,cd;rs,tu, 

(2. 5) 

then Ahk;rs, tu;ab,cd will have the same symmetry and 
cyclic properties in the indices hkabcd as it has in 
hkrstu, viz., (2. 2), (2.3), and (2.4). In Appendix A 
we prove that because of these properties 

Ahk;rs,tu;ab,cd == 0 (2.6) 

when n == 4, the essence of the argument being that 
some of the twelve indices of Ahk;rs,tu;ab,cd must 
coincide in a four-dimensional space. By virtue of 
(2,5), (2.6) implies that 

However, since Ahk;rs,tu is a tensor, it must be inde­
pendentS of gab,c' i. e., 

(2.7) 
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where Qhk.rs.tu is a tensor satisfying (2.2)-(2.4) and 
is a concomitant of gab only. 

From (2. 7) and (2. 1) we thus see that 

AM = Qhk;rs.tug + ()hk/~ • a ) rs,tu V5abt b ab,c' 

which, as usual, 9 by (2. 2) and (2.3), can be expressed 
in the form 

(2.8) 

where {3hk is a tensor and a concomitant of gab alone. 
Consequently, the problem of finding the most general 
Ahk satisfying (1. 1) and (1. 2), in a four-dimensional 
space, reduces to the problem of finding (3hk and 
Q hk ;rs, tu , which has been solved elsewhere. In fact 
it can be shown that g 

(2.9) 

where b is a constant, while any tensor of contravar­
iant valency six which is a concomitant of gab alone 
must be of the formlO 

Qhk;rs,tu = ahk;rs.tu + bhk;rs,tu (2.10) 

with 

ahk;rs,tu:::= alghkgrSgtu + azf{hkgrtgsu + a.",ghkgrugts 

and 

+ a¥Jhrgksgtu + asf5hrg ktgsu + aeJ5hrg kugts 

+ a7ghsgkrgtu + asghsgktgru + agghsgkugtr 

+ al~htgkrgsu + allghtgksgrn 

+ a12ghtgkugrs + a1.",ghugkrgts 

+ al4ghugksgrt + a 15 ghug ktgrS, (2.11) 

bhk;rs,tu = (blghkErstu + b 2g hrEk stu + b
3

g hsEkrtu 

+ b 4ghtEkrsu + b sghuEkrts + b 6gkrEhstu 

+ b7gksEkrtu + bsgktEkrsu + bggkuEhrts 

+ blogrsEhktu + bllgrtEhkSU + b12gruEhkst 

+ b l3 g stEhkru + bl4gsuEhkrt 

+ blsgtuEhkrs)/{i, (2. 12) 

where the a ~, b 11' Il = 1, ... , 15, are constants, Eijkl 

is the Levi-Civita symbol, andg = I det(gi) I. 
If we now impose (2.2)-(2.4) on Q hk;rs,tu and make 
use of Appendix B, we find 

as = a6 = as = a g = a lO = all 

= a 13 = a 14 = Q (say), 

a 2 = a 3 = a 4 = a 7 == a 12 = a lS == - 2Q, a l = 4Q. 
(2.13) 

We substitute (2.4)-(2.13) in (2.8) and observe that 

bhk;rs,tuRtrsu = 0, 

to find 

Ahk = _ 8QGhk + bghk, 

which is the desired result, since Q is a constant. 

Finally we remark that in general (1. 3) will not be 
a consequence of (1.1) and (1. 2), Ehkl..[jj and 

EhkrstuR abR Iii being counter examples in rs abtu 
spaces of dimension two and six, respectively. 
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APPENDIX A 

The purpose of this appendix is to show that, for 
n = 4, 

Ahk ;rs, tu;ab,cd = O. 

We shall adopt the following notation, 

Ahk;rs,tu;ab,cd == (hk; rs, tu; ab, cd), 

and we shall suspend the use of the summation con­
vention in this appendix. 

If five or more of the indices rstuabcd are equal then, 
by virtue of (2.2), (hk; rs, tU;,ab, cd) = o. 
If four of the indices rstuabcd are equal, then we also 
find (hk; rs, tu; ab, cd) = 0 by (2.2) and (2.4). 

If three of the indices rstuabcd are equal, the only 
quantities which are not trivially zero from (2. 2) 
are equivalent to (ba; ii, jk; jj, ik), (ba; ii, jj; ij, kk), 
(ba; ii,jj; ij, kl), (ba; ii,jj; ik,jZ), (ba; ii,jk;jj, iZ), 
(ba; ii, jj; il, kk) and (ba; ii, kl; ik, jj), where i, j, k, l are 
distinct indices selected from 1, 2, 3, 4 and b, a are 
any of i,j, k, l. Clearly, by (2.4), if a = i or a = j, 
then all these quantities vanish. By setting a = k 
and a = l in turn, and using (2.2) and (2.4), we find 
that the remaining quantities also vanish in this case. 

Finally, if two of the indices rstuabcd are equal, then 
it is not difficult to Show, from (2.2). that (bi; ij, kl; 
ij, kl) and (bi; ij, kl; ik,jl) are the only independent 
quantities which are not trivially zero. The first of 
these is easily dealt with, but the second requires a 
little more analysis, which we now give in order to 
illustrate the technique. By repeated use of (2.4) 
we see that 

(bi; ij, kl; ik, jll = - i(bj; ii, kl; ik, jl) 

= + ~(bl; ii, kl:ik,jj) 

= - ~(bk; ii, kl; il,jj) 

= Hbl: ii, kk; il,jj) 

APPENDIXB 

= - ~ (bi; ii, kk; ll,jj) 

= o. 

The result which is required in deriving (2.13) is 
the following: If 
Q ]ghkgrsgtu + Q 2g hkg rtgsu + Q3ghkgrugts 

+ Q4 gkrgksgtu + Q5g hrgktgSU + Q6ghrgkugts 

+ Q7ghSgkrgtu + Q8ghSgktgru + Qgghsgkugtr 

+ Qloghtgkrgsu + QIlghtgksgru + Ci 12 ghtgkugrS 

+ Ql3ghugkrgts + Q14ghugksgrt + Qlsghugktgrs 

+ (f31ghkcstu + {32ghrEkstu + {33ghsEkrtu 
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+ f34ghtEkrsu + f3sghuckrts + f36gkrEhstu 

+ f37gksEhrtu + f3sgktEhrsu + f39gkuEhrts 

+ f3l0grsEhktu + f311grtEkksu + f3l2gruckkst 

+ f313gstEhkru + f314gsuEhkrt 

+ f31SgtuEhkrs)/vg == 0, 

where a~, f3~, Jl == 1, .. " 15, are constants, then 
a ~ == O. This is easily seen as follows. Consider 
three orthogonal vectors Xi' Yj, Zi each of nonzero 

1 Unless otherwise specified, Latin indices run from 1 to n. A 
comma denotes partial differentiation. 

(Bl) 

2 The summation convention is used throughout. The vertical bar 
denotes covariant differentiation. 

3 E. Carlan, J. Math. Pure Appl. 1, 141 (1922). 
4 H. Weyl, SPace-Time-Matter (Dover, New York, 1922), 4th ed., 

pp. 315 ff.; H. Vermeil, Nachr. Ges. Wiss. GOttingen, 334 (1917). 
5 If X' is any contravariant vector field, then we define the Rie­

mann curvature tensor Rh i k , the Ricci tensor R h' the curvature 
scalar R, and the Einstein Jtensor G

ij 
by J 

Xiljk-X'jkJ=Rh'jk Xh, Rkj=Rkij' 

length. If we multiply (Bl) by Xh.x,.y"~ZtZu, then 
clearly a 1 == O. The remaining all vanish in a similar 
way. 

We note that in general we cannot conclude from 
(Bl) that f3

1l 
== 0, in view of the identity 

gaiEjkhl + galEijkk + gakElijk + gli<Ehlij + gahkk1i == 0 

which follows' from 

R 0= gkjRhj , Gij 0= Rij - M-ijR, 

respectively. 
6 D. Lovelock, J. Math. Phys.12, 498 (1971). 
7 For applications of this result see D. Lovelock, Atti Ac.cad. Naz. 

Lincei Rend. 42,187 (1967); Proc. Cambridge Phil. Soc. 68, 345 
(1970); Matrix Tensor Quart. 21,84 (1971). 

8 H. Rund, Abhandl. Math. Sem. Univ. Hamburg 29, 243 (1966); J. C. du 
PleSSis, Tensor 20,347 (1969). 

9 D. Lovelock, Arch. Rat!. Mech. Anal. 33, 54 (1969). 
10 M. A. McKiernan, "Tensor Concomitants of the Metric Tensor ," 

Demonstratio Mathematica (to be published). 
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Weyl's method for the construction of irreducible tensors of the unitary group is used to construct a basis for 
any irreducible representation of U(k) or GL(k) in terms of Bose creation operators. A simple way is indicated 
to select a complete but not over complete basis from the functions obtained. The basis obtained can be useful 
in nuclear or molecular calculations, as well as in some mathematical problems. 

1. INTRODUCTION 

The orthogonal Gel'fand basis l for the IR (irreducible 
representation) of U(k) is well known and has found a 
wide range of applications.1-3 Yet earlier a nonortho­
gonal basiS of irreducible tensors was used. These 
tensors are obtained by applying Young symmetri­
zers4 to the indices of reducible tensors. This basis 
was introduced by Weyl5 using essentially arguments 
of the permutation group. We shall describe this 
basis in terms of Bose creation operators in the next 
chapter and we will call it for short the Weyl basis. 
Although Weyl used this basis to obtain many results, 5 
the basis itself has never been investigated in similar 
detail as the Gel 'fand basis. Tire first problem arises 
from the fact that, the basis is over complete; that is, 
the number of states obtained is larger than the dimen­
sion of the IR. 
In Sec. 3 we shall therefore eliminate the redundant 
states and give a method to obtain a complete but not 
over complete basis, which we will call the reduced 
Weyl basis. In the following chapter we show that we 
could proceed similarly if we wish to use Fermi 
operators, which are important for many applications. 
Finally we point out some possible applications in 
molecular and nuclear physics, as well as in mathe­
matical problems. 

2. THE WEYL BASIS IN TERMS OF BOSE 
CREATION OPERATORS 

We assume to have a set of Bose operators l1l, 
i = 1, ... ,k, S = 1, ... ,k with the standard commu­
tation relations 
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[1Jf,1Jj] = [(1J i s)t(1JJ)t] == 0 
and 

(2. la) 

(2.1b) 

We then know2,3 that any product of N such operators 
forms a basis vector for the IR [N] of U (k x k). We 
may pass to the subgroup 

'U(k) x U(k) C U(k x k), (2.2) 

where 'U(k) is acting on the upper and U(k) on the 
lower indices alone. The IR in both groups have to 
be identical. We may have an arbitrary basis vector 
of a certain IR of U(k) even if we chose the vector to 
be of highest weight with respect to 'U(k).3 We there­
fore must be able to construct any basis vector of the 
IRI = (fl"" ,!k] of U(k) as a homogeneous poly­
nomial in which each term contains 1 1 operators 1Jr, 
12 operators 1J~, etc. and finally Ik operators 1J~. Here 
i is an arbitrary index that for each operator 1J~ may 
take any value from 1 to k. Certain restrictions will 
appear later. 

If we now take the construction prescription4 for the 
Weyl basis, we immediately obtain such polynomials. 
We draw the Young diagram and fill in the creation 
operators in such a way that in the first row all upper 
indices are one, in the second two, etc. Thus the 
highest weight structure with respect to U(k) is imme­
diately apparent. The lower index has to be numbered 
and it proves to be convenient to give in turn an upper 
index denoting the row it stands in and a lower index 
for the column. Thus a creation operator reads as 

s 
l1i~· 
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tensors are obtained by applying Young symmetri­
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was introduced by Weyl5 using essentially arguments 
of the permutation group. We shall describe this 
basis in terms of Bose creation operators in the next 
chapter and we will call it for short the Weyl basis. 
Although Weyl used this basis to obtain many results, 5 
the basis itself has never been investigated in similar 
detail as the Gel 'fand basis. Tire first problem arises 
from the fact that, the basis is over complete; that is, 
the number of states obtained is larger than the dimen­
sion of the IR. 
In Sec. 3 we shall therefore eliminate the redundant 
states and give a method to obtain a complete but not 
over complete basis, which we will call the reduced 
Weyl basis. In the following chapter we show that we 
could proceed similarly if we wish to use Fermi 
operators, which are important for many applications. 
Finally we point out some possible applications in 
molecular and nuclear physics, as well as in mathe­
matical problems. 

2. THE WEYL BASIS IN TERMS OF BOSE 
CREATION OPERATORS 

We assume to have a set of Bose operators l1l, 
i = 1, ... ,k, S = 1, ... ,k with the standard commu­
tation relations 
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[1Jf,1Jj] = [(1J i s)t(1JJ)t] == 0 
and 

(2. la) 

(2.1b) 

We then know2,3 that any product of N such operators 
forms a basis vector for the IR [N] of U (k x k). We 
may pass to the subgroup 

'U(k) x U(k) C U(k x k), (2.2) 

where 'U(k) is acting on the upper and U(k) on the 
lower indices alone. The IR in both groups have to 
be identical. We may have an arbitrary basis vector 
of a certain IR of U(k) even if we chose the vector to 
be of highest weight with respect to 'U(k).3 We there­
fore must be able to construct any basis vector of the 
IRI = (fl"" ,!k] of U(k) as a homogeneous poly­
nomial in which each term contains 1 1 operators 1Jr, 
12 operators 1J~, etc. and finally Ik operators 1J~. Here 
i is an arbitrary index that for each operator 1J~ may 
take any value from 1 to k. Certain restrictions will 
appear later. 

If we now take the construction prescription4 for the 
Weyl basis, we immediately obtain such polynomials. 
We draw the Young diagram and fill in the creation 
operators in such a way that in the first row all upper 
indices are one, in the second two, etc. Thus the 
highest weight structure with respect to U(k) is imme­
diately apparent. The lower index has to be numbered 
and it proves to be convenient to give in turn an upper 
index denoting the row it stands in and a lower index 
for the column. Thus a creation operator reads as 

s 
l1i~· 
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As an example let us consider the IR f = [421] of 
U(4). 

1 1 1 

I 
1 

I TI· 1 17 i i 17 . 1 17q , 1 
' 3 

2 2 
TI·2 17 ·2 , 1 '2 

(2.3) 

3 
TI·3 , 1 

Here the lower indices i~ are still arbitrary. We now 
apply the Young operator as defined in4 to these in­
dices. Because of the Bose character of the TI the row 
symmetrization is superfluous and we only have to 
anti symmetrize the columns; we may achieve that by 
forming the corresponding determinants, if we omit 
all factors of the symmetrizers and antisymmetrizers. 
We may do this as any normalization of nonorthogonal 
states is meaningless. For Example (2.3) the homo­
geneous polynomial then reads as 

(2.4) 

where the D.. are defined according to the notation of 
Ref. 2 as determinants: 

(2. 5) 

The polynomial (2. 4) must be either a basis vector of 
the IR [421] of U(4) or zero. The latter is obviously 
the case if any two lower indices standing in the same 
column are equal. 

We obtain a basis vector of f if we impose the just 
mentioned condition, because the monomials obviously 
form tensors and the homogeneous polynomials are 
formed according to the standard Weyl procedure. 4 
There cannot arise any loss of generality from put­
ting all upper indices s into the sth row as any other 
ordering would either yield zero (if two equal upper 
indices appear in the same column) or would at most 
differ by a sign caused by the reordering in the de­
terminants. The fact that the basis is complete if we 
choose all possible lower indices follows from the 
construction, but will be independently proved in the 
next chapter. We find that all states constructed in 
the described manner will have a well-defined 
weight,3 which is very important for all applications. 

3. THE REDUCED WEYL BASIS 

Up to this point we essentially gave a reformulation 
of well-known facts in the second quantized picture. 
We now reach the main purpose of this paper; namely 
to formulate and prove a method for selecting a com­
plete, but not over complete set of these states. 

We will achieve this by imposing an ordering condi­
tion on the indices i~ Similar to the conditions exist­
ing for a standard Young tableau. 4 These conditions 
are (as we shall prove in this chapter and the appen­
dix) 

i:z ~ i:z, if m < m' 
and 

i:Z<i:Z'ifs<s'. 

(3. 1a) 

(3.1b) 

We can see that the conditions vary from those for 

standard Young tableau by allowing also the equal 
sign in Eq. (3. 1a). 

We now define a set of numbers at that will uniquely 
characterize our generalized tableau. at indicates 
the number of times a lower index i appears in the 
row s. Conditions (3. 1a) and (3. 1b) immediately show 
that 

(3.2) 

Further restrictions on the a ~ are imposed by Con­
ditions (3.la) and (3. Ib) butwewill not obtain them 
explicitly; rather we define a new set of numbers 

g 

Hs = ~ a$. g . , (3.3) 
1,=s 

Here s ~ g ~ k must hold and we find 

(3.4) 

The numbers Hi again characterize the generalized 
Young tableau uniquely. Further we can explicitly 
formulate Conditions (3. 1a) and (3.1b) as 

H s > HS 1 > Hs-1 g g- g' (3. 5) 

These relations may be checked by comparison with 
(3. 1a) and (3. 1b) if we keep in mind that Hi is just 
the number of TIs with i ~ g in the row s of the tableau 
defined by (3.3): Conditions (3.5) are identical to 
those for a Gel'fand scheme. 2 If we consider that the 
generalized Young tableau and therefore also the 
numbers H; characterize uniquely our selected Weyl 
states, we obtain the important result that the number 
of states we selected is equal to the number of 
Gel'fand states and thus to the dimension of the IR of 
U(k) considered. Note though that this by no means 
implies that the selected Weyl states are Gel'fand 
states; such an assumption is false, except for U(2) 
where the states are determined by their weight. 

We mentioned earlier that Weyl states are of definite 
weight. The components of the weight are given by 

iii -1 

Wi = ~ af= ~ Hf- ~ Hi-1' 
s~1 s~1 s~1 

(3.6) 

States of different weight are obviously orthogonal. 

We have already shown that the number of basis states 
in the reduced Weyl basis defined by Eqs. (3. Ia) and 
(3. 1b) are equal to the dimension of the correspond­
ing IR. In order to prove that we have a complete but 
not over complete basis we thus have to show that the 
states selected by Eqs. (3. 1a) and (3. 1b) are indepen­
dent. This is done in the Appendix; the method con­
sists in defining an order for states of equal weight 
and then showing that the leading term 

(3.7) 

of the product of determinants of a certain state does 
not appear in any state that is "lower" according to 
the ordering defined (the author is grateful to P. 
Kramer for suggesting the idea of this proof). This 
fact is sufficient for the independence of the states. 
We have thus shown that the states selected by Con­
ditions (3. Ia) and (3. Ib) form a complete but not over 
complete basis. Note that the proof for completeness 
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does not make use of the knowledge that the general 
set of Weyl states is complete; but only that they be­
long to the IRJ of U(k). 

4. OTHER PROPERTIES OF THE WEYL BASIS 

We shall now proceed to show a few other properties 
of the Weyl basis. First we note that we made at no 
point in Sec. 3 or in the Appendix use of the Hermitian 
properties Eq. (2. 1b) of the creation operators. We 
know6 that if we replace Eq. (2. 1b) by 

(4.1) 

where A is a number depending on the indices s, t, i, j 
we may construct from these operators a Lie algebra 
of GL(k) rather than U(k). The Weyl construction is 
valid for GL (k) and the dimension of finite (nonuni­
tary) IR of GL (k) is equal to the dimension of the cor­
responding IR of U(k). Therefore our prescription 
(3. 1a) and (3. lb) will also select a reduced Weyl 
basis for finite IR of GL (k) that is complete but not 
over complete. In a sense the Weyl basiS seems par­
ticularly interesting in this case as nonorthogonality 
of the basis is unavoidable, and therefore no longer 
constitutes a drawback of the Weyl basis as com­
pared to the Gel'fand basis. 

Going back to the group U(k) we may also ask our­
selves what happens if we consider only states of 
weight 

W = (1,1,1, ••. ,1). (4.2) 

This was done by Moshinsky7 for Gel 'fand states and 
he finds that these "special" Gel 'fand states form a 
basis for a Yamanouchi or orthogonal representation 
of the permutation group S(k). As the Weyl states 
have well-defined weights, we may immediately single 
out the "special" Weyl states. These are a linear 
combination of the "special" Gel'fand states and thus 
also form a baSis to the same IR of S(k). ConSidering 
the way the basis is constructed we can identify it 
with the baSis for the rational (natural) representa­
tion of S (k). 8 Note that also in the derivation of the 
rational representation of S(k), the problem of redu­
cing the baSis occurs and its solution is by no means 
triviaL 

We finally wish to indicate that the whole procedure 
developed in Sec. 3 and in the Appendix may be equ­
ally well carried through if we use Fermi operators2 
(bf}t instead of Bose operators Tlf. The main dif­
ferences that appear in the analysis are the follOwing. 

The IR of U(k) and U(k) are not equal but associate 2; 
therefore we obtain the highest weight state in U(k) if 
we fill the s column of the IR f of U(k) with operators 
(b f)t. It then is adequate to apply first the column 
antisymmetrizers and then the row symmetrizers. As 
the columns are automatically antisymmetric, our 
states are products of permanents. We may then 
closely follow the reasoning for bosons to obtain the 
reduced Weyl baSis. Note that in relations (3. la) and 
(3. Ib) the upper indices of i continue to characterize 
the row and the lower ones the column; thus the lower 
indices will coincide with the upper index of the 
Fermi operator. The proof that the number of states 
in the reduced baSis is correct remains the same; 
while the independence proof of the Appendix may be 
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applied after reflecting the pattern at the diagonal if 
we keep in mind that it does not matter whether the 
permutations considered stem from determinants or 
permanents; only the ordering will have to be done 
according to the reflected pattern. Note that the basis 
in terms of Bose and Fermi operators are not identi­
cal as row symmetrizer and column antisymmetrizer 
are interchanged in the second case, and the two 
operations do not commute. 

5. APPLICATIONS 

The Weyl basiS may be applied in various ways iT: 
calculations of nuclear and molecular phYSics. First, 
it may be a valuable tool to choose physically signifi­
cant trial wavefunctions. This is immediately obvious 
in molecular physics because, if we want to obtain the 
valence bond states, e.g., given in terms of the permu­
tation group in Refs. 9 and lO,in a second quantized 
picture (Fermi operators) these turn out to be Weyl 
states. From this fact we recognize the importance 
of the Weyl basis; but the result has been known for a 
long time. 

We may hope to find similar applications in nuclear 
physics in the framework of cluster and supermulti­
plet considerations. One possibility appears if we 
wish to extend Brink's model.! 1 We make use here of 
the fact that Deenen 12 has found that the second quan­
tized picture is compatible with the elimination of the 
center of mass motion, and gives explicit prescrip­
tions how to proceed. For a more detailed descrip­
tion, especially of the non-a-clusters Deenen consi­
ders' it may be important to include excitations at the 
centers (e.g., to obtain a d-cluster). Yet we might 
still want to consider only orbitally symmetrical 
states at each center. This certainly will be possible 
with the Weyl basis. Similar applications may be 
considered if we are looking for a-like four-particle­
four-hole excitations. Note that both the application 
in molecular physics and the one in Brink's model 
involve nonorthogonal orbitals and thus Weyl states 
of GL(k). 

The physically significant states, we may select in 
such a way, are not lying in general within the re­
duced basis defined in Sec. 3. We will thus in each 
case have to ensure independence of the chosen 
states. Nevertheless, the problem is not very critical 
if we chose only a few states from the basis and 
avoid obvious dependences ariSing from the inter­
change of indices in the determinants or permanents. 

Quite a different type of applications may arise from 
the simpliCity of the Weyl states, which are just pro­
ducts of determinants. For instance, the overlap of 
two states must be an integer if we consider ortho­
gonalorbitals. We may hope that a simple algorithm 
to obtain these integers can be found, and this seems 
even more probable as we know for the case of mole­
cules the Pauling numbers lO that may be easily 
obtained. If we know these overlaps, the matrix ele­
ments of the generators as well as other quantities 
such as representation matrices may be readily ob­
tained. It may then turn out that, in a similar way as 
is well known in molecular physics,lO Weyl states 
also prove to be particularly efficient for computa­
tions in nuclear physics. 

Another more mathematical application of the re­
duced Weyl basis was found by Sharp.13 He points 
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out that this basis is a particularly simple solution 
of the internal labeling problem (labels to distinguish 
different states of the same weight within a basis of 
an IR). Thus he finds this basis to be particularly 
useful to solve the external labeling problem (multi­
plicity labels in the reduction of Kronecker products), 
using Speiser's theorem that connects the two pro­
blems. 

APPENDIX 

We shall proceed to prove the independence of the 
Weyl states selected by Conditions (3.la) and (3.lb) 
in Sec. 3. To do this we first define an appropriate 
ordering of these states. This is achieved by arrang­
ing the numbers af that characterize a state into a 
triangular matrix, where s is the row and i the 
column index: 

aia~a§ ... al 
a~a~ (Al) 

We then inspect the a column by column from top to 
bottom, and we say that a state c characterized by 
numbers C f comes after a state a characterized by 
af if we find for the first at ;c Cf that at > Cf holds. 

The monomial (3.7) 

I I 

I 
I 

I 
I 

I 

I 
I 

t i( . 1; I ! 
( j-l I j i 

I ! 
I 
I 

tJ 
t+V 

FIG. 1. The figure shows a section from a generalized Young 
tableau that characterizes a state from the reduced Weyl basis. 
Only parts of the rows t - u, t, and t + v are shown. 

'* Work supported by the Comision Nacional de Energia Nuclear, 
Mexico. 
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(A2) 

is the leading term of the polynomial a. We now have 
to show that this term does not appear in any poly­
nomial c that comes after a. This will be a sufficient 
condition for the set of polynomials to be independent. 

As polynomials of different weight are orthogonal we 
may concentrate on the ones having equal weights. 
Therefore we have that ai = cl = WI' We assume that 
all cf = at up to a certain cj < aj. This is exactly 
what is implied by the statement that c comes after a. 
We thus have less operators TJJ in the row t of the pat­
tern describing the polynomial c than in the same row 
of the pattern describing the polynomial a. We now 
have to find out whether any term in the column anti­
symmetrizer will yield the monomial Eq. (A2) when 
applied to the pattern characterizing c. 

This will not happen because any permutation, that is 
contained in the column antisymmetrizer, will, when 
increaSing, the power of TJj, simultaneously lower the 
power of some TJf that is equal in the leading term of 
both polynomials. This may be seen by considering a 
part of the pattern characterizing c which is shown in 
Fig. 1. There u, v, 1 are positive integers. The lower 
index j can only appear above to the right or below to 
the left, but never below to the right of the TJj accord­
ing to the relations (3. la) and (3. lb). We may now 
try to obtain a term in the polynomial c with a higher 
power of the TJj by conSidering a permutation involving 
TJj-U; but such a term would automatically have a lower 
power of TJj-U than the direct term. On the other hand 
according to the assumption ay-u = cy-u and thus 
power of TJr u may not be r8duced, and we have by con­
sequence to discard these permutations. We may in 
turn consider permutations involving TJj+v. The power 
of this operator is not fixed by our assumptions; but 
in order to obtain a TJJ we have to permute the lower 
index with one of an operator TJj-z and by consequence 
lower the power of this operator. Yet our assumption 
was that also a;_z = c;_z and thus also these permuta­
tions cannot yield the monomial Eq. (A2). Another 
possibility does not exist as we may easily see in 
Fig. 1. Therefore the leading term expression (A2) 
of a does not appear in the polynomial c. 
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It is proved that the modified Fredholm determinant F of the three-dimensional Lippmann-Schwinger equation 
in the theory of scattering by spherically symmetric potentials is related to the Jost functions 11 of angular 
momentum I by 

F = '~n LI/,l exp[(21 + 1) TrK,]} , 

where KI is the kernel of the lth ~adial Lippmann-Schwinger equation. The relation between the multiplicity of 
the zeros of F and the degeneracy is discussed, and a relevant theorem for Hilbert-Schmidt operators is 
proved, 

The theory of potential scattering is most commonly 
formulated in terms of the integral equation on R3, 

tf.; (r) = e ik •r + j(dr')G+(k; r, r') V( r')tf.;(r'), (1) 

where the Green's function G+(k; r, r') is the integral 
kernel of the boundary value of the resolvent operator 

G(E) = (E - H)-I, 

of the self-adjoint extension H to L2(R3) of the nega­
tive Laplacean, -to, at E = k 2 + iO, 

1 eiklr-r'l 
G+(k; r, r') = - -- . 

. 417' I r - r'l 
In the application of Fredholm methods to the solution 
of this integral equation a quantity of prime interest 
is the modified Fredholm determinant 

F(E, y) = det2[1 - yG(E)V], (2) 

which is known to exist as an absolutely convergent 
power series in y for all values of E and y if the po­
tential function V(r) satisfies suitable conditions. I 

If the potential is spherically symmetric, V(r) = V(r), 
r = Ir I, then the integral equation (1) is usually con­
veniently subjected to a spherical-wave analysis, that 
is, t/I(r) is expanded on the basis of the Legendre poly­
nomials 

00 

1/I(r) = (kr)-I.E (21 + l)i I 1/l1(r)Pz (cose), 
z=o 

where e is the angle between rand k. The coefficients 
1/Iz (r) then obey integral equations on R+ : 

1/Iz(r) = uz(kr) + .r dr'Gi(k; r, r')V(r')1/Iz(r'), (3) 

where ZlZ is a Riccati-Bessel function uz(z) = (illz)l/2 
J I+1!2(z), The Green's function here is given by 

r' > r, 

r' < r, 

where Wz{+) is a Riccati-Hankel function Uf(+)(z) = 
i(-I)I( i17'Z)1/2HNi/2(Z), This Green's function is the 
integral kernel of the boundary value of the resolvent 
Gz (E) = (E - HI )-1 of the self-adjoint extension HI to 
L2(0,00) of the differential operator H;, 

H' =_ d2 + l(l + 1) 
/ dr2 r2' 

as E .., k 2 + io. 
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In the context of solving the integral equation (3) one 
is much interested in the J ost function,2 which is the 
(unmodified) Fredholm determinant 

!I(k, y) = det[l- yG/(E)V]. ( 4) 

Under suitable conditions on the potential function 
V(r), the Jost functions!z are known2 to exist for all 
values of E and y. and all nonnegative integers l, as an 
absolutely convergent power series in y. 

The purpose of this paper is to give the relation be­
tween the function F(E, y) of (2) and the functions 
!/ (E, y) of (4), in case the potential is spherically sym­
metric. It may be regarded as a somewhat belated 
footnote to the paper by Jost and Pais. I 

To start with, we shall take E < O. Then the operator 
- G (E) is positive and we form 

g(E) = [- G(E»)1!2 

as a positive operator. The operator 

K=gVg 

is self-adjoint, and 

F(E, y) = det2[1 + yK(E)]. (5) 

Let the eigenvalues ofK(E) be -1/yn (E), n = 1,2,···. 
Then F(E, Yn (E) ) = 0, and the order of the zero (as a 
function of y) equals the degeneracy of the eigenvalue. 
We shall include an eigenvalue as many times in the 
set {yn} as its degeneracy, that is, as there are linear­
ly independent solutions in L2(R3) of the equation4 

[- !::. + Yn (E) V)cp = Ecp. 

The modified Fredholm determinant may then be ex­
pressed as the convergent infinite productS 

F(E, y) = II (l-~)) eY!Y,,(E). 
n=l Yn (E 

(6) 

The same argument applies to the modified Fredholm 
determinant 

F;(E,y) = det2 [1 + yKz(E)] 

= det2[1- yGI(E)V] (7) 

of Eq. (3), where KI = (- Gz)1!2V(- GI )1!2 for E < O. 

We have the convergent product representation 

F. (E y) = II (1 --y_\ er/r (E) (8) 
Z' n=1 Yn (E)) In 
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in terms of the eigenvalues Yin{E) of [(I (E) in L2(O,())). 
In this case it is well known that there is no degen­
eracy, i.e., each zero Yin of F;(E, Y) is necessarily 
simple6 as a function of y. 

If Yin (E) is an eigenvalue of KI (E), then E is an eigen­
value 7 of H{ + Yin (E) V on L 2 (0, ())), with the unique 
eigenvector cP I", 

[HI + Yln(E)V]CPln = ECPln' 

Hence each of the 21 + 1 linear ly independent func­
tions8 

tJlr::(r) = y-1CP{n(r) Yr(e,cp) 

is an eigenvector in L2(R3) of H + Yln(E)V with the 
eigenvalue E, and hence of K (E) with the eigenvalue 
Yin (E). Unless Ytn(E) is also an eigenvalue of KI,(E), 
with l' 7' 1, the multiplicity of Yin (E) as an eigenvalue 
of K(E) is therefore exactly 2l + 1. On the other 
hand, if rn eigenvalues belonging to m different l 
values Iv ... , lm' coincide at E, then the multiplicity 
of the corresponding eigenvalue of K(E) is ~7~1 
(2li + 1). In the first instance, F (E, y) must have Yin 
as an (2l + I)-fold zero, and in the second instance 
the zero is [~(2li + 1)]-fold. In either case it fol­
lows that 

00 

F(E,y) = n [F;(E,y))21+1 (9) 
I 0 

and the product converges. 

Since the unmodified Fredholm determinant!I(E, y) 
also exists, it is related to the function F;(E, y) by 

!I =F; exp ( -Y~(I/Yln)) =}<~e·r'J'rKI. (10) 

We therefore have 

00 . 

= I~O {lJ~(E, y)]2l'le(21+1)}TrKI (H)J (11) 

as the relation between the modified Fredholm deter­
minant F and the Jost functions!I' The terms 
exp[(2l + l)yTrKI ] cannot be taken out of the product. 
They are needed for convergence. 9 

The relation (9) or (11) has been demonstrated so far 
only as E < O. Let us now allow E to become com­
plex. The operators KI(E) and K(E) are analytic func­
tions of E, and so are their eigenvalues 1 ° Yin (E), with 
the negative real axis in the domain of regularity. 
The same is known for the modified Fredholm deter­
minantsll F and F;. Moreover, the products in (6) and 
(8) converge for all complex values of E (and all y), 
since K(E) and KI(E) are Hilbert-Schmidt operators 1 

for all complex E. Thus the convergence of the pro­
ducts is uniform in any compact domain of the E 
plane that does not contain any points of the nonnega­
tive real axis. Therefore, the products are regular 
analytic in any such region, and (9) holds for all com­
plex E as well. In addition,jI(E, Y) is an analytic func­
tion 12 of E regular in the cut E plane, and hence (10) 
holds there, and thus (11). 

Finally, we let E approach the nonnegative real axis. 
Then K (E)and K 1 (E) are still Hilbert-Schmidt opera­
tors,l the products (6) and (8) still converge, and 
hence (9) still holds. Similarly, the unmodified deter­
minant!1 exists there and is the boundary value of 

!1(E) in the complex plane. 12 Hence (10) and (11) hold 
on the nonnegative real axis. 

Since the result (11) is based on the zeros of the func­
tions!1 and F, let us discuss these briefly. For nega­
tive E, the zeros Yln(E), n = 1,2, ..• , are simple and 
have no finite accumulation point.l 3 They are analy­
tic functions of E. Hence as E is taken into the com­
plex plane and to the nonnegative real axis, Yin (E) re­
mains a simple zero of!I(E, Y), unless two or more 
such zeros coincide. As E describes a path in the E 
plane, each Yln(E) describes a trajectory in the com­
plex plane, and each Yln(E) remains a simple zero of 
}<~ unless two (or more) such trajectories cross at 
some value of E. Consequently the resolvent 
[1- yK1(E))-1 has a simple pole at Y = Yln(E), and the 
eigenvalue l/Yln(E) of KI (E) is nondegenerate. l1 

Suppose now that for E = Eo, P eigenvalues Yln.(E), i = 
! 

1, "', /1, coincide, so that!I(Eo, 1'), and hence F;(Eo, Y), 
has a p-fold zero at Y = Yin (E 0) == r .Then the resol­
vent [1 - yKI (Eo))-1 has a pole at I' = r, whose order 
M may have any value between 1 and p, 1:s M :S p, and 
the ascent 15 of [1- rKI(Eo)] equals M. We shall prove 
in the Appendix that the facts that F; (Eo, 1') has a p­
fold zero at I' = r and that the ascent of [1 - rKI(Eo)] 
equals M, imply that the dimensionality of the null­
space of [1-- I'KI (EO)]M equals p. Hence16 the dimen­
sionality of the nullspace of [1 -- rK, (Eo)], i.e., the de­
generacy equals at most p - M + 1 (and at least one, 
of course). In the special case of the coincidence of 
two eigenvalues, this means that either the resolvent 
has a simple pole, the ascent is 1, and the degeneracy 
is 2, or the resolvent has a double pole, the ascent is 
2, and there is no degeneracy. 

Assuming that at E = Eo, no eigenvalues of KI coincide 
with any eigenvalues of KL , for alII 7' L, then the coin­
cidence of p zeros of F; at r implies, according to (9), 
that F has a (p21'1 )-fold zero at r. The fact that the 
resolvent [1 - yKI (Eo))-1 has a pole of order M at 
I' = r implies that [1 - yK(Eo)]-l also has a pole of 
order M there. 17 Thus the ascent of [1 - rK(Eo)) is 
M, and the theorem of the Appendix tells us that the 
dimensionality of the nullspace of [1 - rK(Eo)]M equals 
p21'1. 

Then there is the possibility of two or more eigen­
values for different values of l to coincide at a given 
energy E = E 1 • Because of the angle functions, any 
two eigenfunctions in L2(O,())) of KI and K/, respective­
ly, with 1 7' l', lead to eigenfunctions of K, in L2(R3), 
that are mutually orthogonal. Hence a coincidence of 
p eigenvalues of Kli' with p different I values, lj' 
i = 1, ... ,p, leads to a null space of K of dimension­
ality D = ~L1 (2li + 1), that is, to a D-fold degene­
racy. The zero of F at Y = r, according to (9), is D­
fold. Hence it follows from the corollary of the 
Appendix that the ascent of [1 - rK(E 1 )] equals 1, and 
therefore the resolvent [1 - yK(E1)]-1 has a simple 
pole at y = r. 
The discussion of the effects of a COincidence, both of 
more then one zero of KI (Eo), and of zeros of KI (Eo) 
and of KL(Eo), 1 7' L, at one and the same Eo, will be 
left as an exercise for the reader. 

ACKNOWLEDGMENTS 
It is a pleasure to acknowledge a stimulating conver­
sation on this subject with Dr. K. Chadan, and to thank 

J, Math. Phys., Vol. 13, No.6, June 1972 



                                                                                                                                    

882 R 0 G ERG. NEW TON 

the Laboratoire de Physique Mathematique of the Uni­
versity of Montpellier for its hospitality. 

APPENDIX 

Theorem 18: Let K be a Hilbert-Schmidt operator; 
let a be an eigenvalue of K, with the ascent15 of 
(K - a) equal to M; and letf(y) = det2(1- yK) be the 
modified Fredholm determinant. Then the order p of 
the zero off(y) at y = l/a equals the dimensionality 
rn of the null space of (K - a)M. 

Proof: We expand the resolvent 

Application of (z - K) to both sides implies that 

2: (z - a)n[An_l - (K - alAn] = 

L (z - n)n[A,,_1 -A,/,K - ail = 1, 

and therefore 

L\,-l = An(K - a) = (K - alAn> n '" 0 

A-M (K - a) = (K - a)A_M = 0, 

A-I - 1 = Ao(K - a) = (K - n)A o' 

Repeated use of (A2) leads to 

Ao = (K - a)nAn = ~(K - n)n, 11 >0. 

Equation (A5) together with (A3) implies that 

(K - a)MA_l = A_l(K - a)M = 0 

and (A4) together with (A6), 

A_I - 1 = AM_I(K - aiM = (K - a)MA M_1. 

Equations (A 7) and (A8) show that 

(A-I - 1)A_ 1 = O. 

(A2) 

(A3) 

(A4) 

(A6) 

(A7) 

(A8) 

(A9) 

Thus A-I is a (not necessarily orthogonal) projection. 
Equation (A 7) shows that its range is included in the 
nullspace of (K - a )M. Equation (A8) implies that the 
nullspace of (K - a)M is included in its range. Hence 
the range of A_I is equal to the nullspace of (K - a )M, 
Similarly, the nullspace of A_I equals the range of 
(K - n)M. The operator A-I being a projection whose 
range equals the dimensionality rn of the nullspace of 
(K - aiM, it follows that I9 

TrA_l = m. (AlO) 

We now apply the well-known formula 

d d 
dy In detA(y) = TrA-I (y) dy A(y) (All) 

to the modified Fredholm determinant and obtain2o 

d~ lnf(y) =-yTrK2(1-yK)-1. (A12) 

• Supported in part by the National Science Foundation, the U.S. 
Army Research Office. Durham. N.C., and the French CNRS. 
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Iff(y) has a zero at y = l/a of order p, then the left­
hand side of (A12) has a simple pole there, with 

lim (Y -! \ dd lnf(y) = p. (A13) 
; .... l/cx a) y 

Hence according to (A12), trK2(z - K)-l must have a 
simple pole at 2 = a, with 

lim (2 - a) TrK2(z - K)-l = a 2p. 
....... cx 

(A14) 

If the series 
00 

TrK2(z - K)-l = 2:; Tr(K2A n ) (z - a)n (A15) 
-M 

converges absolutely, then we may conclude from 
(A14) that for all n < - 1, 

Tr(K2A n) = 0, 

and that for n = - 1, 

Tr(K 2A_ 1) = a 2p. 

(A16) 

(A17) 

The absolute convergence of (A15) is easy to demon­
strate. Since (AI) converges absolutely (Le., in oper­
ator norm) in some neighborhood of a, there exist two 
positive numbers R and C such that IIA,,:: ~ CR-" for 
all n ~ - M. Hence, 

ITrK2Ani ~:An (TrK2J(t2)1/2~ C'R-n 

and (A15) converges absolutely in some neighborhood 
of a. 

According to (A3), Eq. (A16) implies 

TrA_M = TrKA_M = O. (A18) 

Now it follows from (A2) that if TrAn_l = TrKA,,_l = 
0, then (A16) implies that also TrAn = TrKAn = O. 
Hence (A18) implies by induction that for all 11 < - I, 

TrAn = TrKA" = O. 

Therefore by (A2) for n = - 1, 

TrKA_l = a TrA_l' 

TrK2A_ 1 = a 2 TrA_l = a 2m, 

because of (AlO). Comparison of (A17) and (A20) 
proves that m = p, and hence the theorem. 

(A19) 

(A20) 

Remark: Since the nullspace of (K - a) n is a 
strictly increasing function 21 of J1 for 1 ~ 11 ~ AI, we 
may conclude the following as a corollary of the theo-
rem: 

The dimensionality of the nullspace of (K - a), i.e .. 
the degeneracy of the eigenvalue G, is less than or 
equal to p - M + 1. 

It would be nice to have a more exact statement about 
the degeneracy, but there does not appear to be one. 
If p = 2, i.e., the zero off is double, then there are 
only two possibilities, though: Either the resolvent has 
a double pole and the degeneracy is one, or the re­
solvent has a simple pole and the degeneracy is two. 
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angular part of the Laplacean. Thus 

where ~ are projections whose kernels are 

, 
~(8, 'P; 8', 'P') = L Yzm(8,'P)Yz->n(8','P'). 

m:::::-l 

18 This theorem is well known for finite-dimensional matrices; for 
Hilbert-Schmidt operators it does not seem to appear in the 
literature. 

19 "Tr" denotes the trace of the operator. A projection (not neces­
sarily orthogonal) of finite-dimensional range is in the trace 
class and its trace equals the dimensionality of its range. 

20 The proof of (A12) from (All) follows from the fact that if K is in 
the trace class, then det2(1- yK) = det(l- yK) exp(TryK). 
Equation (A12) therefore holds for K in the trace class, with both 
sides defined as absolutely convergent power series in y. Since 
neither side contains TrK and (A12) is an identity of the two 
power series whose convergence is assured if K is a Hilbert­
Schmidt operator, it must hold also if TrK does not exist. 

21 The intersection of the range of Un with the nullspace of L equals 
the image under Lon of the complement of the nullspace of Lm 
relative to the nullspace of Lm+1. Since the range of Lm is a non­
increasing function of m, the nullspace of Lm must be strictly in­
creasing until the nullspaces of Lm and of Lm·1 are equal. From 
then on they must remain equal as m increases. 
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A group expansion technique is presented which is valid for all homogeneous Riemannian symmetric coset 
spaces of rank 1. Examples are given. 

I. INTRODUCTION 
Group contractionl - 3 and expansion4 - l2 has been 
the subject of great recent interest. This interest 
is of both a mathematical4 - l2 and a physical l3 - l8 
nature: 
(i) Unitary irreducible representations of compact 
semisimple groups can be contracted to UIR for 
associated inhomogeneous groups.8-l0 Similarly, 
UIR for noncompact semisimple groups can be con­
structed from the UIR of an associated inhomogene­
ous form by the expansion process. 9,10 
(ii) Physically interesting groups can be construct­
ed by contracting semisimple groups.l- 3 Thus, the 
Poincare group 150(3, 1) is the "noncosmological" 
limit (Runiverse --7 (0) of the de Sitter groups SO(3,2) 
and SO(4, 1), while the Galilean group G(3) is the 
nonrelativistic limit (c --7 (0) of 150(3,1). A recently l3 
proposed relativistic invariance group G(3, 1) can 
be regarded as the analogously contracted limit of 
the conformal group 50(4, 2) under (mQhoton --70, 
RUniverse --7 (0), Conversely, the expansion procedure 
has been used to construct14 - l6 semisimple dynami­
cal groups from inhomogeneous relativistic symmetry 
groups, and to construct17,l8 relativistic position 
operators. 
Although the contraction procedure has been thorough-

ly studied, 3 only relatively few 5- 12 expansions have 
been successfully carried out. Moreover, each 
successful expansion has involved a rank 1 coset. 
Below we show that the simple expansion procedure 
in common use is valid for all Riemannian sym­
metric spacesl9 of rank 1. 

II. DEFINITION OF EXPANSION 

Let M be a (pseudo)-Euclidean space on which a 
metric-preserving stability group K acts. The 
group of isometries of M is G' = M 1\ K (semidirect 
product), and M ~ G'IK. We ask: under what con­
ditions can a semisimple group G be found which, 
contracted with respect to K, gives the group G'? 
Under this contraction the limit of the (pseudo)­
Riemannian symmetric space P = GIK is M: 

contraction I 
P = GIK ) G' K = M. (II. 1) 

Nonsingular linear transformations do not change the 
structure of a Lie algebra, since the structure con­
stants are components of a tensor. Singular linear 
transformations which leave the structure constants 
well defined also lead to contractions. Therefore, 
to perform an expansion we must go outside the 
framework of linear transformations on the genera­
tors of a Lie algebra. 
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Definition: An expansion of a (nonsemisimple) Lie 
algebra g' is a nonlinear mapping of its generators 
X· 

1" 

(II. 2) 

which closes under commutation 

(11.3) 

When c(;v are structure constants for a (semisimple) 
algebra 9 we call this a (semisimple) expansion of 
g' to g. 

We shall be specifically interested in the case where 
g' has a semidirect-product structure m 1\ f, and 9 
is semisimple. 

ffi. CARTAN DECOMPOSITION 

Let f be a maximal subalgebra of semisimple 9 in 
the sense (III. 1) 

9 = fEB p: 

[f,f]C;f, (III. 1a) 

[r,p] =p, (III. 1b) 

[ p, p] c:;. f , (III. 1c) 

g(f, p) = O. (III. 1d) 

Here the Riemannian spaces G, K, P are related to 
the vector spaces g, f, P by the exponential map. 19 
In particular, a Cartan decomposition possesses 
this property and in addition the properties 

g(f, f) < 0, g(p,p) > O. (III. 2) 

Therefore, the algebra 9 * = f + P * (p* = ip) is com­
pact. The coset spaces P and P* are dual. 

Let bases for 9 , f , \:l be given by 9 : X~, Xv' ••• , late 
Greek letters; f : Xa , X B' •• " early Greek letters; 
p: Xi' JS, ... , Latin letters. 

The structure constants for 9 are 

[Xa' X B] = cJsXy + 0, 

[X X] = 0 + Ck,Xk' 
0:' J aJ 

The components of the metric tensor gl'" are 

VI' 6y+lk 
gr:x.~ = cal'c/3V = cayCS & CakCSl ' 

gaj = c~l'c/v = 0, 

"I' Y k k Y 
gij = ci/lcjv = CikS y + CiyCjk' 

Since 9 is semisimple, 

(III. 3a) 

(III. 3b) 

(III. 3c) 

(III.4a) 

(m.4b) 

(III.4c) 

(III. 5) 

Thus, the metric tensors gi' defined on p, Pare non­
singular. The block diagonhl structure of gl'V implies 
also the block diagonal structure of its inverse 
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(
gaS 0 ) 

gl'V = 0 gij' (III. 6) 

IV. SOME USEFUL RELATIONS 

The Casimir invariant ~ 2( g) is given by 

g l'VX X =gaBX X + gijX.X. 
i' v a B , J' 

(IV. 1) 

The commutation properties of this invariant with 
the subspace f can be written 

(IV. 2) 

The left-hand side (lhs) is a homogeneous second­
order polynomial in the generators of K, the right­
hand side (rhs), in the bases of p. By separation of 
variables arguments, both sides vanish independently. 
This argument is not valid for the subspace p, since 
both sides are then homogeneous second-order poly­
nomials, linear in both f and P. Instead, we find the 
well-known identity 

(IV. 3) 

The Jacobi identity is 

(IV. 4) 

V. RANK 1 COSETS 

The curvature of a Riemannian space can be defined 
in a coordinate-free and a coordinate-dependent way: 

19 II 11 20 

(Y.1) 

For the Riemannian symmetric spaces p(*) = exp p(*) 
with metric gij , (Y. 1) becomes 

a I I 
- CijCak = Rij .k • (Y.2) 

Coset spaces of rank 1 have constant sectional curva­
ture p when the decomposition (III. 1) is also a 
Cartan decomposition [obeys (m. 2)]. Such spaces 
have the additional property l9-21 

R(X, Y)Z = p{g(Z, Y)X - g(Z,X)Y}. (Y.3) 

The sectional curvature is given by21 

p = g(R(Xj, JS)Xi' JS) 
y k = - cij cyig kj 

= - 6 C~Ci;g Y t (i "" j fixed). (Y. 4) 
y. t 

So for spaces of rank 1 we have the following identity: 

(y.5) 



                                                                                                                                    

RANK 1 EXPANSIONS 885 

VI. A SIMPLE CONTRACTION 

We now contract 9 ---7 9 I with respect to the sub­
algebra f : 

! ---7 t, Xa ---7 Ya = X a , 

p---7ll1 = lim Ep, X. ---7 Y = lim EX .. 
£ -+0 t l E -+0 t 

The commutation relations of 9 I are 

[Ya , Ye,] = d~/:lYY' 

[Ya , lj] = d!j Yk , 

[Ii, lj] = 0, 

(VI. 1) 

(VI. 2a) 

(VI. 2b) 

(VI. 2c) 

The only information lost in the contraction g ---7 9 I 
is contained in the structure constants c/. The 
metric tensor gaB of 9 can be reconstructed from the 
structure constants d using (III. 4a), but the metric 
gij cannot be reconstructed using (III. 4c) because 

dlj = 0, 

The second-order Casimir invariant (IV. 1) on 9 can 
be contracted to the second-order Casimir invariant 
on g I, which is uniquely defined up to a constant 
numerical factor [h in (VI. 4)]: 

~~(n/) == limE2~2(g) 

== limgaB(EXa)(EX/:l) + limgij(EXi)(EX).) 
E-+O (-+0 

== gijY; Yj• (VI. 3) 

The uniqueness of ~2 (8 ') guarantees that any second­
order homogeneous polynomial invariant operator 
~ 2 (Ya , lj) which commutes with all generators 18, Yk 
ofg I, must be proportional to ~2(g/) 

(VI. 4) 

Without loss of generality, we can choose h = + 1. 
The choice h = - 1 is equivalent to a discussion of 
the dual algebra 8 * . 
Construction of an invariant (VI. 4) uniquely defines 
the metric tensor gij and its inverse. Thus, by 
(IV. 3) the information about the structure constants 
Ci~ is not really lost at all by contraction, since 

(VI. 5) 

Therefore, it should be possible to construct the 
original algebras 8 , n * from the contracted algebras 
n' = n '*. 

VII. SOME COMMUTATION RELATIONS 

The kernal of the contraction (VI. 3) is the invariant 
(IV. 2) of f. In!1 I we have 

[Ya , g YBy} YBl = 0, 

[Yj,gYBYyY/:lJ =gYBdty{y", YB}· 

We define now a third set of generators by 

Za = Ya , (= Xa) 

Z; = [Yi,gy/lYy Y/ll. 

(VII. 1) 

(VII. 2) 

The commutation properties (VII. 3) of these genera­
tor s are easily obtained: 

[Za' Z/:l] = c~/:lZy' 
[Za,Zj] = [Ya , [lj,I]] 

= - [I, [Ya, ljll- [lj[I, Yall 
k Ii 

= cajZk O. 

(VII.3a) 

(VII.3b) 

We have indicated explicitly in the computation above 
that the result is valid for any invariant I of f • 

Finally, we compute the commutator of Zi with Zj' 

The terms ariSing from 

are of four types: 
ll'g 

(1) [Yy18,Y,Yn]---7A 1 1/1//Y,;, 

(2) P:'18, YnY.l---7A~llgYz~YzI' 
(3) [18Yy, YsYnl---7A~llgYzIYgYI' 

(4) [18 Yy, ~Ysl ---7 A~llgYg1/ Yz" 

(VII. 4) 

(VII. 5) 

A moment's consideration will reveal that for fixed 
Latin (1, l') and Greek (g) indices 

AlIIg _ AlIIg _ AIIIg _ Alllg 
1-2-3-4' 

The first and fourth terms together form a sym­
metrized combination, as do the second and third. 
Moreover, 

1/ y';1/1 = Yz([Y,;, 1/11 + 1/, Y,;) = 1/1//Yg + Yzc;l' Y;, (VII. 6) 

1//y';1/ = ([1// Y,;] + Y,;1//)1/ = ~YzYz, + Y;CI~g Yt ' 

1/ y';1/1 + 1//y';Yz = YI1/,Y,; + ~1/ Yz" (VII. 7) 

Therefore, it is sufficient to compute only the first 
type of term in the commutator. 

We must study 

g yBdY gfnds [Y y Y Y] 
1 Y )f Y B' s n 

=pr.t,nyyy + Qts,By Yl:": +RY~'Ayyy 
I) Y t n I) t s /l I) Y SA' 

We compute these tensors, term by term: 

P Yt,n _ gyBdY gfnd s d t 
ij -_ iy jf /ls 

similarly, 

Qts,/:l = p(gyBdY g .)uts _ p,uy/:ld~ 6 t 
I) 1 Y Y) b b I Y )' 

(VII. 8) 

[by (IV.3)] 

[by (V. 5)] 

(VII.9a) 

(VII.9b) 

[by (IV. 3)2] 
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TABLE I. Examples of rank 1 expansions 

g' = Itt EEl f n'=mEB! 
System G = expn K = exp! K = exp f G = exp n Comments and references 

G' =M 11K G' = MilK 

SO(p -1, q) ISO(p - 1, q} SO(p + 1, q) Metric preserving groups 
ISO(P, q) SO(p, q) groups in real linear Bn,Dn SO(p, q) 

SO(p, q - 1) ISO(p, q -1) SO(p, q + 1) vector spaces (Refs. 5-10) 

U(p-l,q) IU(p - 1, q) SU(p+l,q) Metric preserving groups 
An SU(p, q) IU(p, q) U(p, q) in complex linear vector 

U(p,q-l) IU(p, q - 1) SU(p,q+l) spaces (Refs. 5-10) 

Sp(p - 1, q) ISp(p - 1, q) Sp(p + 1, q) Metric preserving groups 
ISp(p, q) Sp(p, q) in quaternion linear 

Sp(p, q - 1) ISp(p, q - 1) Sp(p, q + 1) vector spaces (Refs. 11 
en Sp(p, q) 

and 12) 

F4 (-20) 

F4 SO(9) Mil SO(9) Mil SO(9) SO(9) 
F4 (-20) 

F4 (-52) 

(VII.9c) 

Summing Eqs. (VII. 9) gives 

(p rsA QrsA RrSA)y yy A( rs y y)y 
ij + ij + ij r S A = - PCij g r S A' 

(VII. 10) 
Thus we have 

(VII.3c) 

Vill. EXPANSION 

The infinitesimal generators 

Z~ = Zo.' (VIII. 1) 
Z; = Z/{- 4pgrs Y,.y,Jl/2 

close under commutation to give the algebra g. 
Similarly, the generators 

Z~ = Zo.' (VIII. 2) 
Zi == Z;!{ + 4pgrsYr y.}1/2 

give the algebra 9 *. 

IX. EXAMPLES 

Examples of rank 1 expansions are given in Table I. 

X. COMMENTS 

(i) Strictly speaking, the Jacobi identity used in 
(VII. 3b) is valid only in a Lie algebra or in an asso-

1 I. E. Segal, Luke Math. J. 18,221 (1951). 
2 E. Inonii and E. P. Wigner, Proc. Nat!. Acad. Sci. (U.S.) 39,510 (1953). 
3 E. J. Saletan, J. Math. Phvs. 2. 1 (1961). 
4 M. A. Melvin, Bull. Amer. Phys. Soc. 7,493 (1962); B, 356 (1963). 
5 J. Rosen, Nuovo Cimento 46B, 1 (1966). 
6 J. Rosen and P. Roman, J. Math. Phys. 7,2072 (1966). 
7 J. Rosen, J. Math. Phys. 9,1305 (1968). 
8 A. Chakrabarti, J. Math. Phys. 9, 2087 (1968). 
9 A. Sankaranarayanan, J. Math. Phys. 9. 611 (1968). 
10 K. B. Wolf, J. Math. Phys.12, 197 (1971). 
11 J. G. Nagel and K. T. Shah, J. Math. Phys.ll, 1483 (1970). 
12 J. G. Nagel, J. Math. Phys.ll, 1779 (1970). 
13 J. J. Aghassi, P. Roman, and R. M. Santilli, Phys. Rev. D 1, 2753 
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F4 t-52) 

ciative algebra. We have used the Jacobi identity. 
not in the Lie algebra, but in its universal enveloping 
algebra. Since the enveloping algebra is associa­
tive,19 the Jacobi identity can be proved by expand­
ing the Lie brackets and rearranging terms. 

(ii) The expansion procedure presented here is valid 
for Cartan decompositions [(III. 1) and (III. 2)] only, 
since it depends on constant sectional curvature. 
But it actually depends on the properties of the struc­
ture constants rather than the explicit real form 
chosen. Thus, the construction is valid for the com­
plex extension gC of 9 and any real form of flc with 
some real form of fe as a maximal [(III. 1)] sub­
algebra. This is why we are able to give as examples 
in Table I algebras with f noncom pact. All reductive 
coset decompositions (III. 1) have been given by 
Berger. 22 

(iii) Contractions with respect to a maximal sub­
algebra f (III. 1) are information preserving in the 
sense of (VI. 2)-(VI. 5). Since no information is lost 
in the contraction 9 (,,) -) 9 I, it should be possible to 
construct rank r expansions 9 I -) 9 (*). It has not yet 
been possible to construct rank r expansions for 
r> 1. 

XI. CONCLUSION 

A unified approach has been given to the expansion 
problem for algebras with rank 1 cosets. It is seen 
why the expansion algorithm characteristic of all 
the recent literature is valid only for those cases 
studied: specifically, expansions involving Riemannian 
symmetric spaces with constant sectional curvature 
(rank 1). 

(1970). 
14 A. Sankaranarayanan, Nuovo Cimento 38,1441 (1965). 
15 A. Bohm, Phys. Rev. 145, 1212 (1966). 
16 M. Y. Han, Nuovo Cimento 42B, 367 (1966). 
17 A. Sankaranarayanan and R. H. Good, Jr., Phys. Rev. 140B, 509 

(1965). 
18 L. Castel, Nuovo Cimento 49, 2B5 (1967). 
19 S. Helgason Differential Geometry and Symmetric Spaces 

(AcademiC, New York, 1962), p. IBO. 
20 S. Kobayashi and K. Nomizu, Foundations of Differential Geometry 

(Interscience, New York, 1963), Vol. I, p. 144. 
21 Reference 20, Vol. I, p. 203. 
22 M. Berger, Ann. Sci. Ecole Norm. Sup. 74,85 (1957). 
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The calculation of the free energy for the two-dimensional lattice models which obey the "ice" condition is 
reviewed and summarized. The analytic properties of this function relevant to thermodynamics are obtained 
for the set of those models corresponding to the absence of external fields. Detailed complex temperature 
Reimann structures are presented for the KDP and F models. 

1. INTRODUCTION 

The purpose of this paper is to analyze the thermo­
dynamic properties of the planar "ice rule" ferro­
electric models, which are isomorphic to a lattice 
statistical problem defined by the following rules: 

1. On every edge of an N x M square lattice an 
arrow is placed, pointing in one of two possible 
directions; 

2. The canonical partition sum is restricted to 
those configurations in which there are two, and only 
two, arrows pointing towards each and every vertex. 
Thus each vertex must be one of the six types shown 
in Fig. 1. 

3. The partition sum of the associated ferroelectric 
is given by 

z = ~ [ljW'ji , 

allowed 
con fig. 

where nj is the number of times vertex j occurs in a 
given configuration; this configuration has energy e· 
and the associated canonical weight J 

where ~ = 1/kT, in the customary notation. The ej are 
shown in Fig.l. 

This paper reports the investigation of the dependence 
of the ordered state and associated phase transition, 
where it exists, on the two parameters (1 and (2 de­
fined below. The exponents are the same throughout 
each region and there is no nonphysical dependence of 
an accidental nature on «(1 / (2)' 

We also discuss the Riemann surfaces for the energy 
in the complex temperature plane. The free energy 
is evaluated in terms of elementary functions in two 
special cases. 

2. REVIEW OF THE BASIC THEORY 

To complete the description of the model, adumbrated 
in the introduction, we shall impose periodic boundary 
conditions both vertically and horizontally, although 
the former is not essential. We shall refer to a row 
of vertical arrows simply as a row, which then has the 

possibility of being in 2N states cpo Rather than speci­
fying the states of the horizontal arrows between the 
rows, it is sufficient to define a transfer matrix T(cp, 
cp') = ~e-I3EW = l/kT), where the sum is over all 
allowed configurations of horizontal arrows consis­
tent with the lower row being in state cf! and the next 
higher row being in state cp; E is the sum of the vertex 
energies formed by the two states cp, cp' together with 
the horizontal arrows. From the definition of the par­
tition function we have simply 

= Tr[TM] == ~Ar, (2.1) 

where Aj are the eigenvalues of T. Since the elements 
of T are nonnegative, the Perron-Frobenius theorem1 

guarantees that there is a positive maximum eigen­
value A which corresponds to an eigenvector having 
nonnegative components. We have simply 

lim (11M) InZ == InA. 
M-+oo 

We must thus formulate and solve the equation 
T>l! == A>l!. 

(2.2) 

It has been demonstrated2 that horizontal periodicity 
and the ice rule are sufficient to ensure that T( cp, cp') 
= 0 unless cp and cf! have the same number n of down 
arrows, so that T decomposes into blocks of dimen­
sion (;;), n == 0, 1, ... , N. It is convenient to define an 
average polarization 

y == 1 - 2n/N, -l:sy:sl. (2.3) 

Since we need only solve the eigenvalue equation in 
each block separately, it is convenient to denote the 
corresponding eigenvector by f (Xl' ••• , xn), where 
1 :s Xl :s X2 :s ... :S Xn :S N denote the positions of the 
down arrows. We shall also denote the n-tuple simp­
ly by X. In a given matrix element, the first down 
arrow can occur in either the lower or the upper row, 
and so accordingly we can write 

T == TR + TL , 

where 

(2.4) 

++++++ FIG. 1. The six allowed 
vertex configurations. 
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, \ =1= 0, ifxi _1 :s Yi :s Xi' 
TR~X, Y) = I 

i = 1, ... ,n, 
0, otherwise, 

\ =1= 0, if Xi :s Yi :s Xi+l' 
TL (X, Y) = 1o, otherwise. 

(The subscripts R, L refer to the direction of the 
horizontal arrows at the extremities.) 

(2.5) 

Because the zero of energy may be chosen freely and 
n-conservation implies that the number of type 5 ver­
tices must be the same as the number of type 6 ver­
tices on every row, there can be only four independent 
vertex energies. We take as these a linear combina­
tion of the vertex energies for the KDp3 and F4 
models together with energies corresponding to the 
presence of direct (horizontal and vertical) fields: 

e1 = E2 - h - v, e2 = E2 + h + v, 

e3 = El + E2 - h + v, (2. 6) 

Now, because the configuration energies are linear in 
the vertex energies, for each element of the transfer 
matrix, we have T = TKDPTFTHTv. 

For convenience we define the quantities 

v = (3v. (2.7) 

Then, by inspection, we find 

Tl = eNVy = Ti, 
(2.8) 

Tf{= eNHe2Hr.~(Yi-xi) = e 2NH T! (X, Y). 

The transfer matrices for the F and KDP models 
are3 ,4 

TI (X, Y) = TI (X, Y) 

= exp [-K2(N - 2n + 2 ~ ~ li(xi -Yi») l 
T~DP(X, Y) (2.9) 

= expKl (- n + ~ (Yi - Xi) + 2 n~ li(yi+l - XJ) 

TFP(X, Y) 

= eXPK1~N -n + ~[yi -Xi + 2li(Yi -X)]). 

We must now solve the eigenvalue equation 

Af(X) = ~ TR(X, Y)f(Y) + ~ TL(X, Y)f(Y), (2.10) 
R L 

where the sums denoted Rand L are over all 
1 :s Y 1 :s . .. :s Y n :s N consistent with the first or 
second condition in (2.5), respectively. The solu-
tion of (2.10) follows precisely the treatment of the 
ice mode12 to which we refer for details. We find that 

n 2ll. - eKl - e ikt 2H 
A = eN (Vy-K 2+H) n 

R j=l 1-exp(ikj -Kl - 2Ji)' 

n 2ll. - e-Kl - e- ikj-2H 
A = eN (VY-K 1 -K2 -H) n , (2.11) 

L j=11-exp(-illj -K1 -2H) 
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where 

2ll. = eKl + e-Kl - e 2K 2-Kl. (2. 12) 

The numbers kj are obtained by solving the n-equa­
tions 

where 

B(q, p)-l = B(P, q) = e-ie(P.q) 

1 + e 4H+i(p+q) - 2ll.e2H+iP 

1 + e 4H+ i (p+q) - 2ll.e 2H+ iq 

(2.13) 

(2.14) 

When H is nonzero, the function e is not real so that 
the numbers k. are complex. What happens in this 
case has been Jexplored briefly by Sutherland, Yang, 
and Yang, 5 but the details of their calculation are not 
available. In the remainder of this paper we shall 
assume that H = O. 

The important properties of the solution to (2.13), 
(2. 14) which maximi7.es A for any n are: 

(i) For ll. < 1 the k j are real. 

(ii) For n even, if k j is a root, then - k j is also 
a root. 

(iii) It is assumed that for large even N the roots 
become densely distributed on some (finite or 
infinite) interval (Q, - Q) with density Np(k)dk, 
where p(k) is a smooth function. 
(iv) For ll. = 1, all the kj vanish; Le.,f(X) = 1. 

Henceforth we shall adopt the notation 

(2.15) 

so the free energy per vertex is given by 

-(3IT' =max[z(y) + Vy]. (2.16) 
y 

The discussions of the cases ll. ~ 1 and ll. < 1 are 
quite different, since in the former case the solution 
for z(y) may be obtained by guile, avoiding the solu­
tion of (.2.14). In general the kj are complex but for 
ll. = 1, from (iv) above, we have 

z(y) = -K2 + max(O, -K1 ) (2.17) 

independent of y. Now Eq. (2. 17) implies: (i) z(y) is 
convex and nonincreasing in Kl and K 2 , and thus is 
also convex and nonincreasing in the limit N ~ 00; (ii) 
by subtraction of E, from the ej , z(y) ~ z'(y) = 
z(y) + K1 , where z'(y) is convex in Kl and K 2, non­
increasing in K2 and nondecreasing in K1 • In the 
thermodynamic limit, the right-hand side of (2.17) 
is a lower bound on z( y) for all ll., because it can be 
achieved for Kl > ° by a single configuration which 
is a spiral band of type 1 vertices and a spiral band 
of type 2 vertices in the relative proportion (1 + y) : 
(1 - y). These bands are separated by a ladder of 
alternating 5 and 6 vertices, but these make no con­
tribution in the thermodynamic limit. The above 
argument is the same for Kl < 0, with vertices 1 and 
2 replaced by vertices 3 and 4. Using these results 
and the previous paragraph, we have the result: 

Equation (2.17) is true for all y and all A ~ 1. 

It is clear that the system is completely frozen into 
homogeneous regions of vertex 1 and 4 when A ~ 1, 
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the interfaces being composed of vertices 5 and 6. 
This complete ordering should be contrasted with the 
results for the Ising model. 6 Nagle 7 has given a 
rigorous proof of the freezing when K2 = 0, using an 
argument due to Takahashi 8; he also obtained a latent 
heat at 6. = 1. The argument may be extended to 
cases with K2 ;'" 0, for which A = 1 can be realized. 

For 6. < 1, (2.13) reduces, in the limit N~ 00, to an 
integral equation for the density function p(k), which 
we write in the form 

a 8(p, q) 
1 = 21T pep) - L~ ap- p(q)dq, (2.18) 

where Q(y) must be determined self -consistently by 
the condition 

~(1 - y) = i~ p(p)dP. (2.19) 

Once these equations have been solved for p(p) and Q, 
the free energy may be determined. The calculation 
is simplified somewhat by noting that for 6. < 1 
either AR or AL vanishes in the thermodynamic limit, 
for 

= 4(coshKl - 2A + cosk) sinhKl , 

whence it follows readily that 

11\.1> IALI 

IARI< IALI 

IARI = IALI 

for Kl > 0, 

for Kl < 0, 

for Kl = O. 

(2.20a) 

(2.20b) 

Consequently, in the thermodynamic limit z(y) is 
given by 

1 JQ z(y) = -K2 + max(O, -Kl ) + 2 _QP(q) 

(
26. -11)2 + 1 - (26. -11) cosqr x log q, (2.21) 

1 + 112 - 211 cosq 

where 11 = eIKJI. This is equivalent to the result ob­
tained by Sutherland. 9 

Equation (2.18) occurs in the theory of the Heisen­
berg-Ising chainlO;this is not surprising since T has 
been shown to commute with the Hamiltonianll 

n 

::fC(6.) = - ~ (a;aj~1 + aj-a;+l + ~ 6.ajah) (2.22) 
,=1 

provided 6. is given, as before, by Eq.(2.12). It was 
first shown by HulthenI2 and WalkerI 3 that there 
exist transformations which reduce the kernel of the 
integral equation (2.18) to difference form. This work 
was unified and completed by Yang and Yang,IO whose 
notation we follow. The transformations k ~ 01 (k) 
needed differ for the three regions 6. < - 1, - 1 < 6. 
< 1, and 6. 2: 1. 

For 16.1 < 1 the wavenumbers k j are restricted to 
lie in the interval 1 kj 1 < (1T - /-L) , where 

cos/-L = - 6., 0 < /-L < 1T. (2.23) 

The transformation which reduces the equation to 
difference type is 

eik = (eii! - ea)/(eCte iiJ -1). (2.24) 

Even under this transformation we still have two 
coupled complicated integral equations to solve. In 
the case y = 0, which is applicable in the absence of a 
vertical external field, the quantity Q becomes infinite 
and the equation can be solved by Fourier analysis. 
Therefore, from now on we shall restrict ourselves 
to the cases H = 0, V = 0, where the free energy is 
given by z(O). The important features of the behaviour 
in a vertical field can be determined by the means 
used for the F and KDP models. For y = 0 the 
density is 

p(k) (dk/dOl) = (hl) sech(7T0'/2j.t), 16.1<1. 

For 6. < - 1 the appropriate transformation is 

eik = (e A - e-iCt)/(eA-iCt -1), 

where 
coshA = - A, 0<;\ < 00. 

(2.25) 

(2.26) 

(2. 27) 

In the case y = 0 we have 1 01 1 < 7T and the equation can 
be solved by Fourier series, leading to 

p(k) dk == ..!!.... ~ sech(7T(OI + 21Tn)\ (2.28) 
dOl 4;\ -00 2;\) 

In this case the density is closely related to the 
Jacobian elliptic function I4 cn, and, as we shall point 
out again later, there seems to be an ill-defined but 
pervasive connection between the ferroelectric prob­
lems and the theory of elliptic functions which may 
well have been finally established by Baxter.l5 

The free energy is given by (2.16), where z(y) is 
given by (2.22) for 6. <-1. Yang and YanglO have 
proven that, for 1 2: Y > 0, p(q) considered as a func­
tion of 6. and y is real analytic in 6. and y, which gives 
the following result: 

z(y) is real analytic in the temperature and in y 
provided 

o < y ::0:; 1 and 6. < 1. 

The case y = 0, which is pertinent if V == 0, is excep­
tional in this respect. For 6. < 1 the kernel of the 
integral is not analytic in 6. at 6. = - 1. In the re­
mainder of this paper we shall discuss this case. 
Our first conclusion is that singular behavior is only 
to be expected at 6. = ± 1. It is important, therefore, 
to decide what values of A can be realized on the 
real positive temperature axis for a given assign­
ment of vertex energies. This is summarized in the 
following easily proven theorem: 

Theorem: If the temperature T is real and pOSi­
tive, then 11 2: 1 and: 

(1) For no values of El and E2 can both 6. = + 1 and 
6. = - 1 be realized as T is varied, 

(2) If E2 > max(O, EI ), then - 00 < 6. < ~ for real T 
1 ' whereas if E2 < max(O, EI), 2 < 4 < 00. If E2 = 
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max(O, E1), then 0 :::: 6. < ~; there is no singular be­
havior in this case. 

3. PROPERTIES OF THE FREE ENERGY 

Since both p(k) and the argument of the logarithm in 
Eq. (2. 21) are analytic with respect to 6. and 1/ in the 
regions \6.\ < 1 and 6. < - 1, critical behavior in the 
free energy can be expected only for 6. = ± 1. From 
an examination of the 6. = ± 1 contours in the (K l' K 2) 
plane shown in Fig. 2, we can divide the plane into two 
broad regions, which we label I and n. Region I, in 
which, as will be seen, the model is antiferroelectric 
in character, contains the F model, and region II, in 
which the model is ferroelectric, we have the KDP 
model, both of which have been studied in detail by 
Lieb. 3 ,4 In Addition, there are two Singular cases: 
the IKDP model discussed by Glasser 16 and the IF 
model, which we shall consider below. In addition to 

'-" 

------

KI 

FIG.2. Classification of models in the scaled (E l , E2 ) plane (K). = {3Ej }. 

I and II are the regions 11/2> 8> -11/4 and - 311/2 < 8 < -11 4, 
respectively. 

-1T 
-311" 

4 
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11" 

4 

F 

11" 

"4 

these models, which correspond to rays in the K1 -
K2 plane, there are the ice model (K1 = K2 = 0) and 
a limiting case studied by Wu,17 where 6. = 0, which 
we shall not consider further. 

The behavior of 6. as a function of inverse tempera­
ture is shown in Fig. 3 (for the IF model 6. attains 
1 at (3 = (0). We define a transition temperature To 
by the condition 6. = ± 1; the behavior of To as a 
function of the angle e shown in Fig. 2 is given 
schematically in Fig. 4. 

It is convenient to introduce the parameters 

ei<Po = (1 + 1/ei ll)/(e ill + 1/), 0:::: <Po::::)J., \6.\ < 1, 
(3. 1) 

eeo = (1 + 1/e~)/(e~ + 1/), 0:::: eo:::: A, 6. < -l. 
(3.2) 

Then in the" high temperature" regime the free 
energy of our model may be expressed, by inserting 
(2.25) into (2.21), as 

1 JCO dcx 
g: = 10 2 + max(O, (01) -"4 kT 

-co COSh1TCX 

11" 

2 

(
COSh(2)J.CX) - cos(2)J. - c;oo») 

x In -- , T > To' (3.3) 
cosh(2)J.cx) - cosc;oo 

-I 

FIG. 3. Behavior of the parameter A as a function 
of inverse temperature for the models of Fig. 2. 

IF 

1T 

FIG.4. Behavior of the tran­
sition temperature as a func­
tion of the angle e of Fig. 2. 
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which is applicable to both regions I and II, which we 
discuss separately. 

For region II we have that D. = 1 corresponds to 
fJ. = 1T. At fJ. = 1T the argument of the logarithm in 
(3.3) becomes unity, so that the integral vanishes 
and the high temperature free energy joins continu-
0usly to the" low temperature" value given by (2. 17). 
Therefore, we evidently have a first-order phase 
transition to a ferroelectrically ordered low-tem­
perature phase. Since 5' depends analytically on 1/ 
about 1/0' any singular behavior must be due to the 
dependence of the high temperature free energy on fJ., 
since 

dfJ. - = cscfJ. 
dD. ' 

(3.4) 

which is infinite at fJ. = 1T. Indeed, a simple calcula­
tion gives 

(1T - fJ.)2 (1T - fJ.)3 
5' = + + O[(1T - 11)4] 

4(1/ - 1) 3(1/ - 1)1T ,.. , T> To' 

(3.5) 

The singular part of the specific heat at vanishing 
vertical polarization is 

C ~ 1 1 2 1 
k (2£ sinhK - (2K - K )e (2K 2-K1)) 3/2 

o 4(1/ - 1)1T kTc 

x(~ _1)-1/2 (3.6) 

The first -order phase transition in this case is un­
usual in that the low and high temperature-free 
energy functions cross where the latter has a verti­
cal tangent as a function of temperature. For the 
special case of the KDP model, (3. 6) reduces to give 
the behavior obtained previously.3 This case will be 
treated in more detail in Sec. 4. This concludes the 
study of the free energy in the ferroelectric region II. 

In the case of the IF model, for which 1/ = 1, e2K 2 < 1, 
which represents a singular case in region II, we 
have To = 0 and find for the expansion of the free 
energy about fJ. = 1T 

5' ~ -! kT(1T - fJ.)[1 + !(1T - fJ.) + ... ]. (3.7) 

From this we find for the internal energy 

u ~ ! 1£21 e2K 2 (CSCfJ.)[1 + (rr - fl.) + ... ]. (3.8) 

Since, in this case 

e2K 2 = 1 - D., 

we have 

and 

(3.9) 

(3.10) 

(3.11) 

In this case the evident vanishing of the latent heat 
means that there is a second-order phase transition 
at T = O. 

In region I, which includes the antiferroelectric F 
model, (3. 3) again describes the high-temperature 

region T > To' but T = To now corresponds to fJ. = O. 
This gives rise to an interesting phenomenon. Con­
sider the function H(iJ.) defined by the integral 

H(fJ.) = fOoo da sech('lTa)f(a, fJ.). (3.12) 

The Singularities of the integrand are simple poles 
due to sech(1Ta) evenly spaced along the imaginary 
axis in the a plane together with the singularities of 
f(a, iJ.) for positive real fJ., which we represent as the 
blobs in Fig. 5. The location of these singularities 
depends on iJ.. (We assume f is real analytic, and so 
by the Schwartz reflection principle the singularity 
set of f is invariant under complex conjugation.) Let 
us now suppose that the singularities of f are rational 
in fJ.. As we allow fJ. to circle the origin in the iJ. plane, 
the blobs, which may also change shape, will circle 
the origin in the a plane. To avoid integrating through 
a singularity, we must deform the contour of integra­
tion more and more, until it gets pushed up against 
the imaginary axis. If the singularity set of f is 

a 

FIG.5. Singularity structure for the hypothetical function i(a, 11). 
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wider than the spacing of the poles along the imaginary 
axis, the contour will certainly become pinched, there­
by forcing us to integrate through a singularity and 
causing there to be a singularity in H(Il) in the Il plane. 
In the case of the integral in (3.3) for small positive 
Il, the singularities of the logarithm form several 
lines of branch points. As we circle the origin in the 
Il plane these lines move in a complicated way deter­
mined in part by the dependence of % on Il. By the 
implicit function theorem, however, this dependence 
can be shown to be analytic in a neighborhood of Il = 0, 
where % = O. Thus for smallll we can ignore the 
presence of %. Therefore, these lines of singularities 
simply rotate synchronously with Il, and, when Il 
approaches any small negative rational multiple of 11, 
a pinch will occur. This shows that, at least in a small 
neighborhood of Il = 0, the negative real axis forms a 
natural boundary (line segment having a dense set of 
singularities) with end point at Il = O. Since for larger 
Il the dependence of % on Il becomes more complex, it 
may happen that the natural boundary may disappear 
or take on some complicated form away from the 
origin in the Il plane. In Appendix A, however, we 
show that this does not happen and that the entire 
negative real axis is a natural boundary for the high 
temperature -free energy in region 1. It may also 
happen, of course, that the function f in the integrand 
of H(Il) has zeros which coincide with the poles of 
sech(11Q1) in which case the contour will not be pinched. 
In Appendix B we show that this actually happens in 
the case of the KDP and IKDP models, but for no 
others. 

We may formally expand (3.3) in even powers of Il, 
where we take into account the fact that % is odd and 
analytic in Il; it is shown in Appendix D that the coef­
ficients are all finite. However, as we have just 
demonstrated, Il = 0 is a nonisolated singularity so 
that this series must have vanishing radius of con­
vergence. We next note that 6. is analytic with re­
spect to T about T = To, and, as can be proven from 
the implicit function theorem, 112 = [arccos(- 6.»)2 is 
an analytic function of 6. about 6. = - 1. { This sur­
priSing fact also follows from the identity arccos z = 
[2(1 - z2)1/2/(1 + z)] 2F l[t 1; t (z -l)/(z + 1)].} 
The free energy in region I is therefore infinitely 
differentiable, but nonanalytic as T ~ To' 

To characterize the thermodynamic behavior of the 
system completely, we must examine the behavior of 
the free energy as T ~ To' From (2.28) and (2.21) we 
have in the low temperature region, where 6. < - 1 

g: = E2 + max(O, E1 ) - ~ kT(X - eo) 

00 e-"A.n sinhn(X - e ) 
-kT 6 O. 

n=l n coshnX 
(3.13) 

We note that this expression is nonsingular below 
T o(X = 0) down to T = O(X = co). Next we see that 
(3.8) and (3.3) agree at T = To (where A = eo = 0, 
Il = % = 0). Finally, as is shown in Appendix A, (3. 8) 
is the analytic continuation of (3.3) onto the imaginary 
Il axis. The entire free energy is thus described in 
terms of a single function, infinitely differentiable, 
but nonanalytic at T = To and nonsingular at every 
other real temperature. We therefore conclude that 
in region I the system undergoes an infinite order 
phase transition. Since at low temperatures vertices 
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5 and 6, of which there must be an equal number, are 
favored, this transition is to an antiferroelectrically 
ordered state and occurs without any thermodynamic 
anomalies. To remove any doubt on these matters, we 
present in Appendix A a detailed calculation of the 
smooth matching of the high and low temperature­
free energies at To' 

We come finally to the IKDP model which separates 
region I from region II. In this case we have either 
K 1 = K, K2 = 0 or K 1 = K2 = K 2: 0 and 0 ::: 6. ::: t 
which corresponds to ~ 11 < Il::: 211/3, and CPo = 211 -
3/1. Thus the system is essentially always in the 
"high temperature" region and the free energy is 

g: = E -.!. kTJoo dO' sech(11Q1) In(COSh(2f.W ) - COS(5 1l ») 
4 -00 cosh(2IlQl) - cos(31l} 

(3.14) 

As shown in Appendix B, the integral in this case can 
be evaluated in terms of elementary functions and we 
have 

g: = 2 max(O, E) + kT In[(11/21l) sinll tan(112 /21l)]. (3.15 

It will be seen below that (3.15) is the analytic con­
tinuation in E of the free energy for KDP. These two 
models merge continuously at T = co. It is seen that 
(3. 15) has no singularity for any real T. Because of 
the behavior of the 6. = ± 1 contours in Fig. 2, how­
ever, we define Toto be zero in this case. 

This concludes our discussion of the thermodynamic 
properties of the general model in the absence of ex­
ternal fields, except to point out that as T ~ co in any 
special case we obtain the ice model for which 

z(O) = % lnt (3. 16) 

4. DETAILED ANALYTIC STRUCTURES FOR THE 
KDP AND F MODELS 

The analytic properties of the Onsager solution for 
the free energy of the two dimensional Ising model 
have been studied in detail by Majumdar. 1 8 For com­
parison with the results for the ferroelectric models 
we have extended his results to obtain the behavior 
of the free energy in the complex temperature plane. 
This is shown in Fig. 6. The characteristic structure 
of this and succeeding diagrams arises in the follow­
ing way. The partition function or free energy is 
most conveniently expressed in terms of an activity 
of the form z === exp«(:lJ) and in the complex z plane 
will have a relatively simple analytic structure. 
When the logarithm is taken to get the analytic struc­
ture in the (:l plane, each singularity Zo in the z plane 
becomes a sequence of singularities i3 0 + 2krri, k = 0, 
± 1, ... , which lie along a line parallel to the imag­
inary i3 axis. Finally, in taking the reciprocal to 
obtain the behavior in the temperature plane, lines 
which extend to infinity go into circles passing through 
T = 0, and the analytic structure consequently has a 
circular geometry. We note in Fig. 6 in the complex 
temperature Riemann structure for the Ising model 
a branch cut begins at T = To and extends down to 
T = O. As Majumdar showed this is due to the fact 
that the analytic continuation of the free energy from 
the high- to the low-temperature region does not re­
main real valued, but one must average the results 
taken above and below the branch cut in order to ob-
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tain the physical result. This is similar to the situa­
tion for the F-like models in region I and is due to the 
fact that the free energy for real temperature depends 
on \ T - To \ , which is not an analytic relationship. 

KDP Model 

The free energy for the KDP model is given (up to 

ImT 

an additive constant) by Eq. (B.12). If we let z = 11-/11, 
we have I:l = - COS11Z and I:l = ~ eB€. Note that, for 
T = 00, Z = ~ and (B.12) gives ~ In(~), which is the 
residual entropy of square ice.2 

The analytic structure below To is trivial, and so we 
consider only the Riemann structure of the high­
temperature free energy. The singularities of g: in 

ReT 

FIG.6. Riemann structure for the two-dimensional ISing model in the 
complex temperature plane. The lines denote logarithmic branch cuts. 

ImZ 

-.III -IT -I I IT ill 

-2 -I 2 
FIG. 7. Riemann structure for the 

ReZ KDP model in the complex z-plane. 
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the z plane are logarithmic branch points at z = l/n, 
n, n = ± 2, ± 3, ... , and we have branch cuts ± (l/2In I, 
1/2 ( I n I + 11» and cuts starting at z = n which we 
take parallel to the imaginary z axis as shown in 
Fig. 7. z = a is an accumulation point of branch 
points and is an essential singularity. Next we note 
that each strip of unit width as indicated in the z 
plane maps onto an entire Riemann sheet in the I::.. 
plane. We label the corresponding sheets I::..N , 

N = ± I, ± II, .. '. These sheets are connected along 
branch lines (± 1, ± co) as shown schematically in 
Fig. 8. The line z = n corresponds to the two edges 
of the positive (negative) cut if n is odd (even). The 
small branch cuts on strips ± I of the z plane map 
into similar cuts (- cos(rr/21 n 1 ), - cos[ rr /(21 n I + 1)]) 
which occurs on 1::..[ and 1::..-/ only. The remaining 
D.-structure is free of additional singularities. A 
small circle centered at z = nrr maps into a small 
circle about I::.. = ± 1, and tracing the circle once in 
the positive sense in the z plane is equivalent to 
circling I::.. = ± 1 twice in the positive sense. 

The sheets I::..± 1 are each connected (along the small 

x 
=><= 

~ x= 
x= 

-I 

FIG.8. Connectivity of the A sheets in the 
Riemann structures for the ice models. 

Im/3 

L'.II 

L'.I 

L'. - I 

L'.-II 

branch cuts) to a countable number of additional I::.. 
planes which we denotel::..~~). On these planes the 
values of 5' differ by nrri from its values on I::..±I == 
1::..(0). On I::..~), by circling I::.. = 1 clockwise, we go to 
.:l~~ == I::..~i and again circling I::.. = 1 return us to I::..t~). 
The same thing happens for I::.. = - 1. However, if on 
I::.. u we go to -1 and circle this point we do not re­
turn to 1::..1> but spiral onto another countable set of 
Riemann sheets f},~l on which the values of 5' differ 
from those on I::.. ~ by nrri. This same situation occurs 
for all the remaining sheets I::..N == I::..yp. Thus, we 
have a doubly countable infinite collection of Riemann 
Sheets I::..(n) N = ± I ± II ... n = a ± 1 ± 2 .. , For 

N, '" ",. 
N = ± I, the I::..~) are joined along the small branch 
cuts, and for N '" ± I they are joined along the long 
branch cuts. 

Next we consider the Riemann structure for 5' as a 
function of (3. As indicated above, the analytic struc­
ture in the (3-plane is periodic with period 2rri/E, so 
we need only look at the principal strip 0 ::; Im(3 < 
2rr/E. Each Riemann sheet I::..r;) corresponds to a 
Riemann sheet (3).n). Of these, N°) and (3Cfj> are typical 
and are shown in Fig.9. (3<P) is shown and B~~) differs 
only in the absence of the cuts labeled (3) and (4). The 
connectivity as regards the various sheets exactly 
mirrors that for the I::..).m) except going from I::.. = 1 to 
I::.. = -1 means leaving (3 = In(2/E) along the negative 
real axis and returning to In(2/E) + rri/E parallel to 
the positive real axis. Finally, the behavior in the 
complex T plane is shown in Fig.1a. 

F Model 

For clarity we repeat here for the F model the 
general considerations applied to region I. 

The solution for the free energy of the F model can 
be written (for T > Tc) 

-----.. 
O.25/e 048/e in2/e 

(4) ., (3) (I) 
____________________________ --1~I'e ~-------------------------------

(2) 

o Re/3 

FIG.9. Riemann structure for the KDP model in the complex f3 plane. 

J. Math. Phys., Vol. 13, No.6, June 1972 



                                                                                                                                    

ANALYTIC PROPERTIES OF THE FREE ENERGY 895 

if! =0 - ,:; = - ~E + 8~ t«> dx sech (;~) 
X In (coshx - cos2/l\ 

\ coshx -1 I' 
II = - cosJ.L = 1 - i e28 €. (4.1) 

Following the procedure in Ref. 16, Eq. (12), we find 

I = ]«> dx sech (11X) In (COShX - COS2/l) 
o 2fJ. coshx-1 

= 2J.L ]«> dx sechJ.Lx[ coth11x(1 - coshxy) + sinhxy], 
o x (4.2) 

-I 

lmT 

(2) 

FIG. 10. Riemann structure for the KDP 
model in the complex temperature plane. 

Imf1-

-II -I 

T=O 

(b) 

ReT 

I 

where y = 2(IJ -n11) and n11 :5 Ref..! < (n + 1)11. Equa­
tion (4.2) can be rewritten 

I = 41l] «> dx 
o x 

sinh(/l - n11)x sinh[(n + 1)11 - /l]x 
cosh/lx sinh11x 

n11:5 Re/l < (n + 1)11, (4.3) 
or 

] «> dx 
4/l -o x 

sinh(11 - /l)x 
tanh/lx sinh11x 

0:5 Re/l < 11, (4. 4a) 

I- ) 
- 4/l fo «> ~ (~~~~~: - 1 sinh[(211 - /l)x], 

11 :5 Re/l < 211. (4.4b) 

The first integral in (4.4) converges for all /l in the 
strip 0 :5 Re/l < 11 and, therefore, defines an analytic 
function if! 1 (/l). The singularities of the integrand are 
poles at the points xo(k) = ik, xl (k) = (2k + 1) 11i/2/l, 
k = 0, ± 1, ± 2, ... (excluding x = 0). The correspond­
ing residues are 

k . _1_ sin2k/l 
Xo ( ) . k11i cosk/l ' 

2(-1)k+l ( 112) 
xl (k) : 11i(2k + 1) cot (2k + 1) 2/-l . (4.5) 

As /l moves counterclockwise along a semicircle from 
the right half -plane to - /-l in the left half -plane, the 
pair of poles xl(k) = - xl[-(k + 1)] also exchange 
positions along semicircular paths. In doing this, the 
poles x~ (k) break through the positive real axis (in the 
x plane), which we can deform into the positive real 
axis together with small counterclockwise circles 

IT ill 

-I 

(a) 

(c) 

FIG. It. Riemann Structure 
for the F model in the com­
plex 11 plane. 
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aboutthe point xl (k). By noting that the pole structure 
remains completely unchanged, we have 

closely related to the elliptic function14 dn. Thus, 
we can continue <lI1 (fl) from the strip 0 :S Refl < 71' to 
the strip - 71' < Refl:S O. Next we note that <lI 2 (fl) is 
a uniformly convergent series everywhere off the 
real fl axis. However, for fl real <lI 2 (fl) has a pole at 
every rational multiple of 71', m 1T In, where n is odd. 
These points are dense on the real line so that any 
expansion of <lI 2 (fl) in a power series about any real 
point will have zero radius of convergence, i.e., 
<lI 2 (fl) has a natural boundary along the real axis. 

<lI1 (- fl) = <lI1 (fl) + 271'i ~ Residue at ~~ 
00 (_1)(k+1)/2 
~ k 

k=1.odd 
(k7l'2) 

cot 2il 

(4.6) 

It is interesting to note that the series in (4. 6) is 

Im!3 

Im!3 
Rn2/€ Re!3 

@ 
7ri/€ 

-----------

7ri/2€ 

---------- ----- • Rn2/€ Re!3 

FIG. 12. Riemann Structure for the F model in the complex j3-plane. 

ImT 

2Eihr 

2.d/3V 

0-------------- ------__ 
Tc ReT 

FIG. 13. Riemann structure for the F model in the complex temperature plane. 
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Since the same argument applied to each of the repre­
sentations (4.3) leads to the same conclusion, we see 
that cP{t..!) is analytic everywhere in the /J. plane ex­
cept for a natural boundary along the negative /J. axis 
as shown in Fig. l1(a). Again, since tl = - cos/J., each 
strip of the /J. plane of width 11 parallel to the imagin­
ary axis maps into an entire Reimann sheet of the 
tl-Riemann structure. These are connected as indi­
cated in Fig. 8. Each Riemann sheet tlN has branch 
cuts (-1, - cO), (1, cO). Thus, if one begins at tll = ° 
and circles tl 1 = 1, one goes onto tl II' By circling 
tl = 1 again, one returns to tl1 or by then circling 
tlu = -1 goes to tlUI' etc. Other than these branch 
cuts, the sheets 6.N , N = I, II, ... , are free of singu­
larities. However, if we begin at 6.1 (physical sheet 
above Tc) and circle - 1, we go to 6. -1' tl_1 has a 
natural boundary along the interval [- 1,1], which 
cannot be crossed. By circling the entire interval, we 
go to tl-n, tl-n1' etc., all of which have the same 
structure as 6.-1 , These two types of Riemann sheets 
are shown in Fig. 11 (b), (c). Once again, the {3-Rie­
mann surface has the same singularity structure as 
the tl-surface except that the behavior in the funda­
mental strip is repeated periodically throughout each 
sheet. The cuts (± 1, ± cO) become (- 00 + 11i/2E, 
cO + 11i/2E) and In(2/€) < f3 < cO. The natural boundary 
(- 1, 1) maps into (- cO, In(€/2». The resulting struc­
tures are shown in Fig. 12. Finally, the Riemann 
structure in the temperature plane is shown in Fig.13. 

Finally, we must consider the low temperature-free 
energy for the F model. In the original work4 this 
was described by a different analytic expression than 
(4.1). However, for T < Te , we have 6. < -1, and /J. 
becomes pure imaginary, /J. = iX. Now if in (4.4) we 
set /J. = iX + E and take the limit as € --'> 0, we find 

1 fOO dx 'A <P = - (3€ + 2" Im - coth11x tanXx e' x, 
'-00 x (4.7) 

where the slash on the integral sign denotes that we 
take the Cauchy principal part in integrating past the 
singularities of the integrand. By closing the contour 
of integration in the upper half-plane, we obtain, by 
summing the residues at the singularities of coth11x, 
ni , being careful to include only half the residue of 
the singularity at x = 0, 

00 1 
Re<p = - (3€ + iA + ~ - tanhnA e-nA (4.8) 

,,=1 n 

which is precisely the old expression. Therefore, 
the imaginary axis in the 11 plane describes the low 
temperature behavior as indicated in Fig. l1(a). Once 
again the series in (4.8) is related to an elliptic 
function.14 
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APPENDIX A 

The function <p(/J.) is defined by 

1 00 dx (COSh(2/J.X) - cos(2j.L - ¢o») 
<p(/J.) = 4' foo cosh(7Tx) log cosh(21J.X) - cos¢o ' 

where ¢o(/J.) is defined by 
(AI) 

as a function of the complex variable /J. which we 
write as 

In the range - 1 < tl < 1, which corresponds to 
0< /J.1 < 7T, Eq. (2. 21) gives 

z(o) = -K2 + max(0,-K1 ) + cP(/J.). 

(A2) 

(A3) 

(A4) 

Clearly there is a single independent variable in the 
physical problem; obvious choices for this are /J. or T. 
Thus 11 depends on T, or indirectly on /J.. Several re­
marks are relevant in this connection. 

(1) For the F and IF cases, the problem is much 
more simple since 11 = 1 for all T; thus ¢o(ll) == 0. 
Theorem 1 below discusses the analytic properties 
in the 11 plane for this case. 

(2) For the KDP and IKDP cases, the function <p(/J.) 
can be evaluated in terms of elementary functions.1 6 

(3) The physical properties of the model are evident­
ly all obtained by considering a small neighoorhood of 
the real positive temperature axis. 

Theorem 1: Consider the case ¢o == 0: 

(1) <p(Il) can be analytically continued to the entire 
11 plane except the line 112 = 0, III ~ 0, which is a 
natural ooundary. 

(2) <p(/J.*) = (<p(Il»*. (A5) 

(3) For real A > 0, 
00 

H<p(iA) + cP(-iA)] = ix + ~ n-1 e-n"A tanh(nA). 
1 (A6) 

This should be compared with Eq. (3. 13). 

(4) For all /J. except points on the real axis, 

cP( )-<p(- )_~ (_1)n t(7T2(2n+1)\_. 
/J. /J. - 7i' 2n + 1 co 2/J. J l7T. 

Proof: The integrand in (AI) with ¢o == ° has 
simple poles at 

xo(n) = (n + i)i, n = 0, ± 1, .. " 

and logarithmic branch points at 

xf(n) = ± i + n7Ti/l1, 

x2(n) = n7Ti/ll, n = 0, ± 1, .. '. 

(A7) 

(A8) 

(A9a) 

(A9b) 

As 11 moves away from the real axis, the branch 
points move in the x plane. Evidently <p(/J.) may be 
analytically continued to the entire /J. plane, except 
the negative real Il axis; in that case, the contour of 
integration is pinched by the branch pOints against 
the singularities xo(n), for all rational values of 11. 

Since <p(/J.) is real analytic and real on the line seg­
ment (1l2 = 0, ° < III < 7T), the Schwarz principle 
gives (A5), the second part of Theorem 1. 

In order to derive (A6) and (A7) and prove that (/J.2 = 
0, III ~ 0) is a natural boundary, cP(/J.) may be rewrit­
ten, using the Parseval formula, as 
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q,Ul) = t J<X> dx sinhflx, sinh(71 - fl)x 
-<X> X coshflX, sinh71x 

(AlO) 

provided 0 < fll < 71. (This result may be extended to 
other strips, but this will not be needed here.) 

In this case, the integrand has simple poles at 

Pl(n) = (n + t) 71i/fl, n = O,± 1,"', 

po(n) =ni, n =± 1,± 2, .. ·. 

(All) 

(A12) 

As fl rotates, the poles Pl (n) rotate synchronously and 
impinge upon the real axis when fl = iX. An element­
ary, but tedious, calculation shows that 

. X <X> 

q,(zX) = "2 + Y n-l e-nA tanh(nX) 

<X> (_ l)n e-n2 (n+l/2)/A 

+ i ~ -----------:-­
o (n + t) sinh[(712 /X)(n + t)) 

(A13) 

Using (2) of Theorem 1, one readily obtains (A6) from 
(A13) and the result 

<X> (- l)n 
q,(iX) - q,(- iX) = - i71 + 4i :0 --­

o (2n + 1) 

(
712 (n + t») 

x coth . 
X 

(A14) 

According to the identity theorem for analytic func­
tions, the analytic continuation of q, (fl), whenever it 
exists, must satisfy the equation 

00 (- l)n (712 (2n + 1») 
q, (fl) - q, (- fl) = - i 71 + 2 ~ -- cot . 

o 2n + 1 2fl 
(A15) 

The series above represents an analytic function in 
the finite fl plane except for the line fl2 = 0, upon 
which there are simple poles at the points flo, given 
by 

flo = 71(2r + 1)/2s, (A16) 

where r.and s are any integers. In order to prove 
that the real axis is a natural boundary, we have to 
consider the approach to fl2 = 0 along a line 

fl = 71(2r + 1)/2s + ifl2' (A17) 

This gives 

q,(fl) - cf>(- fl) = 4fl(- l)r 23 (- l)n 
fl 271(2r + 1)2 n~O (2n + 1)2 

+ G(fl2' flo), (A18) 

where G(fl2' flo) can be bounded. The sum of the 
series is the Catalan constant, which is nonzero. The 
intercepts of the lines given by (A17) with the real 
axis form a dense set of points in CR. Thus the line 
{flz = 0, - 00 < fll :s O} is a natural boundary. This 
completes the proof of Theorem 1. The physical in­
terpretation will be described later. 

When n > 1, the motion of the singularities in the 
integration plane for q,(fl) is complicated by the ex­
plicit dependence of CPo on fl. Nevertheless, we shall 
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be able to prove an analog of Theorem 1, although we 
shall be content with a more restricted domain of 
analyticity for q,(fl). 

There are fl-dependent branch points in the integra­
tion plane at 

(A19a) 
and 

xi(n) = ± i¢0/2fl + n71i/fl, n = O,± 1,"', 
(A19b) 

as fl varies the contour of integration pinches the 
stationary poles at 

xo(n) = (n + t)i, n = O,± 1,···. (A20) 

It is clear that the motion of the branch points has 
an epicyclic character which arises from the de­
pendence of ¢o on fl. It should also be noted that 
singular behavior of q,(fl) is given by the branch 
points of ¢o(fl) at 

fl = i IKll + (2n + 1)71, n = 0, ± 1, .. '. (A21) 

For Kl > 0, CPo(fl) is analytic in a neighborhood of 
the real positive fl axis. Also CPo/2fl is real for real 
fl, so that in that case the branch points Xl (n) lie on 
the imaginary axis. Clearly there exists an E > 0 
(for Kl > 0) such that q,(fl) is analytic in the domain 

(A22) 

On the principal branch of CPo (fl), we have by Taylor's 
theorem at fl = 0 that 

(A23) 

Thus the eccentric motion of the epicycle may be 
made arbitrarily small by confining fl to a small 
enough disc about fl = O. Evidently there exists a 
neighborhood Do of fl = 0 for which the motion of 
xl (n) is essentially synchronous with fl. In this case, 
the analysis of Theorem 1 can be taken over directly 
to prove that q, (fl) is analytic for all fl in Do, except 
the set of points {f.l: fl2 = 0, J.ll :s O} n Do, which is a 
natural boundary. 

The function q, (fl) will now be evaluated for fl = iX, 
X> O. Using the Parseval transform, one obtains 

q, _1. J<X> dx sinh(7T - fl)x sinh(fl - cpo)x 
(fl) - 2 -<X> X coshflX sinh71x (A24) 

for 0 :s fl, 0 < 7T, fl2 ;c O. By employing the same 
argument as for Theorem 1 (only the residues of the 
poles are changed), one may find 

. X - Bo <X> e-nA sinh(X - Bo)n 
q,(ZX) = -- +:0 - --~...,..-r-

2 1 n cosh(nX) 

~ (-l)n COS[(71Bo/X)(n + ~)J + 2i LI e-(,2/ A) (n+l/2), 
0

1 
2n + 1 sin[(7T2 /X) (n + t)J 

(A25) 
where Bois given by (A2) with 11 = iX. By using the 
analyticity of CPo(ll) in a neighborhood of 11 = iX,it is 
clear that there exists a 0 > 0 and a y(o) > 0 such 
that if> (11) is analytic in the domain D i defined by 
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(A26) 

The number ° in the above definition may be chosen 
so that Di n Do ~ <p. Thus <I>(Il) is analytic every­
where in the domain T = Di U Do U Dr except for the 
set {Il: Ilz = 0, (J.1 :s O} n Do, which is a natural 
boundary Since <I>(Il) is real analytiC for Ilz = 0, 
(J.1 > 0, it follows that 

(A27) 

for Il E T, by the Schwartz reflection principle. Thus 
we have established the following theorem: 

Theorem 2: If the variable 1/ satisfies 1/ > 1, then 
for all such values we have the following. 

(1) <1>«(..1) may be analytically continued to a sector S of 
the (..I plane given by 

-(i1T + o):s arg(J.:S (i1T + 0), ° > O. 

There are singularities at the branch points of <po«(J.) 
given by 

(J." = ± ilK 1 I + (2n + 1)1T, n = 0, ± 1, .... 

(2) <1>«(..1*) = (cp«(J.»*. 

(3) For A> 0, 

l' . A - fio 00 e -nA Sinh(A - fio)n 
-d<l>(lA) + <1>(- 1A)] = -2 - + I: - h A 1 n cos n 

For fixed 1/ 2: 1, in order to investigate the nature of 
the Singularity of <I>(Il) at Il = 0 and its thermodynamic 
consequences, we have to find an asymptotic expan­
sion for <I>(Il) valid near Il = O. This may be done 
along the lines laid down by Yang and Yang.10 Equa­
tion (A24) may be rewritten as 

<1>(11) = -21 J 00 --~ C(1l x) 
'" -00 x sinh7Tx " 

(A28) 

where 
sinh(1T - Il)x sinh(fl- c,oo)x 

C(Il, x) = cosh(..lx . (A29) 

We define the set S of points in the Il plane by the 
prescription 

11l1:s r, -00:S argll:S 0, 

where 

0o=1T-e, e>O. 

Let the straight line P be given by 

(A30a) 

(A30b) 

(A31) 

For Il E S, P is always free of poles of C(Il, x); con­
sequently the integration path may be deformed to P. 
Along P, however, all the derivatives with respect to 
/1 of C (/1, x) are bounded for Il E S and so we have the 
following. 

" (1) C(Il, x) =2:)cj (x) Il j +g,,(x) 1l,,+1, 
o 

(A32) 

where g,,(x):s Mn for all x E P. 

(2) The functions g,,(x) and cj(x) and even, with 

(A33) 

It follows that 

" <I>(Il) = I: d .jJ) + O(lln + 1 ), 
o J 

(A34a) 

where 

J
oo C .(x) dx 

QI _ 1. -L2~~ 
j - 2 ~oo x sinh7T x (A34b) 

The d. must grow sufficiently fast to make the radius 
of codvergence of (A34a) zero. The differential coef­
ficients of <I>(Il) with respect to Il and 1/ at the point 
(/1 = 0,1/ = 1/0 ) are evidently obtained by termwise 
differentiation of (A34a). The coefficients d j may be 
obtained by rewriting 

(A35a) 

where 

J
1

(1l) = if 0(. dx sech(llx) (e-'I'OX _ e-(Zll-'I'O)X) 
o x 

with 

(
r(1 + s/4) rei - S/4)) 

=:: log 
r(1 - s/4) rei + s/4) 

s = 1 - c,oo/Il. 

The other integral J z (Il) is given by 

JOO dx e- 7TX 

J z(ll) = 0 x cosh(llx) sinh1Tx 

x sinhc,ooX sinh(1l - c,oo)x 

which may be rewritten as 

J z(ll) = Jo
oo 

; [exp(2~Y) -1r1 

(A35b) 

(A35c) 

(A35d) 

x cosh(1 - s)y - cosh(1 + s)y. (A35e) 
coshy 

The generating function 

e(2A-1)x 00 (2x)n 
coshx =:: I: En (A) n! 

o 
Ixi < 1T/2, (A36) 

for the Euler polynomials, and the formula 

(A37) 

give the formula 

J (Il) = foo dy 
z 0 y 

(A38) 

By using the standard integral 

J 00 dy I (27TY) J -1 o y Lexp T -1 y2n 

one readily finds that 

J2(/1)=~ (~~;! ~zn(-2S) -E2,,(~)1 B 2" (i~~2n 
(A40) 

Thus <I> (/1) has the asymptotic expansion 
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r(l + s/4) r{~ - s/4) 
q,(/l) == log -----:-----

r(l -s/4) r{~ + s/4) 

+ ~ (;:;! [E2n (-2 s) - E 2n (i)] (i/l)2n 
B Zn -:ftl' 

(A41) 
valid for /l E S, defined by (A30). 

The crucial point is that only even powers of /l 
appears in (A41), and q,(/l) belongs to the class Coo 
under differentiation with respect to /l2 at /l == 0 
along any radial line in S. By the implicit function 
theorem, /l2 is an analytic function of /),. in a neigh­
borhood of /),. == - 1. Thus one concludes that, even 
though q,(/l) is not analytic at /l == 0, nevertheless all 
temperature derivatives of z(O) exist at T == To (cor­
responding to /),. == - 1) and are continuous there. We 
see that the F model results are prototypical for any 
/),. == - 1 transition point; such transition points are 
of infinite order in the Ehrenfest scheme. 

APPENDIXB 

Consider the function 

I(Ci {3y)==1°O h(Ci)l (COShX-COS{3)d 
, , 0 sec x n coshx _ cosy x. (B1) 

Let the function F({3,y) be defined by the integral 

1 JOO e
ixy 

F({3,y) =="2 -00 coshx _ cos~ dx. (B2) 

Then, for 0 < Re{3 :S 1T, we have by contour integration 

F == _1T_ sinh[(1T - (3)y] 
((3,y) sin{3 sinh(1TY) (B3) 

These results may be extended to other strips in the 
(3 plane by use of the relation 

F({3, y) == F(2k1T ± (3, y) (B4) 

although F({3, y) is not defined for Re{3 == 2n1T. 

The Fourier cosine transform of In[(coshX - cos(3)/ 
(coshx - cosy)] is readily obtained from this function. 
Since sin{3F({3,y) is continuous for 0 :s {3:S 21T, we may 
integrate it with respect to {3. Furthermore, the in­
finite integrand in (B2) is uniformly convergent with 
respect to {3 in 0 < {3 < 21T so that the order of inte­
gration may be reversed in that interval giving 

1 00 dx cos In (coshx - cos(3) 
o xy \coshx - COsy 

== 21T csch(1TY) sinh[(1T~(Y + (3»y] sinh[H{3 -y)y] 
y 

==! {e-YY- e- fly -+- 2e- 1TY csch(1TY) sinh(~(y + (3)y) 
Y 
x sinh[ ~(y - (3)y]) . (B5) 
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The Fourier cosine transform of sech(Cix) is 

1
00 

cos(xy) sech(Cix) dx == (1T/2Ci) sech(1Ty/2Ci). 
o 

(B6) 

Application of the Parseval theorem to (B1) gives 

I (Ci, (3, y) == ~ 100 

dy sech(~21T \ {2e- IIY csch(7TY) 
Q' 0 Y Ci) 

x sinh[~(y + (3)y] sinha(y - (3)y] 

+ e-yY - e-/3y} (B7) 

for 0 < Re({3, y) < 21T. The extension of this to other 
ranges of (3 and y is achieved by using the relation 

I(Ci,{3,y) == I(± Ci + 2k1Ti,± (3 + 211T,± y + 2m1T). (BS) 

The evaluation of the free energy for KDP and IKDP 
will now be considered. By using the Laplace trans­
form 

100 e-pt (1 - secht) dt == 2ln 2r( tP + ~) . 
o t pl/2r{tP + t) 

it follows that 

1
00 

dy sech (1TY) (e-yY - e-/3y) 
o y 2Ci 

I. KDP 

From (3.3) 

== 2ln r{{3Ci/21T + t)r(YCi/21T + t) . 
r«(3Ci/21T + t)r{YCi/21T + ~) 

- {35'KDP == (1/4/l) I (1T/2/l, /l, 3/l - 21T), 

(B9) 

(BlO) 

(Bll) 

where 21T/3 :s /l :S 1T. The remaining integral in (B7) 
may be evaluated by appealing to the table of Laplace 
transforms in Ref. 16. Thus 

II. IKDP 

In this case we have 

- {35'IKDP == - K + (1/4/l)[I (1T/2/l, 5/l - 21T, /l) 

+ I (1T/2/l, /l, 3/l)] (B13) 

with 1T/2 :s /l :s 21T/3. This gives 

- (35'lKDP == lnl (2/l/1T) COt(1T2/2/l) csc/li. (Bl4) 

This same formula therefore holds for KDP and 
IKDP, the values of /llying in different ranges. 
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In a previous paper a discussion was given of linear canonical transformations and their unitary representa­
tion. We wish to extend this analysis to nonlinear canonical transformations, particularly those that are rele­
vant to physically interesting many-body problems. As a first step in this direction we discuss the nonlinear 
canonical transformations associated with the radial oscillator and Coulomb problems in which the correspond­
ing Hamiltonian has a centrifugal force of arbitrary strength. By embedding the radial oscillator problem in a 
higher dimensional configuration space, we obtain its dynamical group of canonical transformations as well as 
its unitary representation, from the SP(2) group of linear transformations and its representation in the higher­
dimensional space. The results of the Coulomb problem can be derived from those of the oscillator with the 
help of the well-known canonical transformation that maps the first problem on the second in two-dimensional 
configuration space. Finally, we make use of these nonlinear canonical transformations, to derive the matrix 
elements of powers of r in the oscillator and Coulomb problems from a group theoretical standpoint. 

1. INTRODUCTION 

In previous publications,1-3 we discussed the role of 
canonical transformations in quantum mechaniCS, and 
when the transformations were linear we obtained 
their unitary representations in appropriate spaces. 
These representations have also been derived by 
other authors from a more abstract standpoint. 4 

As our eventual aim is to obtain relevant canonical 
transformations and their unitary representations 
for physically significant many-body problems,3 we 
must first deal with problems of one particle in one 
dimension that go beyond the harmonic oscillator 
case,l which was the starting point of our discussion. 
Thus in this paper we derive explicitly the dynamical 
Lie group (and not only the Lie algebra as is custo­
mary in the literature) of canonical transformations 
of the radial oscillator and Coulomb problems in 
which we have a centrifugal force of arbitrary 
strength. We then proceed to obtain the unitary re­
presentation of this group in configuration space and 
in the basis in which the Hamiltonian H is diagonal, 
and finally determine, as a group theoretical problem, 
the matrix elements of powers of the radial coordi­
nate with respect to eigenstates of H. 

By embedding our one-dimensional radial oscillator 
in a two-dimensional configuration space, we easily 
derive its dynamical group and the corresponding 
unitary representation from particular linear canoni­
cal transformations in the four-dimensional phase 
space of the latter problem. The well-known map­
pings3 ,5 between the two-dimensional oscillator and 
Coulomb problems, allows us then to translate our 
results to the radial Coulomb case in a straightfor­
ward fashion. 

2. THE RADIAL OSCILLATOR PROBLEM 

We wish to conSider a single particle one-dimen­
sional problem whose Hamiltonian (in units in which 
the mass, frequency of the oscillator and 'Pi are 1) is 

(2.1) 

The coordinate r varies in the interval 0 ::5 r < 00, Py 

is its canonically conjugate momentum, and A is an 
arbitrary real constant. For reasons that will appear 
later we shall denote by IJ. a real positive constant 
related to ~ through 

IJ. = (A2 + {)1/2 or A2 = (IJ.- ~)[(f.1.-~) + 1]. (2.2) 

As the Poisson bracket {r,p y } is 1, we conclude that 
in the quantum mechanical picture Pr = - ia/ar and 
thus the eigenstates f(r) of (2.1) satisfy the equation 

1 t d
2 

A2 ) - -- + - + r2 f(r) = Ef(r). 
2 dr2 r2 

(2.3) 

It is well known that the eigenstates of (2.3) charac­
terized by f.1. and an integer n have the form 

f~(r) == [2(n!)]1/2[r(n + f.1. + 1)]-1/2e-y2/2rfJ+1/2L~(r2), 

901 

(2.4a) 
where6 L~ is an associated Laguerre polynomial, and 
A and f.1. are related as in (2.2). The states (2.4a) 
are orthonormal in the sense 

1
00 

f~, (r)f~II(r)dr = 0nlnll' o 
and the eigenvalues of (2.3) are given by 

(2.4b) 

En = (2n + f.1. + 1), n nonnegative integer. (2.5) 

A. The Dynamical Group of Canonical Transfor-
mations 

We wish now to obtain explicitly the dynamical Lie 
group associated with the Hamiltonian (2. 1), and its 
unitary representation both in configuration space 
and in the basis where H is diagonal. For this pur­
pose let us first replace A in (2.1) by a momentum 
Pe associated with an angle 8; we have then the two­
dimensional Hamiltonian for an oscillator problem 
which in polar and cartesian coordinates takes the 
form 

H == ~(P; + r2p~ + r 2) = ~(P2 + r 2 ) 

= ~(N + x~ + P~ + x~). (2.6) 

We first recall1 ,2 that the dynamical group of canoni­
cal transformations of H is the symplectic group in 
four dimensions SP(4). This group has a subgroup 

SP(4) :J SP(2) x 0(2), (2.7) 

where 0(2) is the rotation group in the two-dimen­
sional space, while SP(2) is the symplectic group of 
linear canonical transformations 

r = ar + bp, P = er + dp, ad - be = 1, (2.8) 

in which the constants a, b, c, d are real. 

We now note that under the transformation (2.8) the 
angular momentum 

(2.9) 

remains invariant. As, furthermore, we have that 

(2. 10) 
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We see that the transformation (2. 8) implies that the 
new radial coordinate and momentum r,P y are given 
in terms of the old ones r, Pr by 

r = [a2r2 + b2(P~ + x. 2r-2) + 2abrpy ]1/2, 

_ acr2 + bd(P~ + x.2y-2) + (ad + bc)rPr 

py = [a2r2 + b2(P~ + x.2y-2) + 2abrPr]1/2' 

(2.11a) 

(2. 11b) 

where we replaced Pe = Pe by a constant value x.. 
We have thus obtained the dynamical Lie group asso­
ciated with the Hamiltonian (2. 1) which is a represen­
tation of the group of unimodular real matrices 

ad - be = 1. (2. 12) 

The subgroup 0(2) of (2.12) (not to be confused with 
the rotation group in two dimensions) for which 

a=d=cos~a, b=-c=sin~ll', (2. 13) 

is the symmetry group of the Hamiltonian (2.1) as 
can be checked directly. We wish to determine the 
unitary representation of the canonical transforma­
tions (2. 11) in a basiS in which r is diagonal. 

B. The Unitary Representation of the Dynamical 
Group in Configuration Space 

We shall limit our discussion to the transformations 
(2. 11) in which b > O. The case b < 0 follows imme­
diatelyl.2 from it as well as the limit b -7 O. The 
analysis in Ref. 2 then indicates that for the group of 
linear canonical transformations (2.8) of the two­
dimensional oscillator (2.6), the unitary representa­
tion is 

(r' I u I r") = (21Tb)-1 exp[(- i/2b) 

x (ar'2 - 2r'or" + dr"2)] 

= (21Tb)-1 exp[(- i/2b)(ar'2 + dr"2)] 
00 

X L; i mJrn (b-1r'r")e im(e'-f)"), (2. 14) 
m=-OO 

where in the last term we have expanded the two­
dimensional plane wave in polar coordinates. 7 

The eigenstates of the two-dimensional oscillator 
(2.6) in polar coordinates are characterized by the 
integer quantum numbers n, m and have the explicit 
form 

(rlnm) = r-l/2f~rnl(r)(21Tt1/2eime, (2.15) 

where the radial function is given by (2. 4a) with Jl = 
(,\2 + t)1/2 being replaced by I m I. The unitary repre­
sentation (2.14) with respect to these states is clear­
ly diagonal in the m index as (2.14) is invariant under 
rotations and, thus, we can write 

(n'ml Uln"m) = II (n'ml r')dr'(r'l ul r")dr"(r"ln"m) 

= (100 

jlml(r')dr'{imb-1 
'0 0 n' 

x (r'r,,)1/2Jm (b- 1r'r") exp[(- i/2b) 

x (ar'2 + dr"2)]}dr"f,i::'l(r"). (2.16) 

This equation immediately suggests that for Jl = I ml 
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or A = (m 2 - t )1/2 the unitary representation be­
tween the radial variables (r'l Uill r") of the canonical 
transformation (2.11) [which expliCitly depends on Jl 
through (2.2)] is given by the expression inside the 
curly bracket of (2. 16). Thus we may expect that for 
an arbitrary Jl we have for the unitary representa­
tion of (2. 11) 

(r'l U I r") = b-1 (r'r" )1/2J (b-1r'r") 
11 M 

X exp[ (- i/2b )(ar'2 + dr" 2)]. (2. 17) 

We suppressed the i/l in (2.17) as,in any case,our 
representations will be ray representations. 1.2.8 

While (2. 17) is rigorously true for Jl = I ml, it is only 
a surmise for other values of Jl. We proceed to jus­
tify it by obtaining explicitly the unitary representa­
tion for arbitrary Jl in the basiS in which the Hamil­
tonian (2.1) is diagonal. 

C. Unitary Representations of Canonical Transfor-
mations in the Basis in Which H Is Diagonal 

If we want to have the unitary representation (2.17) in 
a basis in which H is diagonal, we must calculate the 
integral 

(n'IU/lln") = ~co~oof~,(rl)dr'(rllu/llr")dr"f~,,(r") 
(2.18) 

This integral can be evaluated by exactly the same 
procedure that was followed in the determination of 
the matrix element (4.34) in Ref. 2. In fact, we just 
need to replace l by Jl - t and suppress the factor i l 
to get the value of the double integral (2. 18). 

To justify now the value (2. 17) for (r' I ufll r") for 
arbitrary Jl, we notice first that the most general 
matrix (2. 12) of the symplectic group can be written 
as 1 

(ac 
b) =(COS~ll' sintll') (e l/2fJ 

0 \ 
d - sin~a COS~ll' 0 e-1 / 25) 

(
cosh Sinh) 

X . 1 l' 
- S1ll2Y COS2'l' 

(2.19) 

The transformations associated with the angles 0' and 
y leave the Hamiltonian (2. 1) invariant and thus from 
a classical standpoint we could identify these angles 
with time. Therefore when the elements of the matrix 
(2. 19) are given by 

(
a b) (cost sint), 
e d - - sint cost 

(2.20) 

the transformation (2.11) gives us the coordinate and 
momentum at time t from the coordinate and momen­
tum at time O. The corresponding unitary represen­
tation in the basis in which the Hamiltonian is diago­
nal must then be 

(n'l U)lln")Ci~2t fJ~Y~O = 0n'n" exp[i(2n' + Jl + 1)t], 
. (2.21) 

as the energy is given by (2.5). From (4.37) in Ref. 
2 we note that we get exactly this value when we re­
place l by Jl - (1/2) except for a constant phase 
which is irrelevant because we deal with ray repre­
sentations. Thus the integral (2. 18) gives the correct 
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unitary representation for any canonical transforma­
tion (2.11) in which the symplectic matrix has the 
form (2.20). 

It remains then to check only if the integral (2.18) 
gives the unitary representation for a dilatation in 
which 

a = d-1 = e 8/ 2 , b = c = O. (2.22) 

USing the formula6 

n 

L~ (e 8 x 2 )= ~ [k! r(n - k + /1 + 1)]-lr(n + /1 + 1) 
k=O 

X e(n-k)8(1_ e8)kL~_k(x2), (2.23) 

we can immediately find out the expansion of the 
states 

(2.24) 

in terms of the statesf~(r) of (2.4). The result turns 
out to be 

(n' I Ullln")a =0,8,'1'=0 = i-Il - 1 [n'! n"! r(n' + /1 + 1) 

x r(n" + /1 + 1)]1/2(cosht{:l)-1l-1 

x (1 - e 8)n f +n"(1 + e8)-n'-nff 

x ~ {[p!(n' - p)!(n" - P)!r(p + /1 + 1)]-1 
p 

X (- 1)nf
- P(sinht{:l)-2P}, (2.25) 

and up to a phase it is identical2 to the one that 
comes out from the integral (2. 1S). 

We have thus proved that (2. 17) is the unitary repre­
sentation in configuration space of the group of canon­
ical transformations (2. 11) for arbitrary A = 
(/12 - ~ )1/2. The unitary representation in a basiS in 
which the Hamiltonian is diagonal is given by pro­
ducts of the matrices (2.21) and (2.25) using the de­
composition (2.19). 

3. THE RADIAL COULOMB PROBLEM 

We now wish to consider a Hamiltonian which in 
atomic units has the form 

(3.1) 

with r'Pr having the same meaning as in Sec. 2 and A 
being an arbitrary real constant. As in (2.2) we in­
troduce a positive constant M related to A through 

M == (A2 + t)I/2 or A2 = (M - t)[(M - t) + 1]. 
(3.2) 

We shall denote the eigenvalue of the Hamiltonian 
(3.1) by 

(3.3a) 

Introducing then the variable 

p = (rill), (3.3b) 

we see that the eigenstates of (3.1) satisfy the equa­
tion 

p~(- d
2 

+ A2) + 1JF(P) = 211F(p). (3.4) 
~ dp2 p2 

The analysis of this equation indicates that the solu-

tions will be regular at CIJ only when 

II =n + M + !, (3.5) 

with the radial quantum number n being a nonnegative 
integer. The eigenstates have then the explicit form 

(3.6) 

where6 L;M are associated Laguerre polynomials in 
which M and n are related to A and II through (3.2) 
and (3.5). 

The coeffiCient AnM can be determined by normaliza­
tions which can be achieved in two ways. If we consi­
der F~ as a function of r, the requirement 

~oo F~,(r/vf)F~,,(rlv")dr = 0nfnff (3.7a) 

gives 
A == AC - [ 22M+l(n - 1)1 J1/2 (3.7b) 

nM nM - (n + M + t)r(2M + n + 1) • 

On the other hand, if we consider F~ as a function of 
p, the operator on the left-hand side of (3.4) will be 
Hermitian (and thus give rise to orthonormalization), 
only for integrals of the form 

~oo F~,(p)F~,(p)p-ldp = 0n'n'" (3. Sa) 

which implies that the normalization coefficient be­
comes 

AnM == ACM = 2M [2(n !l/r(n + 2M + 1)]1/2. (3. Sb) 

The upper indices c and P distinguish between the two 
cases when necessary. When referring to the function 
F~(p) without qualifications, we shall understand that 
it is given by (3.6) with the normalization (3. 8b). 

We wish now to obtain explicitly the dynamical Lie 
group associated with the problem (3. 4) as well as its 
unitary representation. We can achieve both objec­
tives through the mappings between the two-dimen­
sional oscillator and Coulomb problems. 

A. Mappings between the Two-Dimensional Oscillator 
and Coulomb Problems 

From the two-dimensional coordinate and momentum 
vectors r, P we can build the following independent 
quadratic expressions1.2 

II == t(p2 - r2), 12 == i(r'p + p'r), 

I3 == t(p2 + r 2) = tHo 
(3.9) 

The Poisson brackets between the Ii, either when they 
are considered as classical observables or quantum 
mechanical operators, are given by 

(3.10) 

Thus they correspond to the generators9 of a Lie 
algebra of the group SU(1, 1), which is isomorphic1.3 
to the SP(2) group of linear canonical transformations 
(2.8). 

Turning now our attention to the two-dimensional 
Coulomb problem, we describe it in terms of the 
radial coordinate p and an angle cpo The correspond­
ing CarteSian coordinates we designate by 
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~1 = P coscp, ~2 = p sincp (3.11) 

and their canonically conjugate momenta by 1T l' 1T 2' 

In terms of the two-dimensional vectors ~,1T we can 
now construct the expressions10 

Kl == !p(1T2 - 1), K2 == ~~011 + tn°~, 
K3 == !p(112 + 1). 

(3. 12) 

The Poisson brackets between the K i , both classically 
and quantum mechanically, are given by 

{K1,K2}=-K3 , {K3 ,K1}=K2, {K2,K3 }=K1• 

(3. 13) 

Thus they correspond to the generators9 of the Lie 
algebra of SU(l, 1). The operators Ki are Hermitian 
under the measure used in (3. 8a). 

Before proceeding with the explicit construction of the 
group whose generators are the Ki of (3.13), we first 
indicate why we are interested in it. When we write 
K3 as a quantum mechanical operator in polar coordi­
nates, we immediately notice that its eigenstates are 
given by the wavefunction 

tJ;(p, cp) = p-1/2F(p)e iM "" (3. 14) 

in which F(p) satisfies Eq. (3.4) with M = (A2 + t)1/2 
being an integer. Thus the relation of the problem 
(3.4) with the Lie algebra (3.13) is exactly of the 
same type as the one that exists between the radial 
equation (2.3) for the harmonic oscillator and the 
Lie algebra whose generators are the Ii given by 
(3.9). As the latter relation allowed us to deter­
mine,1-3 the group of canonical transformations and 
its unitary representation for the harmonic oscillator 
problem, we expect that the former relation will 
achieve the same objectives for the Coulomb problem. 

We now consider a canonical transformation that con­
verts the Ii of (3.9) into Ki of (3. 12) assuming them 
to be classical observables. The mapping appears in 
its simplest form in polar coordinates if we consider 
the relations3.5 

r2 = 2p, (3. 15a) 

(3. 15b) 

This implies that in Cartesian coordinates we have 

~1 == !(x~ - x~), (3. 16a) 

(3. 16b) 

To determine the corresponding relation for momenta 
we recall that in classical mechanics the generalized 
velocities and momenta are connected by Hamilton's 
equation 

(3. 17) 

For the two-dimensional oscillator and Coulomb pro­
blems the H are, respectively, 213 and 2K3 and thus 

i == 1,2. (3. 18) 

From (3. 16a) and (3. 16b) we obtain then that 

J. Math. Phys., Vol. 13, No.6, June 1972 

1T 1 = r-2(x1P1 - x 2P2), 

1T 2 = r- 2 (x1P2 + X 2 P1 ). 

(3. 16c) 

(3. 16d) 

We easily check that the transformation (3. 16) is 
canonical and besides it maps the generators Ii of 
(3. 9) of the Lie Algebra of the harmonic oscillator 
into the Ki of (3.12) of the Coulomb problem. From 
(3. 16) we note also that 

1T", == h1T2 - ~21T1 == !(x1h -x2P1) == !Pe ,(3.19a) 

(3. 19b) 

(3. 19c) 

In particular the transformation (3.15) maps Ii on Ki 
even when we interpret them as quantum mechanical 
operators. 

With the help of the canonical transformations (3.15) 
and (3.19), we are now in position to obtain the dyna­
mical group of canonical transformations associated 
with problem (3. 4). 

B. The Dynamical Group of the Coulomb Problem 
and Its Unitary Representation 

The dynamical group of canonical transformations 
associated with the harmonic oscillator problem is 
given by (2. 11). In the Coulomb problem our radial 
variable is p and its corresponding momentum 1Tp' 
From the relations (3.15) and (3.19) connecting p, 1Tp 
and r,p y we conclude that (2.11) gives rise to the 
following nonlinear canonical transformations for the 
Coulomb problem 

p = !r2 = !(a2r2 + b2p2 + 2abrop) 

== p[(a + b1Tp)2 + b2A2p-2], (3.20a) 

_ _ - _ (a + b1Tp)(C + d1Tp) + bdA2p-2 
1T - p-l~ 011 - -----'-----'------

p - - (a + b1T )2 + b2A2p-2 ' 
P 

(3.20b) 

where we have replaced 1T", == iT", by the value A; it 
takes in the classical picture. Thus we have obtained 
the dynamical Lie group of canonical transformations 
associated with the Coulomb system in the formula­
tion (3.4). 

To discuss the unitary representation of the canonical 
transformation (3.20), we first notice that from 
(3. 15a) and (3. 19b) we can map the classical oscilla­
tor problem (2.1) with X == 2A, onto the Hamiltonian 

p(1T~ + A2p-2 + 1), 

with the help of the canonical transformations 

p == !r2, 

(3. 21) 

(3. 22a) 

(3. 22b) 

Thus if we obtain the unitary representation V asso­
ciated with (3.22), we can determine the correspond- . 
ing one for (3.20) through the Similarity transfor­
mation 

w == V-1 UV 
Mil' 

(3.23) 

where the matrix elements of U
II 

are given by (2.17). 
In this expression we have to use the relation IJ. = 2M, 
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which is the quantum mechanical equivalent of X = 2A, 
as in quantum mechanics Jl and M are, respectively, 
the eigenvalues of Pe and Tr", related by Pe = 2Tr", as in­
dicated in the previous subsection. 

To get V, we proceed as in Refs. 1 and 2. Using the 
Dirac notation in which we indicate by (r'l, Ir") and 
(p'l , I p") bras and kets in which rand p are, respec­
tively, diagonal, we look for the transformation 
bracket (r' I p') that satisfies the equation1.2 

p(r' I p') = p'(r' I p'). (3. 24) 

From (3. 22a) this equation implies that the transfor­
mation bracket is proportional to o(p' - ty'2). If we 
further require that the bracket should be orthonor­
mal in the sense 

fO (p' Ir')dr'(r' Ip") = o(p' - p"), 
a 

we obtain that 

(r' I p') = (2p,) 1/4 o(p' - ~r'2). 

(3. 25) 

(3. 26) 

We can multiply the expression (3.26) by any phase 
factor which is a function of p'; but this proves un­
necessary as the transformation bracket (3.26) al­
ready guarantees that 

(p' Ip !p") = f (p' !r'Hr'2(r' !p")dr' = p'o(p' - p"), 
(3. 27a) 

(p'!Tr !p") = f (p'!r,)~(~_a +~)(r'!p"~dr' 
p ~ ir' ar' 2r'2 ~ 

= f (p'!r,)(_l_a_(r'!p")\dr' 
i ap" 'l 

1 a "(' ") = - i ap" u p - p , (3.27b) 

where we made use of the fact that the Hermitian 
form of the quantum mechanical operator Trp of 
(3. 22b) is 

1 1 1 a i 2(r-1p +p r )=--+-. 
r r ir ar 2r2 

(3. 27c) 

The unitary representation of the canonical transfor­
mation (3. 22) is thus given by the bracket (3. 26) and 
therefore the matrix element of V-1 U 2M V in the repre­
sentation in which p is diagonal takes the form 

(p'! WM Ip") = (p'! V- 1U2M V! p") 

= ff(p'lr')dr'(r'!U2M lr")dr"(r"lp"). (3.28) 

Substituting the values (2. 17) for (r'l U 2M! r") and 
(3.26) for (r'! p'), we obtain 

(p'IWMlp") = b-1J 2M [2b- 1(p'p")1/2] 

x exp[?- i/b)(ap' + dp")]. (3.29) 

The unitary representation when the Hamiltonian 
(3.21) is diagonal, rather than the observable p, is 
given by 

(n'IWMln") = ~oo ~oo p'-1/2F~(p') 
x dp'(p'l WM I p")dp" p"-1/2F,.Af,(p"), (3.30) 

where FM(p) is given by (3.6) and the extra factors 
p'-1/2, l-1/2 come from the normalization (3.8). As 
from (2.4a) and (3.6) we have that 

F~(p) = (p/2)1/4f~M[(2p)1/2], (3.31) 

we immediately obtain that 

(n' I WM In") = (n' I U2M In"), (3.32) 

with the latter expression being given by (2.21) when 
the transformation is of the type (2.20) and has the 
form (2. 25) for a dilatation. 

It is important to keep in mind that our canonical 
transformations and their representations are not so 
much connected with the Coulomb problem (3.1) as 
with the one whose Hamiltonian is (3.21). The latter 
is directly related, when A2 = l(l + 1), with the stereo­
graphic projection of a four-dimensional point rotor 
on a three-dimensional momentum space as was 
first pointed out by Fock.ll Thus we shall refer to 
the problem whose Hamiltonian is (3. 21) as the 
pseudo-Coulomb problem and our analysis, so far, 
has been restricted to it. 

4. RADIAL MATRIX ELEMENTS 

The matrix elements of powers of the radial coordi­
nate with respect to oscillator or Coulomb wavefunc­
tions are easily evaluated using properties of the 
Laguerre polynomials or their generating functions. 6 

We wish though to obtain their values through the use 
of the dynamical group of canonical transformations 
so as to develop a procedure susceptible to generali­
zation to more complex problems. 

For the oscillator case the radial integrals were al­
ready determined through the use of the dynamical 
group of canonical transformations12 as well as by 
other group theoretical approaches,13 We have thus 
to concentrate on the Coulomb problem, on which 
group theoretical methods have been developed,14 but 
they do not use canonical transformations. Rather 
than enter into this problem directly it will prove 
more effective to discuss first the matrix elements 
of r2k, k integer, in the oscillator problem, from an 
angle different from the one used in Ref. 12. Once we 
determine these matrix elements the extension to the 
pseudo-Coulomb problem will be achieved through the 
mappings (3. 22a) and (3. 31), while the actual Coulomb 
integrals of r k can be obtained from those of the 
pseudo-Coulomb problem and the expression (2.25) 
for dilatations. 

A. Matrix Elements of r2k for Oscillator States 

We start our discussion by noticing that if in the 
generators (3.9) of the dynamical group of the two­
dimensional oscillator, we replace 

p2 = P~ + r-2p~, Pe = X, 

we get the observables 

/1 = t(P~ + X2r-2 - r2), 

13 = t(P~ + ,\2r-2 + r2). 

(4.1) 

12 = t(rPr + Prr), 

(4.2) 

The Poisson brackets of the Ii' both classically and 
quantum mechanically, have the value (3.10) and thus 
these observables are the generators of Lie Algebra 
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of a group SP(2) as well as groups isomorphic to itt 
such as SU(I, 1). 

From 11 and 12 we can construct the operators 

(4.3) 

and we easily check that for the f# (rl of (2. 4a) we 
have 

I±f~(r) = [(n + /1 + ~ ± ~)(n + ~ ± ~)]t/2f~±1 (r). (4.4) 

Thus I± are raising and lowering operators for the 
index n and the set of f ~ (r), n = 0, 1, 2, •.. , belong to 
a single unitary irreducible representation of the 
SU(I, 1) group. The lowest weight element of the set 
c~rre~ponds to n ;= 0 and, thus, is an eigenstate of 13 
WIth eIgenvalues 2(/1 + 1). We can use this number or 
more compactly }1 itself to label the irreducible 
representation. If /1 is 0 or a positive integer, the 
representations are part of the discrete series dis­
cussed by Bargmann 9: They are single valued on the 
SU(I, 1) group manifold and are characterized by the 
integer or semi-integer numbers 

~(/1 + 1) = t 1, %, 2, %, •••• (4.5) 

When /1 is an arbitrary nonnegative real number the 
representations are multiple valued on the SU(I, 1) 
group manifold and are not discussed in Bargmann's 
paper; but they are as straightforward to obtain as 
those when }1 is integer. In fact, a basis for multi­
valued-irreducible representations for arbitrary /1 
is precisely given by the functions f~(r), n = 
0,1,2, ... , with /1 specifying the irreducible repre­
sentation and n indicating its row. 

We wish now to characterize r2 k as a linear combina­
tion of irreducible tensors of SU(I, 1). When we 
achieve this purpose we can make use of the Wigner­
Eckart theorem to express the matrix elements of 
r2k in terms of the Wigner coefficients of SU(I, 1) 
determined by Ui.15 To reach our objective we notice 
from (4. 2) that 

(4.6) 

Thus r2 k can be expressed as a polynomial in the 
generators Ii of the dynamical group. To develop 
this polynomial in terms of irreducible tensors of 
SU(I, 1), we first introduce the auxiliary generators 

(4.7) 

The SU(I, 1) Casimir operator can then be written as 

(4.8) 

so we can deal formally with the Ii as generators of a 
rotation group. In order to express ~2 as a lowering 
operator in SU(2) we rotate the generators by 71 /2 
around the axis 1, i.e. 

1'1 = 11, 
and thus 

~2 = 13 + ill = i(Il' - iI2). 

As the rank 1 irreducible tensors in SU(2) are 

(4.9) 

(4.10) 

(4.11) 

we can build the rank k and projection - k irreducible 
tensor in the I i as 

(~r2)k = ik(I'1- iI2)k = ik2k/2(I.!llk == i k2 k/2<{3k(I"). 
(4.12) 

We can now express y2 k in terms of I' undoing (4.9) 
through the rotation matrices :D-;;'l>n I (Ci{3y), Le.,16 

(~r2)k = i k 2 k/2 "6 <{P(I'):Di- k(71 /2,71/2,- 71/2) 
T • 

="6 (- W2-k / 2[(2k)!]1/2 
T 

x [(k + T)! (k - T)!J-1/2<{P(II). (4.13) 

Now in order to pass from the SU(2) irreducible ten­
sors <{f(I') of (4.13), to the SU(I, 1) irreducible ten­
sors <{P(I), we notice that the former are defined by 

II~ = Ii ± iIz, [I~, <{P(I')] = [(k 'f T)(k ± T + 1)]l!2<{f±1(II) 
SU(2) ! 

tlb = 13, [Ib, <{P(l')] = T'T';(I'), 

while the latter are characterized by12.15 

From these relations and (4.7) we see that 

'T'!;(I') = iT<{!j(I). (4. 16) 

Carrying the corresponding substitution in (4.13), we 
finally obtain, using the Wigner-Eckart theorem, 

J~Vn == .r fA'f(r)(;-r2)kf~(r)dr 
_'>' I" J-l,n, ,TJ-l,n)n.c. r( ('<,1)2 )112(' k I f\ ] 

-7L (l? + T)! (1?- T)! (J-l, 0, k, 0 I /1, O>n.c. 
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(4.14) 

(4.15) 

00 x.b f6(r)(~2)kfb(r)dr. (4.17) 

The brackets (I) n.c. stand for the Wigner coefficients 
of the noncompact group SU(1, 1). These coefficients 
were given by Ui15 for integer J-l; but this formula is 
still valid for arbitrary J-l. As the last integral is 
trivial to determine, we get from the explicit expres­
sion of ( I) n.c.' and the selection rule 15 n + T = n f, 
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[kJl = (_l)n+nf k!r(k + J1 + 1) (n!nf!r(n f + J1 + 1»)1/2 
n'n 2k (k + n' -n)! r(n + J1 + 1) 
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min~ k+n-n'}0 (k + n' - n + p)! ) 
X LJ (4.18) 
p~max(O.n-n') !(k + n -n' - p)!(n -p)!(n' -n + p)!r(n'-n + J1 + P + 1) • 

The relation - k :S T :S k implies the selection rule 
In - n'l :S k. 

B. Matrix Elements of pk for the Pseudo-Coulomb 
Problem 

For the pseudo-Coulomb problem we need to calculate 
the matrix elements 

f; F~(p)pk F~,(p)p-1dp, (4.19) 

as we are using the normalization condition (3.8). 
Taking then (3. 22a) and (3.31) into account, we imme­
diately see that the integral is identical to (4. 17) and 
thus is given by the l~~nM of (4.18). 

C. Matrix Elements of rk for the Coulomb Problem 

For the Coulomb problem the states are normalized 
according to (3.7) and thus we are interested in the 
integral 

JkM == (AC lAP )(Ac lAP) t' FM(rlv)rkFM(rlv')dr nn' nM nM n'M n'M 0 n n' , 

(4.20) 

where A~ z, A~ I are given by (3. 7b) and (3. 8b), respec­
tively, and v, v' and n,n' are related by (3.5). As be­
fore the functions F~(p) are normalized in the sense 
(3.8). Introducing then the variable p = (rlv), we can 
write 

J~~, = [nn'(n + M + t)(n' + M + -m-1 / 2 

x vk +1 Ioco F~(p)pk+1F~,(vplv')p-ldp. (4.21) 

* Work supported by the Comisi6n Nacional de Energfa Nuclear, 
Mexico. 

t Fellow of the Schweizerischer Nationalfonds der Wissenschaften. 
1 M. Moshinsky and C. Quesne, Proceedings of the XV Solvay Con­

ference, Brussels (1970). 
2 M. Moshinsky and C. Quesne, J. Math. Phys. 12, 1772 (1971). 
3 M. Moshinsky, "Canonical Transformations and Quantum Mecha­

niCS," NolI'S of Ihi' Lalill Americall School oll'itysic8 (University 
of MeXiCO, Mexico, 1971). 

1 C. Itzykson, Commun. Math. Phys. 4, 92 (1967); v. Bargmann "Group 
Representations on Hilbert Spaces of Analytic Functions" in Anal\'­
li(' Me/liOds ill Malhell/alical I'hl'sics, edited by Gilbert and New- -
ton (Gordon & Breach, New York, 1968). 

5 D. Bergman and Y. Frischman, J. Math. Phys. 6,1855 (1965). 
6 M. AbramOwitz and 1. A. Stegun, Editors, H(l/l!lh!Jok 0/ Ma/lll'lIl11lical 

From (2. 17) we easily see that 

lim (r'IUlr">==i-fl-1a-1/26(r'-a-1r"), (4.22) 
1>->0 fl 

d=a- 1 

and thus using (3.32) we obtain 

F~,(vplv') = ~ (vlv')1/2F~,,(p)ifl+1 
n" 

x (n"l U 2M In'>a=o,e= In(v/v'), Y =0' (4. 23) 

where the matrix element is given by (2.25). Combin­
ing the previous results, we obtain 

J~"hf == [nn'(n + M + t)(n' + M + t)]-1/2(vlv')1/2il'+1 

X ~ {[~~:Y(n" I U 2M I n'>a=O,e= In(v/ v,}.Y=O}, (4. 24) 

where, because In - n"l:s k, the summation is a finite 
one. 

We have thus achieved by group theoretical means the 
determination of the radial integrals in the pseudo­
Coulomb and Coulomb problems. We note though that 
we have the same M in both radial wavefunctions. 
This is unavoidable if we consider the radial problem 
as one-dimensional, forgetting its relations with other 
coordinates in a higher-dimensional space in which it 
can be embedded. If we think in terms of the groups 
of canonical transformations in these higher-dimen­
sional spaces, we can obtain matrix elements for dif­
ferent irreducible representations of SU(l, 1) in bra 
and ket as was shown for the oscillator case in Ref. 12. 

Funclions (Dover, New York 1965), pp. 775,781,784,785. 
7 P. M. Morse and H. Feshbach, l\llelhods or Theorelical Physics 

(McGraw-Hill, New York, 1953), p. 1371. 
8 M. Hammermesh, Grollp Theory (Addison-Wesley, Reading, Mass., 

1964), p. 469. 
9 V. Bargmann, Ann. Math. 48,568 (1947). 
10 K. B. Wolf, Nuovo Cimento Suppl. 5, 1041 (1967) 
11 V. Fock, Z. Physik 98, 145 (1935). 
12 C. Quesne and M. Moshinsky, J. Math. Phys.12, 1780 (1971). 
13 L. Armstrong Jr.,J. Math. Phys.12, 953 (1971): A. Crubeillier and 

S. Feneuille (to be published). 
14 L. Armstrong Jr., Phys. Rev. 3,1546 (1971); S. Feneuille, Compt. 

Rend. 271, 992 (1970); B. Wybourne (private communication). 
15 H. Ui, Ann. Phys. (N.Y.) 49,69 (1968). 
16 E. P. Wigner, Group Theory (Academic, New York, 1959), pp.157-70, 

J, Math, Phys .. Vol. 13, No, 6, June 1972 



                                                                                                                                    

Decision Procedures in Quantum Mechanics* 

Paul A. Benioff 
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 

(Received 11 November 1971) 

The. results of an earlie~ paper on finite and infinite sequences of measurements are here extended to include 
deCIsion procedures. It l~ sho.wn that with. e~ch decision procedure Q there is uniquely associated a probability 
?p~r~tor measure QQ, WhICh gIVeS the stahshcal properties of Q. None, some, or all of the paths of Q can be 
mfmlt:ly long. A result of t?is associa~ion is that there are two methods of measuring the probability that 
car~Ylng out.Q on a system In stat~ p gIves an outcome sequence in some set F. A remarkable aspect of this 
eqUIvalence IS that the purely phYSICal operation of one method is equivalent to, or can replace the physical 
operation and mathematical decision procedure of the other method. ' 

I. INTRODUCTION 

In a previous paper,l hereafter called I,processes 
which consisted of finite or infinite sequences of 
measurements of observables were considered. The 
processes were restricted to be such that each ob­
servable was discrete, von Neumann's projection 
axiom2 was applicable, and the process was "passive." 
That is, the sequence of observables and transforma­
tions was fixed at the outset and was independent of 
outcomes of prior measurements. 

The main result of I was that, to each finite or infinite 
process which satisfied these requirements, there 
corresponds a unique probability operator measure 
which contains or encodes all the statistical proper­
ties of the process. It was also shown that, as a re­
sult of this correspondence, there are two ways to 
measure the probability that carrying out a process 
on a system in state p gives an outcome sequence in 
some set F. One method consists of an infinite repe­
tition of carrying out the process on p, which gene­
rates an infinite sequence of outcome sequences. This 
sequence is then used to generate, by mathematical 
decision procedures, an infinite sequence of O's and 
l' s whose limit mean is the desired probability. The 
other method consists in repeated measurements on p 
of the observable whose corresponding operator is 
the one the probability operator measure assigns to F. 
Again the limit mean of the resultant infinite sequence 
is the desired probability. (In this paper, as in I, in­
finite repetition of a procedure or observable mea­
surement on a system in state p will always mean an 
infinite repetition of the following: Prepare a system 
in state p, carry out the procedure or observable 
measurement which gives an outcome (sequence), then 
discard the system.) 

In this pape~ we extend these results to cover pro­
cesses which are not necessarily passive; that is, 
processes consisting of discrete bounded observables 
and transformations and which use von Neumann's 
projection axiom are considered. However, the opera­
tion used for the (j + l)th step of any path can depend 
on the outcomes of the measurements (if any) made in 
the first j steps. Since such processes require a 
choice of operations to be made at one or more steps 
they are referred to as "active" processes or decision 
procedures. 

Section II begins with a description of finite and in­
finite decision procedures in terms of trees. Mter 
giving an example and some elementary properties of 
trees, the main result is obtained: that with each deci­
sion procedure consisting of infinite paths only, there 
is associated in a unique manner a probability opera­
tor measure which contains the statistical properties 
of the process. This result is then extended to deci­
sion procedures containing one or more finite paths, 
including those with finite paths only. 
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In Sec. III some consequences of this association are 
discussed. The two possible methods of measuring 
the probability that carrying out a decision procedure 
Q on a system in state p gives an outcome sequence 
in a set F are discussed. A brief sketch of the proof 
that these two methods are equivalent and do give the 
probability in question, is given. It is noted that the 
proof (like that given in I) requires the concept of a 
probability measure being "correct" for an outcome 
sequence. This concept, which forms the central part 
of a definition of agreement between theory and ex­
periment, given elsewhere,3 is based on the idea of a 
set being definable by a formula in the language of a 
formal theory. 

Again as in I, it is noted that a remarkable aspect of 
this equivalence is that the purely physical operation 
of one of the methods is equivalent to the physical 
operation and mathematical decision procedures of the 
other method. It is pointed out that, for decision pro­
cedures, this equivalence appears to be more remark­
able than for passive procedures. 

The question may arise regarding why one should ex­
tend the results of I to include decision procedures. 
Besides the general importance of such procedures,4 
a basic reason for such an extension is that it becomes 
possible to discuss realizations of mathematical com­
putation procedures in quantum mechanics. Clearly, 
any computer program is a decision procedure and, 
when broken down into elementary steps, would appear 
to be describable in terms of isometries (operations 
on the memory elements) and observables (reading the 
memory elements). 

In particular, the possible relevance of this work to 
studies in the foundations of mathematics arises from 
the point that Turing machines appear to be describ­
able by a decision procedure as defined here. The 
basic observation step of reading a square can be des­
cribed by an observable and the basic transformations 
of right shift, left shift, change a 1 to a 0 and change a 
o to aI, can be described by isometries. One aspect 
of the potential importance of this lies in the fact that 
Turing computability is equivalent to effective com­
putability, and thus the theorems of any formal axiom 
system are Turing enumerable (relative to a decision 
procedure for whether or not any formula is an axiom). 

n. DECISION PROCEDURES AND PROBABILITY 
OPERATOR MEASURES 

A. Tree structure 

Here adecisionprocedure is defined to be any process 
where for each j the choice of the operation for the 
(j + l)th step in any path can depend on the outcomes 
(if any) of the measurements made in the prior j steps. 
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The operations can be either transformations or dis­
crete bounded observables. The detailed form of a deci­
sion procedure is irrelevant here. It may be written 
out in English or given in some language understand­
able by a computer. It must be meaningful, though, to 
who or whatever reads it. 

With each decision procedure Q, one can associate a 
tree TQ consisting of all possible paths one could fol­
low in carrying out Q. Each vertex of TQ , in our case, 
corresponds to carrying out either a transformation 
or measuring an observable. In the former case, only 
one line leads out of the vertex and in the latter case 
there is exactly one line for each possible outcome of 
measuring the observable. The fact that only one line 
leads out of a transformation vertex does not mean 
that in actually carrying out the procedure, one has 
looked to see if the transformation really is the one 
given in the procedure. Such a looking would be a 
measurement by some observable and would have to 
be included in the procedure Q, as an observation step. 

A simple example of a decision procedure Q is the 
process "wait for a time t after the initial state pre­
paration (which is not part of Q) and then measure 
observable A = 6i ai Pa .• If the outcome is ai' translate 

I 

and rotate state by (Xi' t i' 0i) and measure observable 
Bi = ~jb/Pb!' Stop unless outcome b2 is observed. In 
this case, nieasure Observable C = ~j cjPc. and stop." 

J 

The tree TQ describing this process is given by Fig. 1, 
where the small circles denote vertices and the first 
step (wait t) is step O. The dotted lines denote other 
paths leading out of the vertices. The vertices denote 
operations and the line segments coming out of obser­
vation vertices denote outcomes. 

Some definitions are useful in what follows. A path is 
a maximal, well-ordered set of vertices (operations), 
where the well ordering is defined in the usual way 
(step 0 is the initial step of all paths). Thus, in Fig.1, 
(t),A, a2 (x2 , t 2 ,02),B2, bI(S) with S denoting "stop" is 
a path. a 2 (x2 , t 2 ,02) and bI(S) denote the transforma­
tion vertex (x2 ' t 2' ° 2) and the stop vertex immediately 
following outcomes a 2 and bI, respectively. The stop 
vertex is a dummy vertex present at the end of finite 
paths only and does not correspond to an operation. 

An initial segment of a path P is the set of all vertices 
occurring before some vertex v in p. Thus (t) and (t), 
A, a2 (x2 , t2 , Q2) are two of the four initial segments of 
the above path. The length L(p) of a path or initial 
segment equals the number of vertices in the path or 
initial segment. Thus the above example of a path has 
length 5. 

A tree is a finite path tree if each path has a finite 
length. There mayor may not be an upper bound to 
the path lengths of a finite path tree. An initial sub­
tree of a tree T is a tree resulting from the removal 
of one or more terminal segments from one or more 
paths of T. T" denotes the initial subtree of T in which 
all paths have length n [provided L(P) > n for each 
path P in T]. 

Another useful property is that to each path there 
corresponds exactly one outcome sequence. Thus 
each path P of a tree T is uniquely described by an 
outcome sequence ¢P' and sums over paths are equi­
valent to sums over outcome sequences. Other pro­
perties of trees are given elsewhere. 1 ,5 

Finally, one notes that the decision procedures con­
sidered here are restricted to be such that every 
initial segment of each path in the procedure has 
finite length. Thus paths containing finite or countably 
infinite sequences of operations are allowed, but paths 
containing countably infinite sequences of operations 
followed by one or more operations are excluded. 
Decision procedures satisfying this restriction will 
be referred to as being of order type ~ w. 

For each path p of a decision procedure Q, let lP(l), 
lP(2), ••• , lP(k) ••• denote the step number in p corres­
ponding to the first, second, ... ,kth ... measurements 
in p. (If p is finite or there are only a finite number 
of measurements in p, these sequences terminate with 
some value kP of k.) Clearly,lP(k + 1) > lP(k) for 
k = 1, 2 .. '. All other steps in p correspond to trans­
formations (or the terminal stop if p is finite). With 
each initial segment of length n of a path p, denoted 
by Pn (= step 0, step 1, ... , step n - 1 of p), there is 
uniquely associated an outcome sequence <PP,. whose 
length is given by the largest value of k for which 
l P(k) + 1 < n. If p is finite or there are only a finite 
number of measurements in p, then the outcome se­
quence cp p associated uniquely with P has a length k p. 

Let SQ denote the set of all finite outcome sequences 
associated with all finite paths and all initial segments 
of all paths of Q. That is, for each initial segment of 
each path in Q and for each finite path in Q, the cor­
responding outcome sequence is in SQ, and each se­
quence in SQ corresponds to either a common initial 
segment of some paths or a finite path in Q. 

SQ is generated as follows: Let S~ denote the set of all 
outcomes associated with the initial measurement 
[step l (1) = l P(l) for all paths P] of Q. For each finite 
outcome sequence ¢n (the subscript n gives the length 
of ¢n)' which corresponds to a common initial seg­
ment of some paths in Q, let S¢. be the set of outcomes 
of the measurement which Q a~signs to step lP(n + 1) 
of any path P in Q with associated initial sequence ¢n' 
If P is finite or contains only n measurements and 
¢12 = ¢P' then S"'n is empty. 

Define S1 and S12+1 by 

S1 = S~, 

(I) 

STEP 0 

I , 

0, 

, 
I 

/ 

2 

8 2 

3 

(1) 

(2) 

S S 

b: c, 

I 
I S II 
b~ 

b2 
2 S 

I 
/ 

/ , 

4 5 

FIG. 1. The tree corresponding to the simple example of a decision 
procedure. The vertices correspond either to transformations 
r(I), (Xl' 11> 11 1 ), (X 2,1 2 ,11,2)]' measurements [A, B1, B2, C] or the 
(dummy) stop operation l S]. The step numbers of the operations are 
given below the tree and the dashed arrows indicate other paths 
emanating from the preceding vertex. 

J. Math. Phys., Vol. 13, No.6, June 1972 



                                                                                                                                    

910 P A U L A. BEN I 0 F F 

where n = 1,2 ... and ¢ * S", denotes the set of se-
n "" 

quences ¢n +1 such that ¢n+1 (j) = ¢n(j) for j = 0, 1, .. " 
n - 1 and <Pn +1 (n) E Srp • Since each measurement 
operation in Q is descrete, each Srp,. is at most count­
ably infinite. Finally define SQ by (w is the first limit 
ordinal) 

(3) 

The basic correspondence assumption is that, for each 
decision procedure Q considered here, there is a Hil­
bert space JC such that each transformation and each 
measurement procedure in Q are uniquely represent­
able by a respective isometry (it is painless to gene­
ralize from unitary operators, so why not!) and dis­
crete bounded self-adjoint operator on JC. 

Under this assumption, it is clear that to each Q con­
sidered here there corresponds a unique tree of self­
adjoint observables and isometries where for each 
step m of each path p, if m = l P(k) for some k, then 
the operator associated with vertex m of path P in the 
tree is self-adjoint, discrete, and given by 

ApQ = E xP'Q,P m, 
m XES", 

k-l 

(4) 

where ¢k is the outcome sequence associated with the 
first m steps of p, and Sq; is the spectrum of ApQ • 

k m 
If m ;" lP(k) for all k(<, kP if P is finite or contains 
only a finite number of measurements), then vertex m 
of P has the isometry V~m associated with it. If vertex 
m is the terminal stop vertex of a finite path, it has 
no operator associated with it. As before Pm denotes 
the first m steps of P and is used as an index to show 
that the choice of any operation in Q can depend on the 
steps and outcomes (if any) occurring up to but not 
including the step under consideration. 

Also, under the correspondence assumption, S"'k be­
comes a subset of the set of real numbers, and SQ is 
a subset of U~~lRn, the set of all finite sequences of 
real numbers. 

B. Probability Operator Measures 

It is appropriate at this point to define and give some 
properties of probability operator measures. Other 
properties are given elsewhere. 1 ,6,7 

Let L.; be a a-ring of subsets of some set nand B(JC) 
the set of all bounded linear operators on a Hilbert 
space JC. A mapping 0: L.; -7 B(JC) is an operator valued 
measure if 

O(<l» = 0, (5) 

where <l> is the empty set and 0 the zero operator in 
B(JC) and where 0 is strongly countably additive. That 
is, if E l , E 2 , ••• is an infinite sequence of pairwise 
disjoint sets in L.; with E = UjEp then 

O(E) = Eo(.z<;), (6) 
J 

where the implied limit is the strong limit. 

An operator valued measure 0 is called self-adjoint 
(positive) if, for each E in L.;, O(E) is a self-adjoint 
(positive) operator in B(JC). If 0 is positive, L.; is a 
a-field, and 
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o(n) = 1, (7) 

where 1 is the identity operator, then 0 is a probab­
ility operator measure. If 0 is a probability operator 
measure, then for each state p, the function Pp: L.; -7 R 
defined for each E in L.; by 

Pp (E) = Tr(pO(E» (8) 

is a scalar probability measure. 

An operator valued measure 0 has the following easy 
properties: 0 is finitely additive. If E C F, then 

O(F) = G(E) + O(F E). (9) 

If further 0 is positive, then 

O(F) ~ O(E). (IO) 

If 0 is finitely additive, positive, and strongly contin­
uous from above at <l> or from below, then 0 is strongly 
countablyadditive. Weak and strong countable addi­
tivity are equivalent to one another but not to uniform 
countable additivity.7 Note that the operators in the 
range set of a probability operator measure 0 do not 
have either to be projection operators or to commute 
with one another. 

C. A Restricted Class of Q's 

The association of probability operator measures to 
decision procedures will be carried out by first giving 
a direct construction and proof for a restricted class. 
By means of a natural correspondence between the 
restricted class and the class of all decision proce­
dures (subject only to the restrictions of the corres­
pondence assumption and that all paths must be of 
order type <, w), a probability operator measure can 
be associated to any decision procedure in the larger 
class. 

The restricted class of decision procedures con­
sidered here consists of only those for which (1) each 
path of the corresponding tree is infinite (and of order 
type <, w), and (2) each path contains an infinite num­
ber of measurements or observations. The number of 
transformations in each path clearly is at most, count­
ably infinite. 

The reason for proceeding in this manner is primar­
ily mathematical. It is easy to show that, to each 
decision procedure Q, all of whose paths are finite 
and of bounded length, a probability operator measure 
o Q can be uniquely assigned. Also, as will be seen, 
with each procedure containing infinite paths only, a 
probability operator measure can be uniquely asso­
ciated. However, there appear to be mathematical 
difficulties in carrying out the association directly 
for procedures whose paths either are partly finite 
and partly infinite or are all finite; but there is no 
upper bound on the number of measurements which 
can occur in a finite path. It is suspected that these 
difficulties, which consist of proving that Eq. (7) 
holds for the appropriate construction, are techni-
cal and will be overcome in the future. 

The association of probability operator measures 
with decision procedures Q of the restricted type 
proceeds essentially as in 1. For each path P in the 
tree TQ and each n > 0, the operator f32n is defined 
from Eq. (4) by 
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{3Q = vQ •• , vQ pQ,PZ(k)V Q 

Pn Pn-2 PZ(k)+1 ¢p(k-l) PZ(k) 

X pQ,PZ(I) VQ •.• VQVQ (11) 
¢p (0) PZ(I)-1 PI <j>' 

where k is the largest integer such that l (k) + 1 < n. 
Note that in writing Eq. (11) for any initial path seg­
ment Pn , we do not regard step n - 1 as having been 
carried out. If n = l(k) + 2, then the far left-hand 
sequence of isometries is absent from Eq. (11), and if 
l(1) = 0, the far right-hand sequence is absent. Von 
Neumann's projection axiom2 has been used to give 
the form of the right-hand side of Eq. (11) as a pro­
duct of the operators taken in the same order as the 
operations to which they correspond and, appear in 
pathp of TQ' 

Consider a sequence ¢n EO Sn' As noted before this 
defines uniquely a set G of paths having a common 
initial segment of length l (n + 1) + 1 (k = 1, 2 ... and 
length = 1+ step number). However, ¢n gives the out­
comes of the measurements done at steps l(1) ... l(n) 
only. [l(j) is independent of any path P in the set so 
the index P is suppressed.] It does not give the out­
come of the (n + 1 )th measurement but only defines, 
in Q, what observable is to be measured. Thus one 
can use Eq. (11) to define {3$ by 

n 

where P is any path in G. If desired the path index can 
be entirely suppressed on the right-hand side as ¢n 
determines uniquely, through Q, the operators and 
their ordering. 

Define OQn({¢n}) by 

o Qn({¢n}) = {3t {3~ (13) 
n n 

and for each subset E of Sn define 0 Qn (E) by 

(14) 

where the convergence is in the strong operator topo­
logy. Finally, set OQn(<I» = 0, the zero operator. 

The proof that 0 Qn is a probability operator measure 
on Sn follows that given in I. For each ¢n' OQn({¢J) 
is a positive operator and thus so is 0 Qn (E) for all E 
for which 0 Qn (E) exists. To show that 0 Qn (E) exists 
for each E one first proves that Eq. (7) holds. One 
has 

OQn(Sn) = 6 {38~(3~n = 6 6 
¢nESn <P)ES) "'2ES2 

<P2f¢1 

x 6 (15) 
1>n E Sn 

°n,n-c¢n -1 

where 1Jn ,j denotes the first j elements of ¢n' i. e., 
tPn.j = ¢n (0) ... ¢n (j - 1). Here the second equality 
follows from the fact that the sequence of sums is 
just a rearrangement of the sum over all outcome 
sequences in Sn' A sum restricted to all (Pj E Sj with 
(Pj.j -1 = 1Jj -1 is a sum over all sequences in Sj for 

which the first j - 1 elements of ¢j are fixed and 
given by ¢j -1> and only the last element, 1J/j - 1), is 
free to vary. 

Carrying out the far right-hand sum and using Eq. (12) 
along with the facts that the VpQ ... VpQ are all 

Z(n)-1 Z(n -1) 
isometries, p2 = P, and the eigenprojectors of ApQ 
span all of JC gives one the result that Z(n) 

But clearly this yields OQn(Sn) = OQn-l(Sn_l)' Again 
carrying out the right-hand sum and repeating this 
over and over gives 

Q() Q_() Q( Q o n Sn = 0 n 1 Sn-1 = ... = 0 2 S2) = 0 I(Sl) 

= 6 VQ
t 
••. v Qt pQ.PZ(1) VQ ••. VQ = 1. 

¢IES) <j> PZ(l)-l ¢ (0) PZ(I}-l <j> 

(16) 

The existence of 0 Qn (E) for each subset E of Sn fol­
lows from this as OQn(E) is the limit of a nondecreas­
ing sequence of finite partial sums bounded from 
above by 1. 6 In this case, strong and weak conver­
gence are equivalent. 6 

To see that OQn is strongly countably additive [Eq. (6)], 
let {Em 1m = 1, ... } be a sequence of pairwise disjoint 
subsets of Sn with E = UmEm' Then1 

OQn(E) = 6 OQn({¢n}) = 6 6 o Qn({¢n}) 
¢n EE m ¢nEEm 

= 6 OQn(Em), 
m 

where the middle equality follows ultimately from the 
fact that if an infinite sum of nonnegative numbers 
exist, the value is independent of how the numbers are 
arranged in the sum. [This is also used to write the 
second equality of Eq. (15).] 

Thus, for each n, Eqs. (5)-(7) are satisfied, and one 
has that Eqs. (12)-(14) define a unique probability 
operator measure OQn : ~n ~ B(JC). ~n is the set of 
all subsets of Sn' Furthermore, by construction, OQ n 

is the unique probability operator measure assigned 
to the initial subtree T Q of T Q' where T Q is obtained 
from T Q by cutting eachnpath P between nsteps l P(n) and 
lP(n) + 1, adding terminal stop vertices, and discard­
ing the infinite terminal segments. TQ corresponds 
to an "initial subdecision procedure" ~f Q which con­
tains the first lP(n) + 1 steps of each path of Q. The 
uniqueness follows from the fact that, by construction, 
the assignment of 0 Qn to T Q is unique and the assign-

n 
ment of isometries and self-adjoint operators to the 
transformation and measurement procedures of Q is 
unique under the correspondence assumption. 

The assignment of a probability operator measure OQ 
to the whole procedure Q proceeds as follows: First 
consider the sequence {OQn\n = 1,2 ... } of probability 
operator measures defined on the sequence {L:nln = 
1,2' .. } of a-fields where L:n is the set of all subsets 
of Sn' We show that this sequence of operator mea­
sures is consistent. To this end, let m > nand E be a 
subset of Sm [Eq. (2)], such that for some F C Sn 

(17) 
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This is the appropriate generalization for decision 
procedures of the definition of cylinder sets which 
are appropriate to passive procedures and for which 
Sm reduces to the Cartesian product of rn sets. 

To see that the 0 Qn are consistent, one expands the 
definition of E in Eq. (17) and repeats the inductive 
procedures used to obtain Eq. (16). This gives 

OQn(E) = L:; L:; o Qm({¢m}) 
<Pn EF <PmESm 

<pm.n=<pn 

= L:; L:; L:; {3 ~:{3 ~ m 
<Pn EF <Pn+l ESn +1 <PmESm 

"'n+l,n=<Pn <Pm.m-l=<Pm-l 

= L:; (3f{3~ = OQn(F), (18) 
"'n EF n n 

which is the desired result. 

Now let R wand \B(R w) be the respective sets of all 
infinite sequences of real numbers and all Borel sub­
sets of RW. Let iY be the field of all Borel cylinder 
subsets of R w. \B(R w) is the minimal a-field over iY • 
For each n, define Un by 

Un = Sn X R X R X ••• 

and UQ by 

UQ = nUn' n 

(19) 

(20) 

UQ is the set of all possible real number outcome 
sequences of Q. Clearly,UQ E\B(RW) as Sn E\8(Rn) and 
thus Q E iY and \8(R w) is closed under countable inter-n 
sections. 

For each n, define OQ~: \8(Rn) -7 B(JC) by 

OQ~ (B) = o Qn(B n Sn) 

for each B E \8(R n). 0 Q~ is well defined on iB(R n) 
since if B = B'modSn, then B n Sn = B' n Sn and 

(21) 

" , OQn (B) = OQn (B'). Also OQn (Rn) = 1, and the count-
able additivity of OQ~ follows from that of OQn. Fin­
ally let m > nand E = F X Rm-n with F E iB(Rn). Then 

U {¢m} 
<PmESm 
"'m,n=<Pn 

and by Eqs. (7), (8) 

OQ~ (E) = OQm(E n Sm) = OQn(F n Sn) = OQ~ (F). 

Thus the sequence {O Q~ \ n = 1,2, ... } is a consistent 
sequence of probability operator measures defined on 
{1B(Rn) In = 1, 2,···}, where each OQ~ is the extension 
of OQn onto \8(Rn), and OQn is the restriction of OQ~ to 
~n C \8(Rn). 

By the operator valued equivalent! of the Kolmogorov 
extension theorem. s there exists a unique probability 
operator measure 0 Q' on \8(R w) such that for each 
E E ()' with base F E lS(Rn), 

OQ'(E) = OQ~(F). (22) 

Define ~Q and()'Q to be the respective a-ring and ring 
of all subsets of R w of the form B n UQ with B E \8(R W) 
and B E (5' , respectively. That is, (l'Q is the set of all 
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subsets E of UQ such that for some n and base F C Sn 

E = (F X R X R x ... ) n UQ 

and ~Q is the minimal a-ring over J Q. Since 
UQ E\8(Rw), ~Q is a sub a-ring of\8(Rw). 

(23) 

Define OQ to be the restriction of OQ' to ~Q. Since ~Q 
is a sub a-ring of \8(R w), 

o Q(E) = OQ' (E) (24) 

for each E E ~Q. Since OQ' is continuous from above! 
on \8(R w) and 0 Q' (Qn) = 1 for each n, 0 Q(UQ) = 0 "', (U "') 
= limn OQ'(Un) = 1 and thus OQ is a probability opera­
tor measure on ~Q. Also, for each E E rrQ with base 
F C Sn for some n, Eqs. (21)-(24) give 

(25) 

Thus we have shown that with each infinite decision 
procedure Q of the type considered here there is asso­
ciated a unique probability operator measure OQ which 
satisfies Eq. (25) on the field iYQ of subsets of U <p. 

Furthermore OQ contains all the statistical properties 
of the decision procedure Q. That is, for each E E &Q 
with base F C Sn and for each state p, Eq. (25) gives 
that 

Tr[pO Q(E)] = Tr[pO Q" (F)] = L:; Tr(p{3t (3",Q ) 
"'n EF n n 

is the probability that carrying out steps of Q, until n 
measurements have been done (this is equivalent to 
carrying out Qn)' on a system in state p yields an out­
come sequence in F. More generally for each E E ~ Q, 

Tr[pOQ(E)] is the probability that carrying out Q on a 
system in state p yields an (infinite) outcome sequence 
in E. 

D. Extension to All Q's 

As stated, this result applied only to decision proce­
dures in which each path is infinite and contains an 
infinite number of measurements.However, by making 
inessential changes, any decision procedure which con­
tains one or more finite paths can be put in the form 
considered here. Thus this result holds for all deci­
sion procedures (which are made up of discrete obser­
vables and which satisfy Von Neumann's projection 
axiom and all of whose paths have order type.;; w). 

To see this in more detail, let Q' be a decision proce­
dure with one or more finite paths and let Q be the 
procedure obtained from Q' by adjoining to the end of 
each finite path of Q' an infinite sequence of measure­
ments of the identity observable. For each n, let S~ 
and S~' be defined by Eq.(2)for Q and Q', respectively. 

Note that if a particular ¢n in SQ' equals ¢p (the out­
come sequence associated with path p) for some finite 
path which contains n measurements, then st is 
empty. So for any k > n, there is no sequenc~ in SJ/ 
which has ¢n as an initial segment. From this, the 
construction of Q from Q', and Eq. (2), it is clear that, 

h SQ' C SQ foreac n, n - n' 

Under the correspondence assumption, S;t and S;t' are 
subsets of Rn and are elements of \8(Rn). Thus one 
defines U;t and U~' as before by Eq. (19) and UQ and 
UQ' by Eq. (20). Both UQ and UQ' are in \8(Rw). Let ()'Q 
and ~Q be defined as before from Eq. (23). 
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From the above it is clear that QQ' contains the out­
come sequences corresponding to all and only the in­
finite paths of Q'. Thus if ¢n is the outcome sequence 
corresponding to some finite path of Q' which con­
tains n measurements, there is no sequence in QQ' 

which contains ¢n as an initial segment. By the con­
struction of Q, this is clearly not true for QQ and one 
has that QQ' C QQ, where QQ - QQ' contains all and only 
those outcome sequences which correspond to the 
extensions of the finite paths of Q'. 

The a-field ~Q' of events for the procedure Q' is de­
fined as follows. Let B Q' denote the a-field of sub­
sets of R w of the form B n QQ' for some B in \B (R w). 
Clearly BQ' c ~Q. Let ZQ' = QQ' U FQ' be the set of 
all possible outcome sequences of the process Q', 
where FQ' is the set of all outcome sequences asso­
ciated with the finite paths of Q'. Then ~ Q' is defined 
to be the set of all sets of the form E1 U E 2, where 
E1 E BQ' and E2 ~ FQ'. ~Q' is clearly a a-field be­
cause: (1)ZQ' E ~Q';(2)ifE1 EBQ' andE2~FQ',then 
the complement of E1 U E2 is (note that E1 n E2 = <1» 

(QQ' - E 1) U (F Q' - E 2) which is clearly in ~ Q'; (3) 
let {E1j U E2~ Ij = 1,2, ... } be an infinite sequence of 
sets in ~ Q' WIth E

lj 
E B Q' and E2j C F Q' for eachj. 

Then U/E1i U E 2j ) = (Uj E 1j ) U (U kE 2k),which is 
clearly in 2;Q'. 

Let m be a mapping from ZQ' to QQ such that, for 
each ¢ E QQ', m(¢) = ¢ and, for each ¢ E FQ', m (¢) is 
the sequence obtained by adding an infinite sequence 
of 1 's to the end of ¢. By construction, m is a one-to­
one mapping onto QQ. 

The association of a unique probability operator 
measure to the decision procedure Q' proceeds as 
follows: By the result of this section, under the cor­
respondence assumption there is a unique probability 
operator measure 0 Q associated with Q which satis­
fies Eqs. (13), (14), and (25) for Q. Define a mapping 
OQ': ~Q' -) B(JC) as follows: For each E in ~Q' set 

(26) 

where E = Et U E2 with E E BQ' and E2 C FQ' and 
mE2 = [m(¢) ¢ E E 2] C ~Q. 

Since OQ is a probability operator measure, it is 
clear that 0 Q' is also, and we have thus shown that 
OQ', given by Eq. (26), is a probability operator mea­
sure associated with Q'. It remains to be shown that 
it satisfies Eqs. (13), (14), and (25) for Q'. 

First, let E be any set of the form F x R x R x ... 
n QQ' with F C S~' for some n. Clearly E is a subset 
of QQ' and also F C S~ as S~' C S;r. From Eqs. (13), 
(14), and (25) we have 

OQ(E) = OQn(F) = .6 {3t{3",Q· 
"'n EF n n 

By the construction of Q from Q', {3",Q' = {3",Q for any 
such ¢n as the relevant parts of Q a~d Q' ~re identi­
cal. Thus one has from Eq. (26) (E2 = cf> and E1 = E) 

° Q' (E) = .6 {3j' t {3t . (27) 
"'n EF n n 

Next let fE be any subset of FQ' (E 1 = cf> and E = E 2 ). 

Since FQ is at most count ably infinite and for each 
E2 C FQ', OQ(mE2) exists, one has 

(28) 

where the countable additivity of ° Q and the facts that 
m is one-to-one onto and ~Q contains the singleton 
sets have been used. 

For each sequence ¢ in QQ, let E", n be the set of all 
sequences a' in QQ such that a' (j) '= ¢(j) for j = 0, 1, 
... , n - 1. One has that 

OQ({¢}) = s-limnOQ(Eq,n) = s-limn{3l{3",Q. (29) 
, n n 

The first equality follows from the facts that {E", n I n = 
1,2, ... } is a nonincreasing sequence of sets with 
limn E", n = {¢} and that 0 Q is strongly continuous from 
above. f The second follows from Eqs. (13), (14), and 
(25) and the fact that Eq, n has the form of Eq. (23) with 
QQ' replacing QQ and F ~ {¢n}' 

By construction, each ¢ in mE2 is the extension, by an 
infinite sequence of 1 's, of a finite sequence IJ in E2 
[with m(lJ) = ¢] which labels a finite path of Q' con­
taining, say, If} measurements. Since the projection 
operator for eigenvalue 1 of the identity observable 
is the identity operator, Eq. (12) gives, for each n > If}' 
{3Q = (3eQ'· Use of this in Eq. (29) gives, along with Eqs. 

"'n 
(26) and (28), 

Q' (E) '" (leQ' t{3eQ' , o 2=L..JH (30) 
eEE2 

which is the desired result. 

So one sees from Eqs. (27) and (3) that ° Q' does sat­
isfy Eqs. (13), (14), and (25) for Q', and, by the theorem 
on the extension of positive operator measures from 
fields to a-fields,6 is unique. [The field /j;Q' is the 
set of all sets of the form E1 U E2 with E1 = 
(F x RW) n QQ' and Fe S;r' and E2 C FQ' n S~' for 
some n.] 

Thus the result is obtained that under the correspon­
dence assumption, the unique association of prob­
ability operator measures to decision procedures 
extends to those containing one or more finite paths. 
Obviously this includes procedures with finite paths 
only. 

m. Discussion 

One consequence of this association of probability 
operator measures to decision procedures is that the 
other results of I can be extended to include these 
procedures. Thus let Q be any decision procedure of 
the type discussed here and F any set in a certain 
subset (to be defined later) of ~ Q. From the results 
of I there are two ways to measure the probability, 
that carrying out Q on a system in state p will yield 
an outcome sequence in F. One way (method 1) is to 
carry out Q on a system in state p an infinite number 
of times. This yields an infinite sequence a' such that, 
for each j = 0, 1, ... , a' (j) E QQ is an outcome se­
quence for Q. One then generates an infinite 0-1 
sequence IJEa' from a' by the prescription for eachj, 
(8Ea')(j) = l[O].if a'(j) is in F [is not in F] and com­
putes the limit mean MOEa'. 

The other method (method 2) is to carry out an in­
finite sequence of repetitions of measurements of the 
observable whose self-adjoint operator is OQ(F) on a 
system in state p. (Here OQ is the probability opera­
tor measure associated with Q by the methods of the 
last section). The result of this infinite sequence of 
measurements is a sequence {3 EO: R w. 
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It is clear that these two methods are equivalent if 
one can prove that 

(31 ) 

In brief, the proof using probability theoretic methods 
goes as follows: For the first method, one constructs 
the sample probability space «S1Q)w, (:6 Q)w, P ,Q)' where 
(S1Q)w is the set of all infinite sequences of elements 
of S1Q, (;0Q)w is the standard a-field of subsets of (S1Q)w, 
and P p, Q is a product probability measure on (;0 Q)w 
defined by 

(32) 

for each land F in ;0 Q, where EFZ = [0' 1 0' (l) E FJ. By 
means of an ergodic theorem 9 and the indecompos­
ability theorem 9 applied to the one-sided shift opera­
tor on (S1Q)w, one proves that 

(33) 

Pp,Q almost everywhere. 

Similarly for method 2, one constructs the sample 
probability space (Rw, 18(Rw), Pp,Q,F)' where Pp,Q,F is 
the product probability measure on 11.1(R w) given by 

(34) 

for each l and Borel subset B of R. Here EEl = 
[f3lf3(l) E BJ and (fOQ(F) is the spectral measure for 
the operator OQ(F) and (f~Q(F) == (fOQ(F)«_ 00, r J) with 
(- 00, r] the set of all real numbers.;; r. Again by 
means of ergodic and indecomposability theorems 9 

applied to the one-sided shift operator on Rw, one 
proves that 

1\1(-) = Tr[pOQ(F)], (35) 

P p,Q,F almost everywhere. 
Now, as was stressed in I, in order to complete proofs 
of this type, one must assume that the scalar prob­
ability measure P assigned to a process is "correct" 
for the process. That is, all properties of outcome 
sequences which are T-definable from P and which 
are true, P almost everywhere, must be true for the 
sequence obtained by actually carrying out the pro­
cess. (This definition of correctness is discussed in 
detail elsewhere,3 where it is the central part of a 
definition of agreement between a physical theory and 
experiment. ) 

A property of sequences is T-definable from P if and 
only if it is expressible by some formula in L(T) 
which contains a free sequence variable and may con­
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formal theory T. Also one requires T to be strong 
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~or the infinite repetition of measuring 0 Q(F) on p. If 
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required in method 2. There the physical operation of 
repeatedly carrying out the measurement of OQ(F) on 
p is a "passive" operation which requires no decisions 
to be made. 

Thus one has the striking result that the infinite re­
petition of a decision procedure Q followed by an in­
finite sequence of mathematical decision procedures 
for F is equivalent to the passive process consisting 
of an infinite repetition of measurements of 0 Q(F) on 
p. Furthermore, this equivalence holds if Q is a 
decision procedure or if Q is a passive procedure 
which requires no decisions to be made. 

One might argue that this is really not so striking 
because the procedure whereby one carries out a 
single measurement of OQ(F) is probably a decision 
procedure also; and, thus, the decisions in Method 2 
are hidden, but still present. Although this is probably 
true, it is also just as true for each measurement 
procedure within Q. Furthermore, the argument that 
the decision procedure involved in carrying out a 
single measurement of 0 Q(F) is somehow of "higher 
order" than those needed for the procedures in Q 
would appear to be taken care of by the possibility 
that paths in Q can contain, as measurement steps, the 
measurement of 0 Q(F) [provided that 0 Q(F) is dis­
crete ,. 

Finally, it is to be briefly noted that many mathe­
matical computation and deCision procedures can 
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themselves be realized as decision procedures of the 
type considered here. Under the association of prob­
ability operator measures with these procedures, it 
becomes possible to talk about these realizations 
within quantum mechanics. In particular, this sug-
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In the study of the irreducible unitary represe.ltations [111,51 of the Poincare group, we define an "helicity" spin 
operator through a fundamental connection between canonical and helicity bases, This operator, in covariant 
notation, is simply related to the well-known Bargmann-Wigner operator and to the canonical spin operator, 
Its spatial components generate an SU(2)-algebra and coincide with the elements of the Z-spin algebra recently 
proposed on different grounds by Braathen- Foldy. The very simple arguments developed here establish in 
a natural way the uniqueness of this algebra when helicity representations are studied. 

1. INTRODUCTION 
Since the fundamental paper of Wigner1. 2 on the irre­
ducible unitary representations (IUR) of the r )incare 
group (P), there have been many intimately related 
contributions which have appeared during the last 
fifteen years. Among all the different results referr­
ing to important fields,3 let us simply mention that 
several equivalent bases (for the representation 
spaces associated with the IUR) have been proposed 
for the case of physical particles of nonzero rest 
mass and discrete spin (i.e., with timelike momenta). 
More precisely, we think of the canonical1.2,4,5 and 
helicity6 bases and of two more recent ones, the [l­
and A-bases. 7 ,s So, the associated IUR have been 
called, respectively, the canonical-, helicity-, [1-, 

and A-representations of P and their generators have 
been explicitly given. 1- S Let us note that such bases 
and associated representations present different 
advantages and disadvantages, and therefore the 
choice of a particular one must be made according 
to the nature of the problem. On the one hand, the 
canonical basis which corresponds to the so-called 
"Foldy-Shirokov form" of the generators has the 
great advantage of giving the angular momentum 
operators as sums of two kinematically independent 
parts-the orbital and the spin angular momenta. 9 

On the other hand, the helicity basis is particularly 
convenient for developing a general analysis 6 of 
binary reactions involving particles with arbitrary 
spin; it is also interesting in discussing10 the so­
called [m, s l-IUR with a view to connecting these 
representations with the [0, sl-<mes through the 
limiting process m--> 0. For example, we can see 
how both aspects6,10 have recently been applied to 
di3cussions ll on vector meson dominance in photo­
production and the corresponding T matrix elements. 
In this paper, we want to show through very simple 
arguments how, from a fundamental connection10 
between canonical and helicity bases, we can extract, 
in a unique way, privileged directions in spin space 

which lead to an interesting set of spin operators. In 
covariant notation, these operators can be written 
as the spatial components of an "helicity" spin 4-
vector S (P) which is directly related to the well­
known Bargmann-Wigner 2 operator wand to the can­
onical spin operators. Furthermore, the new ones 
generate a structure isomorphic to the little group of 
p and coincide with the generators recently proposed 
on different grounds by Braathen and Foldy. 7 In this 
sense, the uniqueness of their developments is well 
established here. Let us also remark as a character­
istic property of the so-used fundamental connection 
and the so-deduced spin algebra, that the [1- and 
A-bases and representations are both "helicity" 
ones, particularly well adapted to the [m, s] --) [0, s] 
correspondence. In fact, those representations can be 
easily found12 through Coester's developments. 13 

In Sec. n, the main formulas 1o leading to the connec­
tion between canonical and helicity bases are collect­
ed, and privileged directions appear in a very simple 
manner when Significant rotations in spin space are 
taken into account. In Sec. In, we explain briefly the 
meaning of the three effective little group generators 
and define the "canonical" spin 4-vector ::;(p) in terms 
of the Bargmann-Wigner operator u. This is done 
in a slightly different but evidently equivalent way 
to well-known developments (for example, those of 
Hagedorn,14 Moussa-Stora15 or Gasiorowicz 16). In 
Sec. IV, with the help of the "canonical'" 4-vector and 
the r6sults of Sec. n, we construct the "helicity" spin 
4-vector S(p). Finally, in Sec. V, we compare the pre­
sent approach with that of Braathen - Foldy. 7 

In what follows, we essentially adopt Hagedorn's nota­
tions. 14 Therefore, since there is no risk of confu­
sion, we do not distinguish here between the transla­
tion operators and their eigenvalues as is usually 
done. Furthermore, we shall confine ourselves to the 
nonzero rest mass case (the p~ are always time like , 
pO > 0) and to orthochronous proper homogeneous 
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Lorentz transformations. The summation convention 
On repeated indices is always understood hereafter. 

2. CONNECTION BETWEEN CANONICAL AND 
HEIJCITY BASES 

In a recent discussion 10 of Coester's13 and Chakra­
barti's17 transformations, we have singled out the 
particular interest of the Chakl'abarti one in studying 
the transformation laws of state vectors in an helicity 
basis when the cases of nOnzero as well as zero rest 
mass are considered. These developments gave us 
simple equivalences between different important 
contributions such as those of Foldy,4 Shirokov,5 
Lomont-Moses,18 and Fronsdal. 19.2o Here, let us 
simply recall we had rewritten the Chakrabarti 
transformation as a real rotation in spin space with 
Euler angles (¢, - 13, - ¢): 

U(p) = R(s)(¢, - 13,- ¢) = exp(- i¢53 ) exp(ie52) 

x exp(i¢53), (1) 

where (13, ¢) are the polar angles of p in an initial 
reference frame (e l , e 2, e3) and S == (51, 52, 53) are 
the (2s + 1) x (2s + 1) matrices of arbitrary spin s 
such that 

[Si,5 i ] = iEijkS", Z· J' k 1 2 3 " = , , , (2) 

the matrix 53 being chosen diagonal. Furthermore, 
we had explicitly used20 the rotation (1) when it was 
expressed in the form 

U(p) = exp(i¢S·n), 

n ==e 3 IIp/le 3 IIpl, ¢ = arccos p3/p, 

(3) 

(4) 

i.e., in a form which singles out the privileged direc­
tion n. 

So, if we remember, on the one hand, the essential 
role of U(p) == (3) in the connection between the can­
onical basis {I[m, s ];p, a >} and the helicity one 
{I [m, s ];p,'\ > == U(p) I[m, s ];p, a >} and, on the other 
hand, the fundamental property 

U(P)A U+(p} = U(p)[ (s·p)/p]ut(p) = 53, (5) 

we remark that the diagonalization of 'the helicity 
operator selects and encloses two privileged ortho­
gonal directions: First, the particle displacement 
direction characterized by the unit vector pi I p I and, 
secondly, the direction characterized by the unit vec­
tor n == (4), orthogonal to p and to the third axis. 21 

Thus, from the initial reference frame (el' e 2, e 3) 
used in typically "canonical" considerations, we get 
another one: (n 1 == n2 1\ n 3 ,n2 ==p/p,n 3 ==n) when 
"helicity" considerations became essentia1. 22 These 
two systems of unitary spatial vectors are then re­
lated through a simple three-dimensional rotation R: 

ni=Re i , i=1,2,3, 

RR = RR = 1, R = R -1, detR = 1, 
with 

(

- cos¢ cosl3 

R = - sin¢ cose 

sinG 

cos¢ sine 

sin¢ sine 

cosB 

- Sin¢) 
cos¢ , 

° 
where (e, ¢) are the polar angles of p also. 
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(6) 

(7) 

3. THE "CANONICAL" SPIN OPERATOR 

If we write the unitary operators U(a, A) of P associ­
ated in the inhomogeneous Lorentz transformations 
(a, A) as usually14 

U(a, A) = U(a) U(A), U(a) == exp(ip~aJl)' 

/1, Il == 0, 1, 2, 3, 

where the pfl and JflU are the ten Hermitian generators 
associated, respectively, to translations (a) and homo­
geneous Lorentz transformations (A), we can resume 
the characteristic commutation relations of the 
Poincare algebra (for infinitesimal transformations) 
in the form 

(8) 

with the metric tensor gflU == O(p. '" Il), gOO == - gii = 1, 
(i = 1,2,3). 

Then, the well-known 4-vector of spin or Bargmann­
Wigner2 operator is defined by 

Wfl=~El'upoJUPpo, /1=0,1,2,3, E0123 ==1 (9) 

and satisfies 

WflPfl = 0, 

[Wfl,pU] = 0, 

[Wfl, JUp]= i(gflUWP - gflPWU) , 

[Wfl UJu] = - iEflu wPpo , po· 

(lOa) 

(lOb) 

(lOc) 

(lOd) 

~n particular, these relations show that, by (lOa), W 

IS only characterized by three linearly independent 
components and, by (IOc), behaves like a 4-vector 
under Lorentz transformations. Furthermore, as we 
know that these three components generate the little 
group of P (the rotation group here), we must show 
they satisfy a structure isomorphic to Eq. (2) from 
the commutation relations (IDe). Let us consider 
this important point now in a slightly different but 
equivalent way to other developments.1 5.16 

If, as usual, the translation operators are taken 
diagonal with eigenvalue P[p2 = (pO)2 - (p)2 = m 2], 
we can, after Moussa and Stora, 15 define w(P) as the 
restriction of the operator W to the eigenspace of the 
PJl(fl:= 0, 1,2,3) corresponding to the eigenvalue p. 
So, in the rest frame ,[PR == (m, 0)], we have the cor­
responding restriction W(PR)' such that 

w(PR). PR = 0, 

Wi(PR ) IPR , •• > = mS/PR ) IPR • ••• >. 
It is straightforward to show that the three operators 
defined by 

verify the commutation relations (2),Le., generate 
an SU(2)-structure. Now, let us extend Eq. (11) in 
covariant notation. For example,let us project 
(11m )w(PR) On the following basis vectors: 

(11) 

) 
_ PR mO(PR = m = (1,0,0,0), m 1 (PR) = (0, 1,0,0), 

m 2 (PR ) = (0,0,1,0), m 3 (PR ) = (0,0,0,1). 
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We have 

Sa(PR)= (l/m)m~(PR)w/l(PR)' Q' = 0, 1, 2,3, (12) 

according to (11) and So(17<) == 0. 

If we are interested in the restriction w(P) with arbi­
trary p, we only consider the pure Lorentz trans­
formation Lp' which takes the particle of mass m 
from rest to a state of momentum p, i.e., 

(Lp)O 0 = pO/m, po = (Ip 12 + m2)1/2, 

(Lp)iO = pi/m, (Lp)O i = - p/m, 

(L )i. = 6i . - piPJ./m(pO + m), (13) 
p J J 

such that 

LpPR = P == (po, pl. 

Then, the operators 5 a (p) are given by 

Sa(P) = (l/m)m~(p)w/l(p), 

where 
m~(P) = (Lp)/lvm;:,(P) 

or explicitly with A = m(pO + m): 

_ p _ (po pI p2 p3) 
mo(p) = m - m' m' m' m ' 

_ (pI (P1)2 plp2 plp3) 
ml(P) - m' 1 + A ' A 'A ' 

(
p2 plp2 (p2)2 p 2P3) 

m 2(P) = m '11' 1 + Jr' ---:;r- , 

(
p3 pIp3 p2p3 (P3)2) 

m3(P) = m '---:;r-'---:;r-' 1 +~ . 

(14) 

(15) 

(16) 

(17) 

Let us note that these 4-vectors ma(p) [as the ma(PR) 
ones 1, Q' = 0, 1,2,3, verify the relations 

ma(p)'m/3(p) = gaB' (18) 
det[mO(p), m 1(p),m2(p), m 3(P)] = 1. 

In this way, we obtain, through (15) and (17), the only 
three fundamental spin operators [generating an 
SU(2)-algebra]: 

i = 1,2,3, (19) 

which, on the one hand, can be called "the spin opera­
tors relative to the m-basis" and, on the other hand, 
correspond to the definition of the well-known 
"canonical spin vector operators." Let us recall 
here that these operators have classical analogs, i.e., 
the Thomas vector.23 

Following these results, we shall call up to now SiP) 
the "canonical" spin 4-vector relative to p. 

4. THE "HELICITY" SPIN OPERATOR 

In connection with the remarks of Sec. II, let us now 
define a new spin operator by the projection of the 
"canonical" one given by (15) on the set of basis 
vectors characteristic of helicity developments. In 
fact, this set {na(p), f3 = 0,1,2, 3} will be chosen as 
follows: 

no(p) == mO(PR ) = (1,0,0,0), n, (p) = (0, nil, 
i = 1, 2, 3, (20) 

where the n i (i = 1,2,3) are given by (6) in such a way 
that the relations (18) still remain valid. Then,if 
we denote by M(P) the Lorentz transformation which 
connects the n- and m -bases, we have 

The new spin operators relative to the basis vectors 
ma (p) are directly obtained: 

3/3(P) = ~ (P)Sa(P) (23) 

= (1/m)n~(p)m~(P)w/l(P) 

= (l/m )MB/l(P)w/l(P), (3 = 0, 1, 2,3. (24) 

As expected, the last equation shows that 3 (P) could 
have been directly obtained by applying M( p) to the 
restriction of the Bargmann-operator itself. Equa­
tions (22) and (24) give 

So(p) = ° (25) 
and 

31 (p) = (1/ mB){ Ip Iw - po [(Jo p)/I p I]p} ° e 3, 

32(p) == A = Jop/lpl, 

33 (p) = (l/mB)w o (e~ 1\ p). (26) 

So, on these simple grounds, we obtain what we want 
to call the "helicity" spin operator S (P) or "the spin 
operators relative to the n-basis". By using covari­
ance arguments or performing the explicit calcula­
tions, we evidently obtain 

[Si(P),~(P)l = iEijkSk(P), i,j, k = 1,2,3 (27) 

and maintain all the notions related to the little group 
structure of p. 

5. CONNECTION WITH THE BRAATHEN-FOLDY 
ALGEBRA AND DISCUSSION 

The structure (27) and the three Si(P) == (26) are iden­
tical to the Z spin algebra recently proposed by 
Braathen-Foldy7 from a point of view which appears, 
in a sense, as the inverse of ours. Starting from the 
little group structure == (27), they require three 
explicit supplementary specifications on the S;, i.e., 
(1) one of these operators must be the helicity one: 

~ =A, 
(2) one of the remaining two commutes with K 3(J03): 

[S~,K3] = 0, (28) 
(3) they all commute with J 3(J12): [Si' J 31 = 0, 

i = 1,2,3. 

These specifications are essentially introduced from 
physical and practical reasons. Furthermore, with 
the results (26) as a solution, they" suspect it is uni­
que without being able to give a satisfactory proof." 7 

Now, from our point of view, starting with the charac­
teristic triad (6) associated to the helicity character 
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of the considered representations, we find these 
operators in a unique way and the properties (28) 
directly follow. Then we can state that all the repre­
sentations issued from the spin algebra [(26), (27)] 
will be typically helicity representations. So, as we 
know that a particular property of those representa­
tions is that they are well adapted for the transition to 
the case of zero rest mass, it is straightforward to 
show this property on the Q- and A-representations. 7.8 

Furthermore, the connection between the Q-basis vec­
tors and the Kotanski ones, 24 as shown by Braathen­
Foldy, finds here a very natural explanation from the 
helicity character of Kotanski's developments. 

Finally, let us note the already given 7 geometrical 
interpretation of the three Si(P) (i = 1,2,3) or as it 
follows from our Eq. (23), 

= 1,2,3, (29) 
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significantly here, we can also write in connection 
with the triad (e i , i = 1, 2, 3): 

S,(P) = ei·S (P) = (Rei)· (RS (p)), 

such that with Eqs. (6) and (29), we have 

S(p) = W1S(p), (30) 

when R is given by (7). This relation clearly shows 
the s/Jecijic example constructed by Braathen and 
Foldy from the general little group structure relative 
to time like p. 
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The (cp2)s+1 quantum field theory model can be solved exactly, where the number of space dimensions is s ~ 3. 
Thus this model explicitly illustrates many properties of nontnvial models such as (cp2n)2 and Yukawa 2 • In 
particular we study hyperbolicity, the energy spectrum, local Fockness, and the change of Hilbert space as the 
spatial cut off is removed. 

1. INTRODUCTION 

In 1953. Friedrichs1 derived an exact solution for the 
cp 2 field theory with a spatial cutoff describing scalar 
bosons. More recently, a number of authors,2-6 
some of them apparently unaware of Friedrichs' solu­
tion have studied this model from a variety of view­
porn'ts. The cp2 Hamiltonian is 

H(g) = H 0 + >tH1(g) 

1j:1T(X)2 + rVcp(x)]2 + m'5cp(x)2:dx 

-+ 1?1jg(x):c:p(x)2:dx. (1. 1) 

Here g(x) is a smooth function of compact support, 
equal to 1 on a large set, and satisfying 0 ~ g(x) ~ 1; 
m 0 > 0 is the bare mass; and >t > - m'5 is the cou­
pling constant. The number of space dimension s = 
1,2, or 3. 

Because of its simplicity, this model has proved 
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amenable to practically every known method and is 
consequently well understood. In the limit g -7 1, the 
theory approaches that of a free field with mass 
mt = mB + >t, as can be seen formally from the 
Hamiltonian (1. 1). This limit necessitates a change 
or renormalization of the Hilbert space from the 
original Fock representation with mass mo to that of 
mass m l' The scattering theory that results is of 
course trivial. When g(x) ;;E 1, nontrivial scattering 
does occur but this phenomenon may be regarded as 
spurious since essentially particles are bouncing off 
the "edges" of the cutoff function g. As a matter of . 
fact, as we shall see, the structure of the cut-off 
theory is much like that of the quantum mechanical 
theory associated with the single particle operator 

(1. 2) 

The field equations for this model are linear. 
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The reason that the mass shift model can be solved 
exactly is that the Hamiltonian H(g) is quadratic in 
creation and annihilation operators; hence it is pos­
sible to exhibit a unitary equivalence between H(g) and 
the free Hamiltonian corresponding to the single par­
ticle energy I-Ig' The intertwining operator which 
accomplishes this equivalence is also quadratic in 
creation and annihilation operators. Some of the 
re:o:ults in Secs. 2, 4, and 5 have already been obtained 
by Eachus5 in his comprehensive study of ¢2; but the 
proofs that we present are more direct than his. 

In spite of its "triviality," the ([;2 model illuminates 
many aspects of the constructive field theory pro­
gram initiated by Glimm and Jaffe (ef. Ref. 7 and the 
articles cited there): For s -"S 3, (¢2)sjl shares a num­
ber of properties with the much more difficult non­
linear theories provided by the (¢2n)2 mode18 ,9 and 
the Yukawa2 model.1 o,ll In particular these theories 
call all be realized in the standard Fock space re­
presentation for the bare masses, and when the spatial 
cutoff is removed the renormalized Hilbert space is 
obtained through a weak limit of vacuum states. The 
final renormalized representation is inequivalent to 
the original Fock one, but it is" locally Fock" in a 
sense to be described in Sec. 6. 

In this paper we utilize the exact solution of the ([; 2 

model to provide a concise and explicit example of 
these phenomena. It is our hope that the ¢ 2 model 
can thus serve as a guide to the genuinely nonlinear 
theories. It remains to be seen whether the guide­
lines are too linear. 

2. EXACT DRESSING TRANSFORMATION 

Friedrichsl and Eachus5 derive several forms of the 
dressing transformation T . Since our formulation 
differs somewhat from the1rs, we outline the deriva­
tion of 1~ in the Appendix. 

Operators on the single-particle (momentum) space 
JC = L 2(Rs) will be denoted by small letters, and 
operators on Fock space g: 0 by capital letters. We 
take the standard representation of the free field with 
mass rno on fro = 6~~0 e:B JC n , where JC n is the n-fold 
symmetric tensor product of JC. In terms of the anni­
hilation and creation operators a(k) and a~(,,) [ef. 
(A6)], the time zero field is given by 

([;(x) = (21T)-s/2 j d S k(21-1)-1I2 eikxra(k) + a*(- k)], (2.1) 

where we shall write 1-1 = 110 = (I?2 + Intl)1/2 and 1-11 = 
(k 2 + mV 1l2 • 

From the conditions on g(x) and A, it follows readily12 

that J.I and /1g are self -adjoint, and that 11 ?- m 0 and 
I1g ?- m where rn = min(rno,rn 1) > 0; moreover, there 
are constants a and b such that /1 2 -"S a2 /1 2 -"S b 2u2 on 
the domain D(11) x D(/1). Thus D(I1) = D(J), and by an 
interpolation theorem of L6wner and Hei~z, 13 for any 
o oS 6 -"S 2, 

(2.2) 

Tg is a unitary operator on g: 0 that intertwines the 
free and total Hamiltonians 

Jiren(g) = T"Jio(j;)Tg-l (2.3) 

Here 1I l)(;;) is the biquantization of the single particle 
operator Ill!: 

HO(g) = ja*(k 1 )l1g(k 1 , k 2 )a(k 2 )dk I dk 2 , (2.4) 

where I-Ig(k 1 , k 2 ) is the kernel of I1g' For a discussion 
of such operators and the proof that the self -adjoint­
ness of the single particle operator implies that of 
the biquantized operator, see either Ref. 5 or Ref. 8 
(c). Formally Bren( g) is a renormalization of the 
Hamiltonian (1. 1), 

(2.5) 

where E(g) = H(11 -11 )1l-1/211~ is a vacuum renor­
malization constant. !fere II' J! 2 is the Hilbert­
Schmidt norm. 

It is not obvious that formula (2. 5) gives a well­
defined operator except when s = 1. Indeed a calcul­
ation shows that E(g) is infinite unless s -"S 2, and 
even when s = 2 it is not clear that the sum H 0 + 
'AHj(g) can be defined as an operator. Thus the 
operator equality (2.3) can be established directly 
only when s = 1, and by a bilinear form argument 
when s = 2. One resolution of the difficulty when s = 
3 would be to introduce and then remove a momentum 
cutoff a, in the manner of Glimm14 (see also Ref. 6). 
In the cut-off version of (2.3), 

H ren,o(g)To,g = Ta,g Ho,o (g), 

all the terms would be well defined. One could then 
show that as a -7 cc, Ho (g) -7 Ho(g) and T ~) T . 

. ,0 o,g g 
ThIS procedure would exhibit H ren (g) as the (graph) 
limit of the sequence Hren,o(g) and explicitly demon­
strate the "infinite cancellations" in Hren(g). To ex­
pedite matters we shall simply take (2.3) as the de­
finition of Hren(g). Hren(g) is thus a positive self­
adjoint operator with domain Tg D(lI o(g). 

We now describe the form of Tg most useful for our 
purposes. /1-1/2 11}i2 can be decomposed in polar form 

(2.6) 

where p = (/1-1/2 I1gl1 -1/2)1/2. From (2.2) we see that 
o < a -1/2 -"S P ~ a -1/2 b 1/2, so that p is a bounded in­
vertible self-adjoint operator and u is unitary. 

At this point it is necessary to impose a further con­
dition on g(x), namely that g(x) = g(- x). Then if we 
regard g as a multiplication operator [i.e., convolu­
tion with g (k) on JC], we see that g commutes with the 
reflection operator r, 

(rf) (k) =:f(- k), (2.7) 

where ( E: JC. It follows that r commutes with 1/ 2 - rg' 
hence with any function of 1lJ!; accordingly r commutes 
with p2 and any function of p. 
Now it is of critical importance for what follows that 
the operator 

I = v Inp E: HS. (2.8) 

where HS is the class of Hilbert-Schmidt operators 
on JC, (2.8) \KcS pl'C)vecl by E~i_chuS5 by a perturbation 
,:;e ries "techlliqu~ ar:.d ".ve ~sive a simpler proof in 
Lerclrna 2.1 belfnv. r"_T"',.if. cOl~Ctition bas been j501ated 
,]y a ;-;U;,l:]€!' cf otb8r :xuthors. for examnle Chadam.3 
"'l7ho has ~)r;:-':i'C'(: i.n :-t (\lQT'C g}~~:~.t? t'8.1 for:~;utation i.~1:~t 
(2 i)) is :.\ T1ecessary zt.-rl.d s:.!..~~icient c.onditio~;. f.::;r tl1".? 

02 dyna:nics to be unitariJv implementable ~n '1 c.' 
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In terms of I we define 

L = tiJ[l(k 1• k 2)a*(k1)a*(k 2) 

- l(k 1, k 2)a(k1)a(k 2)]dk1 dk 2• (2.9) 

It can be shown by an analytic vector argument,5 that 
(2.8) implies that L is self-adjoint. Tg is written as 
a product of two unitary operators U 1 U 2' the first of 
which is U 1 = e iL. The second U 2 is the biquantiza­
tion of u in the following sense. By the Spectral 
Theorem, we have u = e i W where w is a bounded self­
adjoint operator on JC. The self-adjoint operator 

W = J a*(k1)w(k 1, k 2)a(k 2)dk1dk 2 

then generates U 2 = e i w. In the notation of Ref. 15, 
we can write U2 = r(u) and W = dr(w). Finally, 

(2.10) 

The main tool in the next lemma and in this paper is 
a representation for the fractional power of a positive 
self -adjoint operator obtained from the theory of the 
Dunford-Taylor integral12: Let h ~ mlwhere m > O. 
Then for 0 < a < 1, 

(2.11) 

on D(h). Note that the integral is convergent since 

II(h + y)-lll .; (m + y)-l. (2.12) 

We collect here the conditions that we impose on g(x) 
even though all of them are not immediately used: 

g(x) E C5; g(x) = g(- x); 0 .; g(x) .; 1, (2.13) 

where we also require that ,\ is not too negative in the 
sense that mr = ma + ,\ > O. In the limit g(x) -7 1, we 
shall need some uniformity in the limit, such as 
Ig"(x) I .; M < 00 and a bound on the ratio of the 
volumes 

I suppg I jlg-1(1) I .; R < 00. (2.14) 

This is most easily arranged by considering the 
sequence 

gn(x) = h(xjn), (2.15) 

where h(x) is a function satisfying (2.13) and (2.14). 

Lemma 2.1: (Eachus 16) The operator 

Proof: Using (2.11) with h = III we have on 
D(J.Ll) 

1./: 00 
" = _ y-1/2(/1 2 + y)-l/l 2dy 
rg 1T 0 rg rg' 

Therefore on D(jll) n D(jl2) 
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(2.17) 

where g in the preceding integral represents the 
operator of multiplication by g(x). By (2.12) this 
last integral is norm convergent, so that (Jlg - Jl) ex­
tends to a bounded operator on JC. 

To prove that Og E HS we use the fact that if r, s, and 
t are bounded operators with S E HS, then r st E HS 
and 

Ilrstl1 2 .; Ildllsl1 21ltll. 

For 0 < E < t we write by (2.17) 

where sl = W1/2Jl}/2, s2 = I1f4+E(l1l + y)-1, 

/I-3/4-E" 3/4< E S - /I-3/4-EO'II-3/4-E S -
~ r '4-r or '5-

(Jl2 + y)-111 1/4+E. 

(2.18) 

(2.19) 

By (2.2) sl and s3 are bounded. Clearly s2 and 55 
are bounded; in fact a calculation of maxx;,.m 

[(y + x 2)-lx l/4+E] shows that for large y, 

Ils 2 (y)11 + Ils 5(y)il .; consty(-7/S)+(E/2). 

As for s 4 we compute in momentum space that 

Ils411~ .; J dSk1dSk2Jl(k1)-(3/2)-2E 
li(k1 - k

2
) 1211 (k 2)-(3/2)-2E 

.; tjdskldSk2li(k1 - k 2) 12 [/J(k 1 )-3-4 E 

+ Jl(k 2)-3-4 E] 

by the arithmetic-geometric-mean inequality. Since 
by (2.13) i E L 2 , and since s .; 3, we see that s4 E 

HS. It follows from (2.18) that the integrand in 
(2.19) has finite HS norm which for large y is domin­
ated by O(y-5/4+E). Hence the integral (2.19) con­
verges in HS norm. 

Corollary 2. 1: The operator l E HS. 

Proof: Note that In p = sinh-1(hJ where h_ = 
tp-10g. By Lemma 2.1 and (2.18), h_ is in HS; since 
I sinh-l (x) I .; Ix I so are sinh-1(hJ and l. 

3. HYPERBOLICITY 

The time-dependent field is 

¢(x, t) = eitHren(g)¢(x, O)e-itJIrea(g), 

where ¢(x, 0) is given by (2.1). Although ¢(x, t) 
appears to be dependent on the space cutoff g, in fact 
it is not provided that g» (x, t). By this notation 
we mean that g(y) = 1 in the ball Bt(x) = {y Ily - x I 
.; I t I}. Similarly we write g » (f, t) provided 
g(y) = 1 in the region lIxBt(x) where the union takes 
place over x E suppj. 

When s = 1 this hyperbolicity, or independence of 
¢ (x, t) on the values of g outside Bt(x), is known for 
the ¢ 2n model. The proof relies on a theorem of 
SegaF,17 and the fact that H~.en(g) is essentially 
self-adjoint on the domain D~Ho) n D(H /(g).9 In the 
present case when s = 2 or 3, this method is not 
available but it is easy enough to verify hyperbolicity 
directly. 
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Let f (x) be a real C 3 function of compact support. 
We define the averaged field J CP(x, O)f(x)dx as 

CPU, 0) = 2-1/2[ a(1-L -1/2 J) + a * (rl-L- 1/2 J)]. (3.1) 

An analytic vector argument shows that CPU, 0) is 
self-adjoint on a domain including D(N1/2) where N 
is the number operator. By (2.3) we have CPU, t) = 
T e itHo(g) T*A>. (f O)T e-itHo(g) T* on D(N), say. Using g g'f" g g 
(A14), its adjoint, and (A5), we find that 

Tg*CP U, O)Tg = cP (I-L 1/21-L -;//2 f, 0) 

on D(N). But by (All) with w = I-L g' 

eitHo(g)a#(J)e-itflo(g) = a#(e'fitllgJ) 

(3.2) 

(3.3) 

on D(N1/2), where a# stands for a or a*. A straight­
forward calculation based on (3.1)-(3.3), (A. 9), 
(A. 7), and (A. 5) yields 

(3.4) 

where the conjugate field 

f 1(t) = (cosllgt)f, and f 2(t) = (Ili sinl-Lgt)l. Similarly 
we find that rrU, t) = ¢U, t); that is, 

rr(f, t) = cP(j 3(t), 0) + rr(j 1 (t), 0), 

where 13(t) = j 1 (t) = - (/lg sin/lgt)f. 

(3.5) 

But we recognize f 1 (x, t) as the solution to the clas­
sical initial value problem 

U tt - tc.u + miju + AgU = 0, 

u(x, 0) = f(x), ut(x, 0) = 0 
(3.6) 

and similarly for f 2(X, t) except that the initial con­
ditions are u(x, 0) = 0 and ut(x, 0) = f(x). Now Eq. 
(3.6) is hyperbolic with speed of propagation equal to 
1. This can be seen explicitly, for example, from the 
corresponding spherical mean integral equation. 
Hence 11 and Similarly 12 are independent of g if 
g» U, t). We have proved: 

Theorem 3. 1: Let f(x) be a real C 3 function of 
compact support. Then the sharp time fields cP (j, t) 
and rr(j, t) are self-adjoint operators whose domains 
include D(N 1/2), and which are independent of g pro­
vided that g » (j, t). 

The algebra of local observables (essentially func­
tions of the fields) can thus be formulated indepen­
dently of g. If B is a bounded open region of space 
B C RS, we define 2ro(B) to be the norm closure of the 
linear span generated by the operators e i [</l(J,O)+1f(h,O»), 

where f and h are real COO functions with support in 
B. We define the local (von Neumann) algebra 2r(B) 
as the strong closure of 2ro(B). The (C*-algebra) of 
quasilocal observables is the norm closure of the 
union 

(3.7) 

where B ranges over all bounded open subsets of Rs. 
Alternatively we could define III (B) for space-time B 

in terms of time-averaged fields, but by (3.4) and 
(3.5) we see that the resulting algebra I}{ would be the 
same. It is apparent at this point that we do not have 
genuinely interacting fields. The decision to take the 
algebra of observables to be III rather than 910 = 
[U9[o(B»)- is for mathematical convenience; it is justi­
fied by the results of Sec. 6 which imply the equi­
valence of the strong closures of the local algebras 
in the two representations of interest. 

4. SPECTRUM OF Hren(g) 

By the unitary equivalence (2.3),H ren (g) and Ho(g) 
have the same spectrum. But the spectrum of Ho(g) 
is determined by that of /!-g: Suppose that /lg has spec­
tral decomposition /lg = J Ad e" , then we have18 

Ho(g) = n~o EB J(~/i) dE"J"2"'''n' (4.1) 

where E" '''" is the symmetric tensor product 
1 n {} e" @ e" @ ••• @ e" ,and E" ... " gives an n-para-

1 2 n 1 n 

meter resolution of the identity in JC n • 

Now the spectrum of I-L is well understood. Consider 
the Schrodinger Hamiltonian h( g) = /ll - m 5 = 
- tc. + A g(x). Its spectrum a (h( g» is just what one 
expects. The positive real line [0,00) forms the abso­
lutely continuous part of the spectrum. If A ~ 0, there 
is nothing else. If A < 0 there are in addition a finite 
number of eigenvalues in (A, 0); as g(x) ---7 1 the num­
ber of eigenvalues is of the order of 1 suppg I. This 
behavior is consistent with the fact that as g ---7 1, 
a{h(g» approaches the spectrum of (- t:.. + A) in a 
lower semicontinuous fashion12; that is, the point 
spectrum of h(g) must fill in the interval [A, 0). 

The above conclusions follow at once from theorems 
of Kato,12 Ikebe,19 and Weidmann20 and the rather 
strong conditions (2.13)-(2.14) on the potential g(x). 
For example, Ikebe has shown that h(g) has no sing­
ular spectrum by establishing the completeness of 
the system of normalized eigenfunctions and "dis­
torted plane wave eigenfunctions" of h(g). The esti­
mate on the number of eigenvalues follows by com­
paring h(g) with spherical well Hamiltonians for 
which the eigenvalues can be explicitly computed 
[here we are using (2.14»). 

From the spectral theorem, we see that if A ~ 0, 
then a(/l ) = [m 0,00) is absolutely continuous. Thus 
by (4.1)~ llren(g) has an eigenvalue at 0 and abso­
lutely continuous spectrum on [mo,oo). If A < 0, 
a(l-Lg ) consists of an absolutely continuous part on 
[m 0,00) together with a finite number of eigenvalues 
A1, '" ,Aj in (m 1> mol. Here j ~ 1 suppg I. It follows 
from (4.1) thatllren(g) has eigenvaluesn 1A1 + 
n 2A 2 + . .. + n· A . , where nv ... , nj are nonnegative 

J J t· t integers, and absolutely con muous spec rum on 
[mo,oo). We note that in this case, llren(g) has posi­
tive eigenvalues imbedded in the continuous spectrum. 
In either case the Fock vacuum no is a unique ground 
state for H 0 (g), and hence 

(4.2) 

is a unique vacuum for II ren(g) corresponding to the 
eigenvalue O. 

A number of these features have already turned up in 
the (cp2n)2 theory: Glimm and Jaffe8 have shown that 
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H( g) has compact spectrum in (- CYJ, m 0)' and Hoegh­
Krohn2l has established that rmo, CYJ) forms the con­
tinuous spectrum. 

In addition Glimm and Jaffe have verified the unique­
ness of the vacuum for H(g). On the basis of the 
results of this section one can conjecture that in the 
spatially cut-off (cp2n)2 model, there is no singular 
spectrum; that if 0 is the only eigenvalue in [0, m 0) 
(corresponding to ng ), then [mo, <X)) is pure continuous 
spectrum; if there are more eigenvalues, then some 
point spectrum is imbedded in [mo, CYJ); however, if 
this is the case it should be possible to remove these 
eigenvalues by a positive mass renormalization 
(corresponding to A ~ 0 in the present model). 

The above spectral information can be related to the 
question of whether Hren (g) is unitarily equivalent to 
H o' As discussed by Eachus,5 this question reduces 
to that of the unitary equivalence of I1g and 110' For 
suppose there is a unitary operator u intertwining I1g 
and fl 0: 

(4.3) 

Then if we define U to be the unitary operator in ff 0 
which is the biquantization of u as in Sec. 2, we obtain 
by (All) 

Ho(g)U = UHo 

and from (2.3) 

Hren(g) W = WHo, 

where W is the unitary operator TgU. 

(4.4) 

The operator u of (4.3) is of course the wave oper­
ator of quantum mechanics; it eXists,12 and hence so 
does W, for A ? 0 and even for negative A as long as 
h(g) has no point spectrum. 

When A < 0 and h(g) does have eigenvalues then u is 
only an isometry, mapping J(' onto JCa .c. = JC e JCp ; 

here JC is the finite-dimensional subspace of JC 
spannea by the corresponding eigenfunctions, and 
J(' a .c. is the "absolutely continuous" part of JC with 
respect to h(g). However, in this case, we still have 
the relation (4.4) where now U = r(u) (see Sec. 2) is 
an isometry mapping ffo onto the subspace ff(JCa.c.l, 
the Fock space constructed from the one-particle 
space JC a .c ., i.e., ff(JCa.c.l = L EB JC a .c. ® ••• 
® JC a .c .• If we decompose ffo = ff(JC a .c ) ® ff(JC) then 
Ho(g) can be written as 

Ho(g) = (UHoU*® 1) + (I® Hp), 

where Hp is the biquantization of flg t JCp• This gives a 
corresponding decomposition for Hren (g). 

Note that this latter case [a /h(g)) none~pty and.W an 
isometry] does not argue agamst the unItary eqUI­
valence of Hren and H 0 in S?;eneral in quantum field 
theory. This example indicates that it may simply be 
necessary to adjust H ren by the addition of counter­
terms (in this case, a finite positive mass counter­
term). 

5. REMOVAL OF THE SPACE CUTOFF 

As explained in the introduction, when g ~ 1 the Hil­
bert space is renormalized by means of a weak limit 
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of vacuum states. More precisely for any A in the 
algebra ~r of observables, we define 

(5.1) 

in terms of the unique vacuum vector ng of H ren(g). 
Clearly Wg is positive linear functional on 9( of norm 
1, i.e., a state. As g ~ 1 we show that Wg converges 
in the w *-topology to a state wl ; that is, for each A in 
9( , 

(5.2) 

Moreover, for A E ~l(B), where B is a fixed bounded 
set in Rs, (5.2) takes place in the sense of norm cOJ/­
vergence. The limiting state wl uniquely defines a 
new representation of ~l in a "renormalized or phys­
ical Hilbert space" ff 1 by means of the GNS construc­
tion. 22 In particular there is a cyclic vector n l E ffl' 
such that 

Finally, we can identify this representation as the 
Fock representation for a free field of mass ml with 
no-particle state n l . 

Thus the arduous renormalization of P(CP)2 by Glimm 
and Jaffe 7 ,8 is simply illustrated by the above state­
ments [except for the last which would be a disaster 
for P(CP)2 and the statement of local norm conver­
gence where we rely on the P(CP)2 proof]. Note, how­
ever, that no space averaging is required in the de­
finition of Wg' that the original sequence {wg } and not 
just a subsequence converges, and that the limit Wi 

is unique. It has been conjectured that the same is 
true for P(CP)2' 

Consider now a generator A of the local algebra 9{(B) , 
A = e;[q,<!l+1f(hl], where cpU) and rr(h) are time-zero 
fields,andj,h E C~(B) are real. From (3.2) and its 
analog for IT, we see that 

wg(A) = (no, Tg-1ATg no) 

_ (n e;[q,(Ml/2/l-1/2Jl+1f(/l-1/2flll2hl]n) - ·'0' g go' 

It is a standard free field calculation that 

wo(A) = (no, e i[q,{Jl+1f (hl]n o) 

(5.3) 

= exp[- i(J, 11- 1j) + (h, flh»)], (5.4) 

where <".) is the Hermitian inner product on JC. 
Hence from (5.3), 

wg(A) = exp[- i(J, I1glj) + (h, I1g h»)]. (5.5) 

Formulas (5.4) and (5.5) provide the clearest de­
monstration of the statement that turning on the 
interaction AH1(g) amounts to replacing the single 
particle energy fl by flg . 

Formally it is obvious that in the limit g = 1, 

This knowledge of wl on the generators A is enough 
for us to conclude that the representation of the 
canonical commutation relations determined by the 
state wl is that of Fock space with mass ml .23 ,24 

We now prove the convergence of Wg to wl . Note that 
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we are making some assumptions such as (2.15) 
about the uniformity of the limit g(x) ~ 1. Let ~(x) 
be a cC;; function with support in the bonded open 
region B C R s , and let X/x) be the characteristic 
function for the interval [j,j + 1) C Rs. Here j = 
(jl"" ,jJ, [j,j + 1) = nf~dji,ji + l),and Ij I = 
(jr + . .. + n)1/2. We shall generally regard ~ and 
Xj as multiplication operators on JC. To begin with 
we prove the following estimate on the loss of local­
ity produced by the operator J.l = (- A + m5)1/2 [ef. 
Ref. 8(c)]. 

Lemma 5.1: For a "" 0, there is a constant c inde­
pendent of j such that 

IIXjJ.l"~11 "" c(l + Ii Ir(,,+s)!2e-moljl. (5.7) 

Pyoof: In coordinate space the operator /1" is 
given by convolution with the (distribution) kernel 

k,,(x) = (2/T)-s J e- iPx (p2 + mB)oi2dp. 

For a < - s this integral converges and in terms of 
the modified Bessel function Kv we calculate that25 

k" (x) = (2/T)- s122,,/2+lr(- ~O!P 

x (mol Ix I) ("+s)/2 K(a+s)/2 (mo Ix I). (5.8) 

In fact (5. 8) is valid for all real a '" 0, 2, 4, ... , and 
from it we can read off the relevant properties of k,,; 
namely,k,,(x) E CO<>(Rs) except at x = 0 (where it has 
a singularity of order Ix I-("+s) when a + s> 0), and 
as lxl ~ ct:l, 

k ,,(x) O[(mol Ix I) (,,+s)/2e -molx I]. (5.9) 

The lemma follows at once from (5.9). 

Remark: Note that even when Ct + s < 0 we have 
IIXj J.I"~ II = O(e-{mo-~)Ijl) for any E > O. Moreover, 
when the closures of the supports of Xj and ~ are dis­
joint, IIXj J.l "~112 "" c1e-(mo-E)(ljl-C) where cl> c 2 are 
independent of both j and mo' In particular, 

II ( 2 + )-11'/1 c< -(mo+y-E)(ljl-c2) Xj J.l Y ., 2 ~ C 1 e . 

Lemma 5.2: Asg~1, 11(llg-lll)~II~ O. 

(5.10) 

Pyoof: The calculation (2.17) shows that (Ilg - Ill) 
is a bounded operator and that 

(Ilg-Illg = ~ J;Y 1/2 (Ill + y)-1(g-1)(llt + y)-l~dy. 

When g = 1 on a sufficiently large set (say Ix I "" e),' 
we obtain by (5.10) 

1I(llg - Ill)~11 "" const ~ J;IIXj(llt + y)-l~lldy 
1)/ ;'c 

"" const ~ J;e -(m1+y-€)(ljl-c 2) dy. 
Ijl ;'C 

The lemma follows upon choosing c large. 

Proof: Note that by (2.2), D(Mg ) = D(1l1) and, by 
(2. 17), II Mg - III II "" c < ct:l, where c is independent of 
g. We approximate any 1 E D(Ml) by ~1: 111 - ~111 < 
E, where E> 0 is arbitrary and ~ E C';{ is chosen as 

an approximation to the identity. Next choose g suf­
ficiently close to 1 that II(flg - fl1)~11 < Eo Then 

II(flg - J.l1)/1I ~ lJ(flg - /11)(f - U)\I 
+ II(Mg - Ill)UII< CE + Ell/II. 

The convergence of Il;/ follows from that of Ilg' 
By the form (5.5) of wg(A), Lemma 5.3 establishes 
the convergence (5.2) for a generator A. This con­
vergence obviously extends by closure to all of I}{o: 

Theorem 5.1: (Eachus) As states on I}(o' Wg ~ WI 

in the w * -topology. 

Finally we verify that Wg converges in norm to W I on 
each local algebra I}{(B). We have been unable to 
prove this directly because of lack of a good under­
estimate for the norm II A II of a local observable A. 
Instead the proof relies on results of the next section 
and a theorem of Glimm and Jaffe. s In Sec. 6 we 
introduce the local number-energy operator NT B for 
the interval B and prove that wg(NT,B) ~ e where the 
constant c depends on the volume of B but is other­
wise independent of B and g. By Theorem 4.1 of Ref. 
8(c), we conclude that on each I}(B), the Wg have a 
norm convergent subsequence. Glimm and Jaffe 
prove this theorem for 5 = 1 but with appropriate 
modifications it remains valid in any number of space 
dimensions. We also need the fact that w1 is a nor­
mal state on l}(o(B) and hence extends to a normal 
state on 2( (B). (A normal state W is one for which 
w(A) ~ w(A) as Av l' A.) By Theorem 6.1, wd l}(o(B) 
is unitarily equivalent to a vector state and is hence 
normal. 

Suppose then that Wg does not converge in norm to WI 

on 91(B). Then there exists a subsequence Wg such 
n 

that II(wg - w1H9(B)11 ? E for some E> O. But by the 
n 

above result there is a further subsequence of the W 
gn 

that converges in norm to a (normal) state W 2 on 
W(B). Clearly II(w 2 - w1)tIJr(B) Ii ? Eo However, by 
Theorem 5.1, wg(A) ~ w1 (A) for every A EO 9f o(B); 
hence ii(w 2 wI )tI}(o(B)1I = O. But II(w 2 - w1 )t9lo(B)11 
= II(w 2 - wl)tn(B)11 since (w 2 - w1)l2l(B) is normal 
and the unit sphere of l}(o(B) is strongly dense in the 
unit sphere of W(B).26 As a result: 

Theorem 5.2: As states on I}{(B), Wg~ WI in norm. 

By an approximation argument: 

Corollary 5.1,' As states on I}l, Wg ~ w1 in the w*­
topology. 

6. LOCALLY roCK PROPERTIES 

Let P1 be the representation of W on 5'1 determined 
by WI; and let ¢ l' 1T V and H 1 be the standard fields 
and free Hamiltonian for the free theory with mass 
m 1 on 5'1' By (5:6), exponentials of the time-zero 
fields A = e i[q,{j)+1f(h)] E IJ( are represented by PI (A) = 
e i[ct>N')+1f1(h)], and as can be checked from (3.8) and 
(3.9) this correspondence extends consistently to the 
time-propagated fields, e.g., PI (¢ (f, t)) = 
e'tH1 ¢1(f,0)e- itHl = (h(f,t). 

Since representations of the CCR's with different 
masses are unitarily inequivalent,24 PI is not unit­
arily implementable; however, PI is locally unitarily 
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implementable. It is this property that Glimm and 
Jaffe call "locally Fock" in the context of the P(CP)2 
and Y 2 models. Here it might seem redundant to call 
a representation on Fock space W 1 "locally Fock ," 
and in fact this redundancy is reflected in the proof. 
In the case of the P(CP)2 and Y 2 models, local Fock­
ness depends critically on the local norm convergence 
of w.[_and the subsequent locally normal property of 
P l' However, in the present case we need only note 
that by a result of Araki,27W(B) and Pl(W(B» aresep­
arable type III factors; hence the isomorphism P1 is 
unitarily implemented.28 We state this as: 

Theorem 6.1: Let B be a bounded open subset of 
Rs. There is a unitary operator UB mapping from W 0 

to W 1 such that 

UBAUil = Pl(A) for every A E W(B). 

Unfortunately we have been unable to find an explicit 
representation for the mapping UB • If we regard Tg 
as mapping from W 1 to g-o, then in a formal sense 
(since it does not exist) T 1 gives the canonical unitary 
equivalence between the action of W on g-0 and Pl (W) 
on W 1; for support of this statement see formula 
(3.4). One might think then that UB is given by Tg-l 
with g = 1 on B but g * 1. However, this choice of UB 
is only approximately correct; for no matter how 
large we take the region {x Ig(x) = 1} it is not true 
that Jli 1/2j = Jli1/2j for j with support in B'. 

Perhaps the locally Fock property can be best under­
stood in terms of local number-energy operator 
estimates which we now prove. Let x(x) be the 
characteristic function for the bounded open region 
B C Rs. If T < t it is easy to see that X IJ.T X is a well­
defined positive operator on Schwartz space S(Rs). 
We denote its Friedrichs extension by CT' The local 
number-energy operator N

T
•B for the region B is the 

biquantization of cT ' N T •B = dr(c T ). Let Un} be an 
orthonormal basis for L2(RS) such as the Hermite 
functions; then a convenient expression for N

T
• B is 

~na*(cJl2fn)a(jcV2fn)' where the sum certainly makes 
sense on the dense domain 

~ = {lJI E Wo: lJI n E S(Rsn); lJIn = 0 for large n} . (6.1) 

If we refer to the particles with mass mo associated 
with the Fock space W 0 as "bare particles" and the 
particles of W 1 as" physical particles," then the 
observable NT •B corresponds to the number-energy 
of bare particles in the region B. 

The N
T

•B estimates that we prove are of the form 

(6.2) 

where T is a small positive number,j an arbitrary 
positive integer, and C a constant depending on the 
volume of B but otherwise indePendent oj Band g. 
The physical Significance of (6.2) Can be seen by 
passing to the limit g == 1: Any physical state of finite 
total energy has a finite number of bare particles in 
any bounded region. The inequality (6.2) is believed 
to be true for any locally Fock model such as (cp2n)2 
or Y 2 but has not yet been proved for these models. 
Such inequalities would be useful for establishing the 
regularity of the physical vacuum (e.g., that it is in 
the domain of powers of the fields) and for deter­
mining the relation between normal ordering of 
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powers of the field with respect to the bare vacuum 
and the physical vacuum. 

We need some preliminary estimates. 

Lemma 6.1: Let a be real and suppose the in­
teger r ~ 1a 1/2. Then if ~ E C2r (RS), 

II Jl a~ wa II ~ const sup IDj~ I. (6.3) 
Ijl'2r 

Remark: On the left side of (6. 3), ~ is interpreted 
as a m~ltipli~ation qperator, whereas on the right 
side DJ~ = ail ... a~s~ is the derivative of the func­
tion ~ of order Ii I = it + '" + j s • 

Proof: The idea is to commute the /1a through the 
~. We shall consider the case 0 < a < 2; the other 
cases are similar. By (2.11) 

sin1Ta/2r~ (I) 2 /1a = Jo y a 2 -1(/12 + y)-1/1 dy 
1T 

so that 

Now 

[/1 a, ~] = Sin;a/2 1; ya/2[~, (/12 + y)-1]dy. 

[~, (/12 + y)-1] = (/12 + y)-1[_~, ~](/12 + y)-1 

= (/12 + y)-l(_ ~~ - 2v~'v) 

X (Jl2 + y)-1. 

We thus obtain 

IIJla~Jl-all ~ supl~1 + sin;a/2 1000 

ya/2[a(y) + b(y)]d 

where 

a(y) = II(Jl2 + y)-l(~~)(Jl2 + y)-lJl-all = sup I ~~ I O(y-2 
and 

b(y) = II(Jl2 + y)-12v~'V(Jl2 + y)-lJl-a II 

== sup Iv~ IO(y-(a+3)/2) 

Therefore, the integral converges and Jla ~ Wa is 
bounded as in (6.3). 

Remark: When (suppO- is disjoint from [i,j + 1], 
then the method of the above lemma and the estimate 
(5.10) yield 

(6.4) 

for any E> O. Moreover from (5.7) we see that when 
a~ - 1, we may take E = 0 in (6.4). 

If we replace ~ by the characteristic function X of an 
interval in RS, then we obtain a somewhat weaker 
result. 

Lemma 6.2: If 0 ~ a < -! and (3 > as, then JlexXW B 
is a bounded operator on L2(Rs). 

Proof: We sketch the proof which is similar to 
that of Theorem 3.3.1 of Ref. 8(c). As in the pre­
vious lemma, it is sufficient to prove that [/1ex, xJ WB 
is bounded. Let j (k) E S. Then 

Ir/1ex, X]WBf(k) I ~ const(/1al xl)*/1-Blfl(k) (6.5) 

and estimating the norm of the convolution by Lp 
norms,29 
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11[/la,x]wBfli ~ constll /laX Ilpll/l-Bfllr, 

where l/p + l/r = L p?- 1, r ?- 1. 

By an elementary computation I /lax(k) I = O({kl ... 
k

s
)"--1) as k ---7 OCJ so that /laX E Lp if l/p< 1- a. By 

Holder's inequality, II W 13 fllr ~ IIfl1211 /l-B II 2r/(2-r)' 
This last norm is finite if 213 r / (2 - r) > s. The above 
restrictions on p and r are consistent if a < t and 
13 > as. 

Lemma 6.3: If 0 ~ a < ~ and 13 > a + s/2,then 
/la XW 13 E HS. 

Proof: The operator X/l a - 13 has kernel X(k - k') 
/l(k')a-B which is in L2(R2s) if 13 > a + s/2. Thus by 
(6.5) the lemma reduces to proving that /la(k - k') x 
X(k - k')/l(k')-13 E L2(R2s) which follows from the fact 
that /laX E L2(Rs). 

By Lemma 2.1, OgX E HS. In fact: 

Lemma 6.4: If a < ~,then Ilog X/lcx 112 is bounded 
independently of g. 

Proof: Let II(Y) = ,r1/2(J.li + y)-1g (/l2 + y)-1,r1/2 
X/l cx • By (2.17) it is sufficient to show that II(Y) EHS 
and that for large y, 111I(y)11 2 ~ b I Y 1-(3/2)-E for some 
E> 0 and b independent of g. Accordingly, for 0 < E < 
1 - s/4 - a/2, we rewrite II(Y) = S1(y)s2s 3(y)s4' 

where S1(y) = ,r1/2(/l1 + y)-1/l1/2, s2 = /l-1/2g/l1/2, 

s3( y) = /l-1/2(/l2 + y)-1J.l (3/2)-2 E, and s4 = /l-2+2€ X/l cx. 
By Lemma 6.3, s4 E HS, and by Lemma 6.1, s2 is 
bounded independently of g. Clearly s3 is bounded and 
by (2.2) so is s1; but in fact for y > 0 we have Ils 1(y)11 
= O(y-l) and, by the arithmetic-geometric-mean 
inequality, Ils 3 (y)11 = O(y-1!2-€). Hence by (2.1S), 
111I(y)11 2 = O(y-(3/2)-€) for large y. 

As applications of these estimates we note that if 
o ~ T < ~ and 13 > sT/2, then CV2WB is a bounded 
operator. For if f E S, then 

by Lemma 6.2. Secondly, if a < t then 

II y_ X /l 0.11 2 ~ const(independent of g), (6.7) 

since by (A5), (2. 6), and (2.16), y_ = tu* p-1 0g • 

Lemma 6.5: If T< minH,(I/s»,then 

61Ia#(jy±cJ-l2fn)(HO + 1)-1/2\}i112 ~ constll\}i112, (6.S) 
n 

where the constant is independent of g. 

Proof: It is sufficient to prove the lemma for 'l1 
in the r-particle space Je r with estimates indepen­
dent of r. From the definition (A6) of a(J) we calcu­
late that 

L) Ila(jy + cV2fn)'l1112 
n 

= r jdP1 •.. dPr-1 ('l1(P1' ... , Pr-t> .), 

y+c r y:'l1(P 1"" ,Pr-t>') 

~ IIcV2 y: /l-1/211 211(Ho + 1)1/2 'l111 2, 

since by symmetry 

II(H 0 + 1)1/2 'l1112 = r JdPt· .• dPr-1 ('l1(P1' ••• ,pr - 1, . ), 

/l'l1(P1 , .. , 'Pr-l> .). 

Now by (6.6), c 1[/2/l-1/2 is bounded if T < minH, (1/ s» 
and by (A5) and 2.2) so is /l1/2 y: /l-1/2. Thus 
Ilctj2Y:W1/211 < OCJ and (6.S)+ is verified. 

As for (6. SL we have 

61Ia*{jYJtj2 fn)'l1112 

n = 6('l1, a(y_ clj2 fn)a*(jy_ cV2fn)'l1) 
n 

= L; Ila( y- cV2fn)'l1112 + 11'l1112 L; IIY- clj~fn 112 

by the commutation relations for a and a*. Now the 
first sum is bounded as before, and the second sum 

L;lly_CV2fnI12 = IIY_CV211~ 
= IIY_XJ.laJ.l-cxcV211~ 

~ IIY_X/lcxll~ Ilw"'cV2 11 2, 

which is bounded independently of g by (6.6) and (6.7) 
provided that sT/2 < a < 1/2. 

Remark: If T = 0, then the above proof works if 
(Ho + 1)-1/2 in (6.S)± is replaced by (N+ 1)-1/2. 

Theorem 6.2: LetNB = N O•B be the local number 
operator for the bounded interval B C Rs. If T < 
minH, (l/s», then 

N r .B ~ c[Hren(g) + 1] 

and if j is a positive integer then 

N~ ~ d[Hren(g) + l]j, 

(6.9) 

(6.10) 

where the constants c and d depend on the volume of 
B but are otherwise independent of B and g. 

Proof: By (2.3), we see that (6.9) is equivalent to 
the inequality Tg*Nr.BTg ~ c[Ho(g) + 1] which can be 
reformulated as 

~ Ila(jctj2 fn)Tg(HO(g) + 1)-1/2 \}i112 ~ cll'l1112. 

But by (AI4), 

a{jcV2f n)Tg = Tg a{jy+ CV2 fn) - Tg a*(y_ cV2f n). 

(6.11) 

(6.12) 
To verify (6.11), we insert (6.12) into the left side of 
(6.11) and appeal to the triangle inequality, the unit­
arity of Tg , and the previous lemma. Note that by 
(2.2), Ho ~ aHo(g) ~ bHo• 

To establish (6.10), we prove that 

T*NjT ~ d(N + l)j g B g , (6.13) 

which is actually a stronger inequality since /l ?- m. 
The proof of (6.13) is by induction on j, the cafe j = 
1 being covered by the remark after Lemma 6. 5. 

Assume then that (6.13) holds for j, and prove it for 
j + 1. Now 

('l1, T/ Nt
1

Tg'l1) = L) Ila(jxfn)N;:2~ 'l1 II 2. 
n 

But [a(J), N r.B ] = a(jc rjf), and, if the region B is 
symmetriC about the origin so thatjx = xj, we have 
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a(jXfn)NB = (NB + l)a(jXfn) It follows by the func­

tional calculus that a(jXfn)N~/2 = (NB + 1)j/2 aUxfn)' 

It is no loss of generality to assume that B is sym­
metric since N~ is monotonically increasing with 
respect to B. Thus 

(11, T/Nt1Tg1l) = 611(NB + 1)il2a(jxfn)Tg1lli 2 
n 

= 611(NB + 1)il2Tg [a(y, Jxfn) 
n 

(6.14) 

by (6.12). We apply the inductive assumption and the 
triangle inequality to the right side of (6.14) to 
dominate it by 

2d[~ II(N + 1)j/2a(Y+Jxfn)~1:2 
n 

+ 611(N + 1)j/2a*(y_X f
n

)1I112]. 
n 

Each of the above sums can be estimated as in 
Lemma 6. 5; for example, 

611(N + 1)j/2a(y+ Jxfn)1I li2 = 61Ia(y+ Jxfn )Nj/21111 2 
n n 

-'" d111(N + 1)1/2Nj/211112 

-'" d111(N + 1)(j+1)/21111 2 , 

where d 1 is independent of g. 

Corollar:v 6.1: wg(NT,B) -'" c. 

Finally we note that it is possible to interpolate be­
tween the results (6.9) and (6.10). For instance, by a 
variant of the above proof it follows that if T < 
min(~, (1/5», then 

NT.BNi -'" d[Hren(g) + 1y+1 

and from this that if lJ < (j + 1)-lS-[J/2lT, then 

N!:; -'" d[Hren(g) + l]H. 

APPENDIX: DERIVATION OF THE DRESSING 
TRANSFORMATION 

Following Friedrichs,l we first give a heuristic deri­
vation of the dressing transformation T that leads to 
its defining property (A9). We then skefch a rigorous 
proof that the Tg constructed in Sec. 2 possesses this 
property. 

Friedrichs observes that turning on the interaction 
H/(g) has the effect of replacing the energy function 11 
of the theory by I1g • It is reasonable to expect that 
H r en (g) can be expressed in the form 

Hren (g) = jb*(k1)IJ.g(k1, k 2)b(k 2)dk1dk 2, (Al) 

where the b#(= b or b*) are linear combinations of the 
a#. To determine b# we note that 

(i#(x) = (21T)-s/2 jeikxa#(±k)dk 

= (IJ./2)1/2¢(x, 0) ± i(2IJ.)-1/2 1T(X, 0), (A2) 

while we ought to have 

Eliminating ¢ and 1T from (A2) and (A3), we obtain 
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b(k) = Y + a(k) + y_ a*(- k), 

b*(k) = J'_a(- k) + y+a*(k), 

where 

Yi = ~(IJ.iI2W1/2 ± I1g1/2 Jll/2). 

(A4) 

(A5) 

One can verify formally that this choice of b# gives 
equality between the expressions (A1) and (2.5) for 
Hren(g)· 

We now reformulate the transformation (A4) more 
carefully. Letf E L2(Rs). For 11 = (11 0' 111>"') E 

5' 0' the destruction operator a(f) is defined by 

(a(f)1I)n(P 1"" 'Pnl 

= (n + 1)1/2 j'dkf(k)1In+1(PU'" ,Pn , k). (A6) 

Bot.h a(f) and its adjoint [a(f)] * = a *(jf) are densely 
defmed operators in 5'0 whose domains include 
D(N1/2) where N is the number operator. [Here j is 
complex conjugation in momentum space; for f(x) real, 
Jf = rf.l We define modified annihilation and creation 
operators on D(N 1/2) by 

b(f) = a(w+ f) + a*(u'.. jf), 

b*(f) = a(w_jf) + a*(w+f), 
(A7) 

where w± = y; = ~(Jl -1/211}/2 ± 11 1/2 JlgI12) are bounded 
operators on X. It is easy to verify that [b(f)]* = 
b *(jf) and that b and b * satisfy the canonical commut­
ation relations. Hence (A 7) is a canonical transfor­
mation (i.e., a Bogoliubov or symplectic transformation). 

In terms of the operators u and p of (2.6), 

(A8) 

As proved in Corollary 2.1, h_ E HS. Therefore 
w_j E HS and by a well-known theorem (see for in­
stance Theorem 4.1 of Ref. 2), the canonical trans­
formation (A7) is proper. That is, there exists a 
unitary operator Tg (unique up to phase) such that 

Tg a#(f) Tg-l = b#(f). (A9) 

Of course when g =:0 1, 10_ j $ HS and the transforma­
tion (A7) is improper. A comparison of (A1), (A9), 
and (2.3) shows that Tl{ is the desired dressing trans­
formation of Sec. 2 WhICh effects the unitary equi­
valence between Hren(g) and Ho(g). 

It remains to verify that T.JJ as constructed in (2.10) 
satisfies (A9). As in Sec. ~, let W = dr(w) where u = 
e i w. U sing the fact that j anticommutes with w we 
calculate that the commutator (adW)a(f) = rw, a(f)] = 
a(lOf) , valid as an operator equality on D(N312). 
Taking f real for convenience we similarly find that 
on D(N3/2),(ad iL)a(f) = a*(lf) and (ad iL)a*(f) = 
a(lf). 

A formal proof of (A9) can be given as follows by 
means of the Baker-Hausdorff formula. With Uland 
U 2 defined as in (2. 10) we have 

00 

U 1 a(f)U; ="B (adiLjna(j)/n! 
n~O 

= a [(coshl)f] + a*[(sinhl)f] 

= a(h+ f) + a*(jh_ f) (A10) 

by (2.8) and (A8). Similarly, 
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00 

U 2a(j)U2* = 6ina(wnf)/n! = a(uf). 
ncO 

(All) 

Since Tg = U 1 U 2' we obtain 

1~ a (j)Tg* = a(h+uf) + a*(jh_uf) 

= a(w, j) + a*(w_jj) == b(j). 

We now convert the above argument into a rigorous 
one that takes into account convergence and domain 
questions. Since W commutes with N, it is clear that 
U 2(0') = e ia W and U 2(0') * leave D(Nn) invariant for 
arbitrary real 0' and positive integer n. Let ~ and lJ1 
be vectors in COO(N). F(O') = (~,U2(0')a(j)U2(0')*lJ1) is 
then a well-defined infinitely differentiable function of 
0'. In fact F<n)(O) = (<I>, adzW)na(j)lJ1) = (<I>,ina(wnj)lJ1). 
Hence F(O') is an analytic function of 0' and in particu­
lar,F(l) =6 F(n)(O)/n! = (<I>,a(uf)lJ1). This establish­
es (All) as a form equation on Coo(N) x Coo(N) and 
by extension as an operator equation on D(Nl/2). 

The relation (A10) is somewhat more troublesome. 
Again we write U 1 (0') = e iaL. Since by Corollary 2.1 
1 E HS, it is easy to see that the expansion U 1 (0')lJ1 = 
'B(iO'L)n/n!lJ1 is convergent for lJ1 a vector with a 
finite number of particles, provided that 10' 1 < 0' ° = 
Illlli. This convergence enables us to prove that for 
1001<a o, 

a(j)U1(0')* = U1(0')*[a{!da)f) + a*(jhjO')f)], (A12) 
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where hJa) = cosh(aZ) and hjO') = sinh(al). Equation 
(A12) is first proved as a form relation on :D x :D 
[see (6.1)], but it then extends to an operator equality 
on D(Nl/2). 

From (A12) we can then deduce that if 1 a 1 < a 0' 

U1(0')*D(N) C D(N). (A13) 

The method is to write NUl (0') * = 'Ba*(jn)a(jn)U 1 (0') * 
as in Sec. 6 and to use (A12) and its adjoint relation to 
"commute" the U 1 (0') * to the left; this displays NUl (a) * 
in the form U 1 (a)*A, where A is an unbounded oper­
ator whose domain includes D(N); and (A13) is proved. 
But U 1 (a/ n)n = U 1 (0') so that, in fact, (A13) holds for 
all a. 

It is now a simple matter to prove (A10). For ~, lJ1 E 

D(N), the function G(a) = (U 1 (a)*<I> , a(j)U 1 (a)*lJ1) is 
Cl in 0' by (A13). When G'(O') is calculated, it too is 
seen to be C1 and by continuing this argument we see 
that G(O') is actually analytic in 0'. Thus (A10) follows 
as did (All). 

Finally we mention that the same method can be 
applied to show that on D(Nl/2): 

14 J. Glimm, Advan. Math. 3,101 (1969). 
15 I. Segal, Trans. Amer. Math. Soc. 81, 106 (1956). 
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Erratum: Green's Function for the Nonlocal Wave Equation 

[J. Maths. Phys.l1, 1938 (1970)] 

G.A. Baraff 
Bell Te/eP/wlll' LaiJoratories, file .. ,\funal' Hill, Nell' Jersel' 07974 

(Received 22 February'1972) . 

The line just before Eq. (4.4) should read: "x 0 by 
(x - x o) :0:. 0 in (4.3) gives." Consequently, Eq. (4. 5) is 
valid only for x> XO' For x < x o' note that Eq. (4.3) 
shows that G(x, x o) = G(xo, x) so that we have 

G(x, xo) = - fads e(s)e(s + x - Xo), x> xo, (4.5a) o 

G(x, x o) = - 1; ds e(s)e(s + Xo - x), x < xo' (4.5b) 

These two equations together should replace both Eqs. 
(4.5) and (1. 3a). Equation (1. 3b) is, of course, cor­
rect as it stands. 
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G(x, x o) = - 1; ds e(s)e(s + Xo - x), x < xo' (4.5b) 
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