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A prescription is given for obtaining the Green's function for N free particles which can have different masses.
The approach is systematic and straightforward. A coordinate transformation of the Fourier integral repre-
sentation of the N-particle noninteracting Green's function facilitates the integration over 3N-1 angular vari-
ables of wavenumber space. A single radial integral can then be evaluated. The resulting Green's function
representation may be of use in applying the integral form of Schrédinger's equation to calculate the ground

and excited states of atoms.

For certain problems in quantum mechanics, it is
advantageous to reduce the number of continuous
variables, replacing them with sums over discrete
variables. Many investigatorsl~ 6 have utilized some
form of hyperspherical coordinates to express a 3N-
dimensional problem, N = 2, 3,4, ...,in terms of a
single continuous radial variable with the remaining
3N-1 coordinates being angles. Functions of the 3N
coordinates may then be expanded in terms of a set
of “generalized” spherical harmonics labeled by dis-
crete indices. If N is 1, ordinary spherical polar
coordinates result.

In this paper, a well~-known hyperspherical coordin-
ate system7:8 is employed to obtain the noninterac-
ting Green's function for N + 1 distinguishable par-
ticles. Although other forms of the many-particle
Green's functions are available, 910 the representa-
tation developed here permits one to employ the inte-
gral solution precedure of Sams and Kouri,11 which
is a numerical method for noniteratively solving
integral equations. It has been used successfully in
carrying out numerous scattering calculations!2 and
bound state investigations for model potentials such
as the Lennard-Jones.12.6 Since such integral equa-
tions are constructed using Green's functions, their
numerical method can be employed to calculate
energy eigenstates of systems composed of several
particles if the relevant Green's functions are known.
The present representation for the N-particle
Green's function is computationally convenient for
solving the integral form of Schridinger's equation
for atoms, 13 and it therefore may be of some benefit
in analyzing other three- or more-body problems.14

In center of mass coordinates, v, is the vector be-

tween particles 1 and 2 with masses m ; and m ,, res-
pectively, », is the vector from their center of mass
to a third particle, and 75 is a vector from the center
of mass of all three to a fourth particle. The ith vec-
tor v, i=1,2,...,N,is from the center of mass of
all the particles 1, 2,3, ..., ¢ to the center of mass
particle ¢ + 1. The ith reduced mass, y,, is

i i*l
’J"i = mi{-l(z m) E mj’ (1)
j=1 j=1

and 7, is defined by
2
Ny = Ky (2)

The Green's function G{(®| ®’) for N free particles
having reduced masses n2 satisfies the 3N-dimen-
sional inhomogeneous differential equation

=—08(r; — r))b(ry—ry)...0(ry—1ry), (3)

where the vector ® possesses 3N components and the
right side of Eq. (3) is a product of N three-dimen-
sional Dirac 6 functions. The Fourier integral re-
presentation of G (®|®’') may be written as

, 1\3N
GR|®R) = (ﬂ> Jau, [ au,--- [ au,
< MOy ity by ry)  iuy.EyTR) )
)

(”1/771)2 + (u2/772)2 L (uN/WN)z—K2(4)

using the Fourier representation of the Dirac 6
functions.15 The method for treating the singulari-
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ties in Eq. (4) follow from the boundary conditions
imposed on G(®) as ® — . It is convenient to let

g =u,/7, (5)
and

R; =n;r; (6)

in order to obtain the equation
]
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3N
(‘2‘1,7) Snidgy [ nydg,. .. [n,de,

(RyR3), .

GRI®R) =

o &1 B R ig, . oiEN-RyRY)
X R ) 3 . (M
gitgyt - tgy—K
By employing a partial wave decomposition1® and
integrating Eq. (7) over the 2N spherical polar angles
&gl, ceey JgN, Pgys - the expression for

G(®|®') becomes

L] (pgN;

' 2\Y *® 3 2 © 3 g o ©  © o L I Ly
c(mlm)=<ﬁ Jy migidg, [y nieddes. [ ndandey D L ... D L L ... X
1,70 1,70 IN=0 my=l ma=-l,  myTly
5<jl‘(g1R1” y (&R, (6oR )i, <ng§>---szthRanN(gNRN
{ g%+g2 . +glg___K2

~

R Y RY Y B Y (

where the orthonormality condition

N 27 v . N XN
0 J de, Joas, sing, Y@V (8)
N

=i1;11 01,110 mm] (9)

has been employed in performing the integration.

The orbital angular momentum of the ith particle,

i=1,2,...,N,is designated /, and the z component

is m;; so the spherical Bessel functions written in the

form jli(gi R;) represent “single-particle functions.”

The 1, th spherical Bessel function j; (g;R;) is defined
1

'n terms of the cylindrical Bessel function

J, ,,1/2(g R,) by the equation

(10)

jli(giRi) = (W/ZgiRi)]'/zf]zi+1/2(giRi)

ndtherl(R)(m =—1,~ L +1,...,1) are ordin-
ary sphemcal harmonics defined by Edmonds.17

After Eq. (8) is expressed in hyperspherical coordin-
ates, the many-particle representation of the Green's
function will be explicitly given by executing the re-
maining integrals, which are tedious but not difficult.
The hyperspherical coordinates include 4N spherical
polar angles 6,, 6/, ¢, ¢; and hyperspherical distances
p and p’ defined by

N
p2 =§(’Vi)2 (11)

and

P2 =53 61)2 12)

where 7, is the 7th radial spherical polar coordinate
for the observer, primes denote source coordinates.
In addition there are 2N-2 hyperspherical angles o;

and @,j = 1,2...,N— 1,given by the relations

¥, = p COS0y,
¥4 = p sine, cosdy,
B (13)
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’ A * A
ARER YZ’ZN(RN) Yl';N (Rgv)s ,

(8)

I

¥y-1 = p singy sina,. .. cosoy.,,

¥y = p sineyg sina, . .. sinay.,, 0 <o, <7/2.

and
r{ =p’ cosoy,
vy = p’ sina ] cosay,
. e (14)

¥y.1 = p’ sinoy sinay... cosaf

7y =p’ sinof sinaj... sinag,, 0<qof <7/2.

Hyperspherical coordinates of wavenumber space
have radius @, given by

N
Q?=2 (8)?, (15)
and the hyperspherical angles g8;, j = 1,2,...,N—1,
are introduced by the relatlons
g, =@ cospy,
5 = @ sinf,; cosf,,
< (16)
8y-1 = @ sinf; sinf,. .. coSBy g,
gy = @ sing sinB,... sinfy.y, <g <m/2

The other 2N coordinates, 4, and @, are the spheri-

cal polar angles over wh1ch mtegratlon was carried
out to obtain Eq. (8).

With this choice of coordmat%s, the products of
spher1ca1 Bessel functions I, 7, (gR,) and

_1 ]l (gR;]) in Eq. (8) can be separately coupled, using
the product expansion relation18:
J,(z sin® sin<I>)Jp (z cos® cosd)
o0
=22"127J,,,.2x1 (¢) cOs¢© sin*®
2=0

X JFi=a, v+ p+x+ 1 v+ 1;5in20)
X Fi—x,v+p+x+ v+ 1;sin2¢)
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X costd sin®{(— Dr(v +u + 2x + 1)

(I‘(v+u+x+ 1)I‘(1/+7(+1)>

(17)
v+ DPrp+x+1)

The orders v, p of the Bessel functions can assume
any value except negative integers, and x is zero or a
positive integer. Thus, ,F, is the Jacobi polynomial
of x + 1 terms, and T is the usual gamma function.
Equation (8) may be represented in hyperspherical
coordinates exclusively after 2( — 1) coupling opera-
tions are performed; however, a definite pattern is
followed to implement this transformation. By using
Eq. (17), the functions j,  (gyRy) andle(gN_lRN_l) are
initially coupled to yield a two-particle “cluster
function,” where the hypersphencal variablep is a
parameter. Likewise the functions j, (gyRy) and

Iry (gN 1Rf_1)are coupled producing the two- par-

t1c1e “cluster function” with p’ entering as a para-
meter, i.e.,

| - - P /2
Ty (gvBy) T (& 1Ry-1) = [(2 &R N) <2gN_ i 1\):!

X dy+17 2(8nBY) Iy v1/2(8n-1Rp1)

1
sinﬁN_ 5 sinay .

. s1naN_2>

=T
T 2Qp\sinB,...

. . Iy .1
X sinaq. .. sinay ;) cos™lay_, sin‘¥ay 4
3 T
XF(=Xq, by + ey + Xy + 25y + 25 sinay, 4)
.’
X cos™ig, ; sin¥g,

X Fi— Xy, by + Iy + 2q + 25y + §; sin26y_4)

X (~ 1)hog? (18)
and
L , T 7 /2
]zN(gNRN)JlN_l (8y-1Rat) = [<2gNR;‘,> <2gN_1RA',_1>}
Xy 1728w BN Ty 1/ (8- 1B 1)
T 1
- ngf sinB; ... SinBy., Singy ... sinay.,
x E ( ) Ity *2X,72
X (Qp’ ging, ... sinf,_, sinaj... sinay_,)

X coslN“lozI\’]_l sinlNal(,_l
X F (- )c’l,gv+l_ + X} + 2; 4, + 3; sin2ay.4)
X COoSs N_]BN_ISUI ﬁN_]_)

XF( Ky, by + by TR+ 2+ 2581078, )

b 1 P
X’:Z{O (_Q_ﬁ> JIN+IN_1 +2xl+2(Qp SinBl vas sinBN_2 X = DN (911) 27 (19)
L
t
where s s
52 = x [Ty + 2)]2T (5, + %, + 2)
VU oy Ly F 20, + TG by + Xy + DT, Xy F D) (20)
and
’ ’ 3
52 - XDy + D20, + %) +2) ‘
VT ol + 2%+ 2T+ by + X+ DT + Xy + D) 1)

Thus the two-particle “cluster functions” are shown
in Egs. (18) and (19).

The second step in transforming the integrand of Eq.
(8) entails coupling the single-particle functions

Tiyp (En-2Bae2) a0d jy (8. Ry 5) to the two-particle
“cluster functions” of Eqgs. (18) and (19), respectively,
using the product expansion relation of Eq. (17)

these expanded results, the functions j, (gN_ N-3 )

andj, (8y.3 Ry-3) are, respectively, coupled which

completes the third transformation step. Finally, the
N-particle “ cluster function” is formed by coupling
the remaining single-particle function, j g s to the (N —
1)-particle “cluster function.”

However, the integral representation for the nonin-
teracting N-particle Green's function G(R|®’) can be
generated from a generalized expression for the pro-
duct expansion operation that will couple M particles,
M=23,4,...,N, within a hypersphere of 3/ dimen-
sions and will thus yield an M-particle “cluster func-
tion.” The (M — 1)th product expansion operation is
now considered where an ) -particle function is
coupled to an M, -particle product expansion, and it

follows that M = M, + M,. (Note that M, is equal to
one in the present treatment ) Via this couphng pres-
cription with the hyperspherical coordinates intro-
duced, the (M — 1)th expansion operation couples the
(N — M + 1)th single-particle expression to the (M —
2)th M ~particle expression. By identifying the rela-
tions

QP coSBy. ey COSUy. 101 = QP SING; . ..

X COSPy_pey SiNG, ...

sinBy_

sinay,_,, €osty. .1, (22)

Qp sinoy .1 SIBBy . = Qp SiNG; ...
X 8infy. pnq Sine, ...

sinBy y
sinay y sinoy 4.,  (23)
and

o=N—M+1, (24)
then the (M — 1)th product expansion in the sequence
of (N — 1) expansions may be expressed as
M,/2 .
) 4 +1/2 (@ cosg, cosa,)

m
(2@5 cosf, cosa,

(W\)Mb/ 2 1 @M,/ 2-1)
x (T S T
2 (Qﬁ sing, s'ina)
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CAN (@p sing, sina,)
A\M/ 2 1\GM/2-1) —
@2 G e ot
e s
XF Kpgops Vigey =~ Ragogs Vagp + 15 sina)
X cos®p, sint“-2 1M/ -1l

XFl= X1 Vo1 — X ppo1s Yo T 1;81i028,)

X (= 1M (9, )2

1

(1>M/2 <L>(3M/2-1)
2 Qp

o
X 2 [Jy (@p) cosre(Dg sinM M-y

xaa=0 L M

X coska(c)ﬁo Sin)\b (M'Z)ﬁo
XF(= Xy Vg = Xp1s g T 1 810%0)
X F(— X315 V-1 — X1 Vag + 15 8in28))
X (- ML (9, )2, (25)

where

(W92

_ (X ) T (Vg + D20 (K, + 2, (0) + 3M,/2)
T 2y )T Wy Xy 9T Oy + Xy + 3M,/2)

(26)

The M-particle “cluster functions” constructed in
Eq. (25) by the (M — 1)-product expansion operation
contains a cylindrical Bessel function order vy, 4,
which is given by

VM_I—EQV +2E9‘z+——1 (27)

where the [, are individual particle orbital angular
momentum quantum numbers and the x, are defined
in Eq. (17). The order v,, , of the cylindrical function
belonging to the M, ~-particle “cluster function” is
obtained from the relation

M—.

Va2 Z

- 1. (28)

It is also apparent that the powers Xa(o) of the cosine
functions produced by the (M — 1)th product expan-
sion are numbers related to the number of particles
M,;i.e., the xa(o) are quantum numbers given by

)\a(U) == lIV‘M*‘l‘ (29)
Similarly the powers xb{M — 2) of the sine functions
are connected with the number of particles M, inclu-
ded by the (M — 2)th product expansion.

The relevant relation here is

Ab(M — 2) = EZN_Z+2Z79 (30)

It also may be seen that

Vpoo = ADM — 2) + (8M,/2) — 1 (31)
and

Uy = 2 T Aalo) + a0 — 2) + (3M/2)— 1. (32)
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Now hyperspherical coordinates and Egs. (27)—(30) are
used in order to write the N-particle Green's func-
tion integral of Eq. (8) as
GRI®R)
_ o .)3(_j1-'>(3N/2~1) I QJ,,, 1(QD)J,,M_l(Q;O )dQ

k3 1 ¢ 0 Qz — K2

2 w/ 2
X f: sin2By.; cos2By. ; dBN~1fo
/2
X dfys - fo sin3¢-D-1g, cosz‘[:"1 ap,

XEZ TSI o
v lN—x by Myep X0 R,=0

(o]

XZ ZE...E

Me1=0 A[70 xp=0 Wy, =0

1
- b
) cos Mgy ; sintOQq, 4
XF(=xq, 1y —

sinSgy. o coS2By 4

Xy Yy + 15 sin2ay )

14 - A (O
X cos™ig, 4 sin Oy-1

XF(~xq, 1 — X35 4 + 1; sin2By_4)
k,
X <(_3lg 1) cos™a) , sin** Py,
1
x F(— xj, v, — x; 4% + 1ysinoy )
X cosll"'lB,\,_1 31n>‘b(O)BN_
XF(~ X, » — x5y + 1;sin28,. )

() Iy . AL
X < 2 cos N2y 5, 8in" oy,
2

XF(~ X, vy — kz, y + 1;sin2qy ,)
% cogN‘ZB xb(l)BN .
XF(= Xq, Vp 7(2, 1y + 1;8in28, )

4
x<——(—m,212)k2) cos2af , sin™ Vo),
XF~ xo, Uy — it’z, y + 1;sin2ay )
% COSZN‘Zﬁ )\b(l)l%v .
XF (= xy, vy — ><2, y + 1;8in28, ,)

ALY = -
x <(—12L—> cos'ia, sin™ %Py,
-1
X F= Ry1> Yye1 — X5 Uaep T+ 158in20y)

X cosp, sin*? @2

1

X F—= %, 1 Vne1 — Ry-13 Wy-g T 1; sin2B))

)M

<( ,) > coslla{ sin*? ¥y oy
Niq
X Fl— Xy 1, U1 — X1s byo + 1; sin2al)
x cos'1p sin** ¥ 2g
X F= Xy Vg1 — Me1s Vg + 15 8in28)
X YN (R Y R Y Ry ) V)N
m *

X By). . Y RYHM &) (33)

The orthogonality conditionl?9

7/ 2 —9)+ - -
f )(sz(M 2)+3 M, 1)(COSBO)(2>\a(o)+3Ma 0

(sing,

X F= %45 Vi ™ Y15 Vg + 15 8i0n28)
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X F(— Xpp-15 Va1 — Xig-15 Vamg + 15 5In28)) dB,

= GAM—lx,M—l
o (O DT (Vg + 1200y, + 2alo) + 3M,/2) )
20y 1L Wpey — X)Ly + AB(M — 2) + 3M,/2)
(34)
ig utilized to perform the (N — 1)-fold integration

over the hyperspherical angles §;, j = 1,2, e
N — 1,in Eq. (33),and the resulting expression is

N -
1 \B¥/2-1)
G (RIR )= )3 ___,\)
(®] )—if:ll (n;) <

NI IEEED I IR IDID IR
N Iy Lomymg,  omp k ohy Kyg
o @, @0)d, (Qp)dQ
8 fo Qz — K2

a * -
x YIZN ) Yl:N (&) Yz;tﬁ—l EBy-1)

X5 m m* ’
x Yz;gl Br-1)- -, Ry Y &)
x 0172 cos™ 1y sin**©@q |
X F(—Xq,n, — g3y + 1;8in2ay )

z - Ab(0)
x cos Moy 4 sin ¢ Oy

X F(— &y, 1y — X5 4 + 15 8inZ0y4)
A1)
On-2
X F(— Xg, vy — Xg3 1y + 1; sinZay.,)
Ly < AB(D
X cosM2qy , 81N (NI

X F— %y, vy — ko3 1y + 158i0205 5)

-2 lN—Z .
X 5% cos¥2Zay 4 sin

~ l s Ab(-2)
x 3 ?1 cos'la; sin a

1
XF(— Xy 1y Y1 — X w2 T 15 sin?q,)
x cos'a] sin™* ¥ 2,
X F(— Ayys Vyo1 — X5 Yy-g T 15 8in2ay)
(35)
The summations in the above equation collapse into
finite sums for a fixed value of N — 1. Thus, only a
finite number of terms are associated with any one
hyperradial Green's function.

The hyperradial integral in Eq. (34) can be evaluated
to yield20

R @)
1 TerUN_l(Kp<) HUN-l (Kp>),

and the outgoing wave solution G(®|®') of Eq. (2) is
thus determined where p_, p, are the lesser and
greater, respectively, of p and p’. The cylindrical
Hankel function of the first kind is designated H @),
and the Ul]'.z =1,2,...,N— 1,are obtained from
Eq. (25).

This representation of the many-particle Green's
function appears to be useful in obtaining non-Har-
tree-Fock wavefunctions and energy levels for many
electron atoms.13
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Another set of axioms is given for a nonequilibrium classical gas composed of hard, spherical, nonattracting
molecules. It is shown that the thermodynamic functions of this type of gas can be expressed as multiple inte-
grals. It is also shown in a certain limiting case that the thermodynamic functions of this type of gas can be

expressed as Wiener integrals.
1. INTRODUCTION
A new model is given for a nonequilibrium gas com-

posed of hard, spherical, nonattracting molecules. It
is shown that with this model such nonequilibrium

parameters as average velocity at a point, pressure
at a point, density, and the correlation functions may
be exactly expressed as multiple integrals. Thus a
theory of gas dynamics is derived in terms of inte-
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Another Set of Axioms for Classical Gas Dynamics
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Another set of axioms is given for a nonequilibrium classical gas composed of hard, spherical, nonattracting
molecules. It is shown that the thermodynamic functions of this type of gas can be expressed as multiple inte-
grals. It is also shown in a certain limiting case that the thermodynamic functions of this type of gas can be

expressed as Wiener integrals.
1. INTRODUCTION
A new model is given for a nonequilibrium gas com-

posed of hard, spherical, nonattracting molecules. It
is shown that with this model such nonequilibrium

parameters as average velocity at a point, pressure
at a point, density, and the correlation functions may
be exactly expressed as multiple integrals. Thus a
theory of gas dynamics is derived in terms of inte-
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grals, rather than in terms of partial differential
equations.

Since the average velocity at a point of the gas
modeled in this paper satisfies the hydrodynamic
equations, and since its total energy is preserved with
time independent potentials, the integral formulation
given here is essentially equivalent to the differential
formulations.

While these integrals are difficult to approximate
numerically, their numerical approximation seems to
be no more difficult than the present methods used to
solve the Maxwell-Boltzmann equation or the Navier—
Stokes equations.

It will further be shown in the limiting case as the
temperature of the gas approaches infinity that the
typical path of a molecule in the gas has the same
distribution as Brownian motion with a drift co-
efficient. In this case it will be shown that all para-
meters of the gas may be expressed as Wiener inte-
grals. The author has recently shown how this type of
Wiener integral can be numerically evaluated.

There is a connection between the type of Wiener inte-
gral derived in this paper and the path integral of
quantum mechanics. This connection will be given in
another paper.

The approach taken is qualitatively as follows. At
each point the initial local temperature, mean velocity,
and density are given for the gas. It is assumed that
when the molecules of the gas collide, the average
velocity and energy of the molecules at the point
where the collision takes place are conserved. It is
shown that the preservation of these quantities implies
preservation of local temperature also. It is also
assumed that the paths of the molecules are continuous.
A further assumption is made that the distribution of
the velocities of the molecules just after a collision
has maximum entropy, subject to the constraints of
preservation of energy and average velocity. It is
shown that, with these assumptions, the distribution of
the velocities at a given point just after a collision is
completely determined and that this distribution is
normal with mean the preserved average velocity and
with variance proportional to the preserved local tem-
perature. Since the paths of the molecules are
assumed to be continuous, the distribution of the posi-
tions of the molecules just after a collision is the
same as just before. Therefore, it is shown that, with
these assumptions, it is possibleto calculate the distri-
bution of both the position and velocity of the mole-
cules just after a collision, given that it is known just
before a collision. Since it is assumed that the mole-
cules obey the laws of classical mechanics, the distri-
bution of their positions and velocities can be deter-
mined in the timesbetween collisions since their posi-
tion paths obey a given differential equation with
initial conditions the random position and velocity of
their last collision.

It is then shown that the distribution of the positions
and velocities of the molecules at any time after the
initial time and at any place can be calculated. This
distribution is determined by computing the expected
value of any function of the paths or their velocities
with respect to it. This expected mean, or average, is
shown to be a multiple integral, or a ratio of multiple
integrals.
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While these multiple integrals can be explicitly writ-
ten down, their actual numerical calculation appears
to present serious difficulties.

Since the mean intermolecular time is very small for
most gases, a natural approximation for the above
integrals is to let this parameter tend to zero. An
analysis of what happens in this case is given. In
order that the variance of the positions of the mole-
cules stay positive, it is necessary that the tempera-
ture of the gas approach infinity as the mean inter-
molecular collision time approaches zero.

If these assumptions are made, it is shown that the
above multiple integrals become Wiener integrals
(real path integrals), which are very close in form to
the Feynman path integrals which solve the Schridin-
ger equation.

These real path integrals depend on only the external
potential and the initial density and average velocity.

Thus with the above assumptions any parameter of a
nonequilibrium gas can be expressed as a Wiener inte-
gral.

While the collisions in a gas without long range inter-
action forces occur at random time intervals, the
assumption is made that the collisions occur at regu-
lar time intervals. This is justified on the ground
that the intercollision time is very small, so that the
error introduced is negligible.

In the case of the high temperature approximation, the
equation of the position paths of the molecules, x(},
formally becomes a stochastic equation of the form

2(f) = ult, x(2)) + 12(1),

where 2({) is the derivative of Brownian motion and «
satisfies the partial differential equation

1
u tuu, + 3u, +V, =0,

where V is the external potential for the gas. This
contrasts with the Ornstein-Uhlenbeck model

E=—V,+2az,
described, for example, in Nelson.1

2. THE MODEL AND SOME DEFINITIONS
The following axioms are assumed for the gas:

(a) The molecules of the gas obey the laws of New-
tonian mechanics.

(b) The position vectors of all molecules, the energy,
and the average velocity of the gas at each point of
the space in which the gas is enclosed are continuous
functions of time.

(e) The molecules are nonattracting, and the col-
lisions between them are elastic.

(d) At collisions the entropy is maximized.
A fifth axiom is added for the sake of mathematical
convenience.

(e) The collisions occur at all points of the space at
regular intervals £, = ia, ¢ = 0,1,2,---.

It will also be assumed for mathematical convenience
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that the mass of the molecules to be dealt with is
unity and that they move in only one dimension. A con-
siderable amount of notational and mathematical
clarity is achieved by this last assumption with no
loss in generality since all results are invariant with
respect to the dimension of the space in which the
molecules move, if the external force is the negative
of the gradient of a potential, and the initial mean
velocity is irrotational.

It is assumed that the gas occupies all of space. A
later paper will shown how boundary conditions can
be included in the model.

It is also assumed that if a function is differentiated,
its derivative exists and, that if the function is inte-
grated, its integral exists.

We assume now a gas satisfying axioms (a), (b), (¢),
(d), and (e) listed previously. At each point x and for
all times ¢ = 0 a potential V(¢,x) is assumed given,
with — V, = f.

At time 0, it is assumed that at each point x of space
the average velocity #(0, x), the density p(0, x), and the
variance of the velocity #(0, x) are given.

It will be shown how, with the help of axioms (a)-(e),
the quantities u, p, and % can be determined inductively
for all time.

At times £, by axiom (e), a collision takes place. We
will denote by £~ quantities at time ¢ just before the
collision takes place and by £t quantities just after
the collision takes place. By axiom (b), the quantities
u, k,and p are continuous in time at collisions (p is
continuous since the paths of the molecules are), and
therefore

u(t;, x) = u(tf, x),

k(t7,x) = k(t},x), and

p(t7,x) = p(t},x) for each x.

We use the notation
E{F(x, )}

to denote the expected, average, or mean value of the
function F(x, x) of the position paths of the molecules
x and their velocities & and the notation

E{F(x, )| x(2) = x}

to denote the expected, average, or mean value of

F(x, %) given x(¢) = x, or, in other words, the expected,
mean, or average value of F(x, x) over all paths whose
position at time ¢ is x. Thus

u(t, x) = E{ () | x(t) = x}
and
k(t, x) = E{(&(t) — u(t, x))2 | x(8) = x}.

At time 07 = {; at each point x, the velocities have a
certain distribution whose exact form does not con-
cern us; we know by assumption, however, that their
mean is u(0, x) and that their variance is (0, x).

Let N be total number of molecules in the gas. Then
p(0, x)dxN is defined to be the number of molecules at
x at time 0.

Let p(0~, x| x(0) = x) be the unknown conditional distri-
bution of the velocities of the molecules at x at time

815

0~. It can be seen that the total number of molecules
at x with velocity & at time 0™ is p(6~,% | x(0) = x)
p(0, x)Ndxdx, and thus the total kinetic energy of the
molecules at x at time 0 is

S5 L i2p(0m, % %(0) = x)dk p(0,x)dx N
= E{ [#(0)]2| x(0) = x}p(0, x)ax N

The energy at 07, x, E(07, x), is now seen to be

E(07, x) = (E{[x(0)]2/2| x(0) = x} + V(0,x))p (0, x)dx N
= (3 E{[%(0) — u(0, x)]2 | x(0) = x} + zu2(0, x)
+ V(0, x))p(0, x)dx N

= (3 R(0, x) + 3 u2(0, x) + V(0, x))p(0, x)Ndx
(2.1)

Equation (2. 1) shows that 2(0, x) must be continuous at
time 0, since all the other members of (2.1) are.

By assumption, collisions occur at 0, x. By axiom (b),
the paths of the molecules are continuous, and there-
fore the position of a molecule just after a collision is
the same as just before it. Thus the density function
is the same just after a collision as just before it.
This is not true, of course, of the velocities which by
axiom (c) change instantaneously.

To obtain the distribution function for the velocities
just after a collision, axiom (d) is used. By axiom (b)
E(0, x) and the average velocity #(0, x) are the same
just after the collision as just before, and therefore,
as is well known, we must maximize

— [ p(0+, %1 %(0) = Mnfp(0*, % | x(0) = »)]dx  (2.2)
subject to the restrictions
J2 p(0%, x| x(0) = x)di = 1, (2.3)
I kp(0%, %] 2(0) = x)dx = u(0, x), (2.4)
[ 23 %2p(0%, % | x(0) = x)ds
+ V(0,x)p(0, x)dxN = E(0,x). (2.5)

Equation (2. 4) is, of course, just the condition of
preservation of average velocity, and (2. 5) is the
preservation of energy. Via (2. 1), (2. 3) and (2. 4), it
can be seen that (2.5) can be written as

I [ — (0, x)]2p(0%, £| 2(0) = x)d% = k(0,%). (2.5
The variational problem (2. 2), (2. 3), (2. 4), and (2.5) is

solved by Lagrange multipliers. Its solution is easily
shown to be

exp{— [* — u(0,x)]2/2¢c}

Laexp{ — [ — u(0, O]2/2¢}dx
(2.86)

pl0F, %) | x(0) = x) =

where c is determined by (2. 5°)
Since

(2me)~1/2 [ [k — u(0, x)]2
x exp{ — [% —u(0,x)]2/2c}dx = c,

it follows that
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c= k(O, x)
and from (2. 6) it follows that

p (0%, %} x) = [2nk(0, x)]"1/2

x exp{ —[x — u(0, x)]2/2k(0,x)}. (2.7)

If the gas considered were in equilibrium, then the ¢
defined above would be RT, where R is the gas con-
stant and T is the temperature of the gas (see Jeans,?2
for example). In the case considered, therefore, (0, x)
has interpretation of being RT(0, x), where R isthe gas
constant and T(0, x) is the local temperature.

The density function p(0t, % | x(0) = x) gives the distri-
bution x at 0% given x(0) = x. The joint distribution of
x and x is therefore

p(07, %, x) = [27R(0, x)]"1/2p(0, x)
x exp{[x — u(0, x)]2/2k(0, x)}. (2.8)

If 0= ¢=t, and F is an integrable function of x(¢) and
*(2), it follows that

E{ F((t), x(2)}
Lo LR, x()p(0, 5o, xg)dkodxq
Jool2mk(0, 50)] ~L/2( 3 F((8), %()) (0, %)

MICHAEL SCHILDER

x exp{ —

x(1) is the unique solution to the equation x'(#) =
A(t, x(t)) with initial conditions x(0) = x, and %(0) = x,,.

[xq — (0, x5) [2/2k(0, x()jd% 4dx . (2.9)

It is to be emphasized that the differential equation

() = f(t, x()) must be solved for all values of its

initial conditions, which are the variables of integra-

tion. This can, of course, be done explicitly only in

SIE‘;CI?I cases such as lmear or quadratic potentials,
x

Let x4(x) = 1 if x isina set B which is in the space in
which the molecules are moving, and let x4(x) = 0 if
x is not in B. It follows then that the normalized den-
sity at {, x is

p(t, x) = lim E{ xgx(#)}/ B,
B-x

where |B| is the length (in one dimension) of B;lim .,
means that B contains x and shrinks down to it. We
define

E{F(x(t), x(8) xa(*())}

t | t) = 1li
M) = o as lim == o

B-x

E{ F(i(t), x(

’
(2.10)
where the lim_,, is the same as before. See Kac.3
Itcanbe seen if 0 =t = ¢,

p(t, x) = fx(t)=x [21Tk(0, xo)]’l/zp(o, xo) eXp{ - [5‘0 - u(oy xo)]z/zk(o’ xo)}d"‘odxo’ (2. 11)
u(t,x) = JFO=A2mk(0, x0)]71/2 k(80 (0, x,) expl — (¥, —u(0, %) 12/2k(0, x) Jdxodx, , (2.12)
; p(t, x)
an
SO T2mk(0, ) 71/2[3(8) — (0, )20 (0, xq) exp{ — [ — u(0, x)]2/2k(0, xo)}didx
W) = _ (2.13)
p(t, x)
-

As before, x(f) is obtained by solving the differential
equation x( = A, x(t)) with initial conditions the vari-
ables of integration %, x,. The notation [*®=*dx dx,
means to integrate over all values of X, and x, such
that x(f) = x.

It follows that if the initial density, temperature [since
RT(0, x) = k0, x)], and average velocity of the gas are
known for each initial point x and if the gas considered
satisfies axioms (a)-(e) that these parameters can be
calculated (in principle anyway) at time {7, for all
values of x. ¢, is, as defined before, the time of the
second c0111s1on Equation (2. 8) shows that if , 2, and
p are known just before the first collision, and 1f
axioms (a)—(e) are assumed, the distribution of x and
% just after the first collision can be determined. We
apply (2. 8) to determine the distribution of x and %
just after the second collision, using the values of .
p,and k at ¢; obtained from (2. 11), (2. 12), and (2. 13).

ult;,x)

f. Y R nj:i—1211k(t], %) 1/2p(0, x o) [%(2,)] exp[— z" 1[

Therefore, by induction, it follows that any thermo-
dynamic function [see (2.9)] of the gas can be cal-
culated, since in fact the general distribution of x and
% is now given.

ift, =1=i,.,,the following formula can be obtained
by induction:

E{FG(t), (D)
= f—oooo. ' .f'oooo (:lz—l’;znk(tu xi)> —1/2F(5C(t)s X( t))p(oy xo)

e lx; — u(ty, 0)2 . :
X exp [— )y —————]dx didi, - - dx,
p( Z, 2K(t,, x,) omroT
(2.14)

u(l;,x) and k(t;, x) for ¢ = 1 can be calculated as be-
fore or by the recursive formulas

u(t,, 512/ 2k(t;, 3)dxodivg” * * diiy (2. 15)

f fx(t)x H]
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k(t,,x)

1

IBE ["(ti)”‘ [H;:i(;l 2nk(t;, x;)]

817

Y2000, x)E () — w102 exp{ — D7 —ult, B/ 2kt 1) dx oy . i,

Joo e it )17V 20(0,2) exp{— Tl —

Jj*7

The notation |. .. f"‘(ti):" means to integrate over
those values of x(, %, ..., %;_; such that x(¢,) = x.
The x4,%g, ..., %, are independent quantities (i.e.,
they are variables of integration). The variables x,
are calculated inductively with x; = x(¢ ), where xzt)
satisfies the differential equation ¥(f} = f(¢,x(¢)) with
initial conditions x(0) = xq, £(0) =%, x5 = x(ty),
where ¥(f) = /(t, x(#)) with initial conditions x(¢;) = x,
and %(t,) = £, and so on for all the other x;. x(?) is
the solution to X () = f{£,x(#)) with initial conditions
x(t,) = x,, £(t,) = ¥,. u(0,x) and k(0,x) are,asbefore,
given initially.
Another way of interpreting the probability distribu-
tion of x(f) and x(#) is possible. This representation
will be needed later. If t, < f =t ,,then X(t),x(¢) is
the solution of the differential equation () = f(f, x(¢))
with initial conditions

x(t3) = x(t;) (2.17)
and

£(t5) = ult,, x(t;) + 2, (R, x (7)) /2. (2.18)
Z, is a Gaussian (normal) random variable with mean
zero and variance one. »# and k are, as before, com-
puted by the formulas

ult,, x) = ELX(5) | x(t,) = x}
B(t,x) = E{(2(£) — (e, x(t,)N2 | x(t) = x}

%(0) has distribution p(0, x(0)), which is assumed given
as are u(0, x) and %(0, x).
This can be seen as follows.

We change variables in (2. 14) by letting

2

[, — u(t,, x)]/[R(¢, x)]* 72, or

i

X

u(t,, x;) + 2i(k(ti’xi))1/2_

1277

(2.19)

The Jacobian of this transformation is Hﬁig [(t, x,)]172
and so (2. 14) can be rewritten as

E{FE®, s} = Lo [ @) 2R (1), x()P(0, xo)
X exp[— Eé%/Z]dedéo- ~edz,. (2.20)

Since the functions (27)"1/2 exp[— (2%/2)2] are the dis-
tribution functions of normal variables with mean
zero and variance one and, since it can be seen that
x(#), x(t) is actually a function of 2,...,2,as des-
cribed by (2.17) and (2. 18), it follows that the right-
hand side of (2.20) is the expected value of the arbit-
rary function F(x(¢), x(¢)) with respect to the Markov
process described by (2.17) and (2. 18). Since the
values of # and % are computed exactly as before, this
proves (2. 17) and (2.18). (2.17) and (2. 18) give
another interpretation of the motion of the molecules
of the gas. The molecules move according to the laws
of Newtonian mechanics until a collision. The posi-
tion remains the same at the collision, while the

ult;, x)12/2k(t;, %, )Ydx ot - - iy

(2.186)

|
velocity is changed to a normal random variable

whose mean and variance are the same as the mean
and variance of the velocity of the fluid at the point of
collision. The phrase “at the point of collision” is the
root of most of the mathematical complications of this
paper. However, the approach taken seems to be the
only way that the gas may be modeled so that energy
is preserved.

In a real fluid, of course, the collisions do not occur
at regular time intervals but have a probability dis-
tribution with respect to both time and space. The
most natural distribution of collisions in both time
and space of a gas satisfying axioms (a)—(d) is Pois-
son, and axiom (e) could now be replaced with this
assumption. However, it does not seem that the in-
crease in accuracy derived by doing this would justify
the additional mathematical complication.

3. SOME CONSEQUENCES OF THE MODEL

If the mathematical model of the proceeding section
is to be considered physically valid, consequences of
it must agree with known physical phenomena. In this
section it will be explained why the total energy of the
gas is preserved if the external potential is time in-
dependent and in what manner its parameters satisfy
the hydrodynamic equations.

It is well known that while a gas is freely flowing be-
tween collisions, it satisfies the hydrodynamic equa-
tions,which are

Py +(up), =0, (8.1)

u, +uu,=—P,/p +f. (3.2)

p,u, and f are defined in Sec.2. P is pressure and
according to Jeans¢ may be defined, in the notation of
this paper,as P = pk.

At the collision times {t]}, all the above quantities are
continuous by assumption, although the derivatives p,,

44, and P, might not be continuous as functions of time
over the times ¢;. It should be remembered,however,
that any derivation of the equations of motion of a gas

with discrete, hard collisions must involve some kind

of time smoothing.

That p, , f, and P satisfy (3. 1) and (3. 2) may also be
derived from the theory of the last section.

By definition, the energy of the gas is preserved
across collisions at each point and therefore for the
entire gasat the collisiontimes. In between collisions,
energy is preserved along each path, if the external
potential is independent of time, and therefore the
total energy of the gas is preserved in these times
also. Thus the mean energy of the gas is preserved
for all time if the external potential is independent of
time.

Since the total energy of the gas is preserved and
since the entropy of the gas is always increasing, one

J. Math. Phys., Vol. 13, No. 6, June 1972
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would expect from classical statistical mechanics
that the distribution of the velocities and the positions
of the molecules in the limit as time approaches in-
finity would be the Maxwell-Boltzman distribution. A
direct proof of this fact seems very difficult and has
not been found.

4. THE APPROXIMATION TO BROWNIAN MOTION

While exact expressions for the parameters of the gas
considered in this paper are given by (2. 14), they are,
as has already been pointed out, very difficult to use
for computational purposes. Since the intermolecular
collision time A is extremely small, it seems that a
good approximation for these integrals would be to let
this parameter tend to zero. This approximation will
be considered in this section.

If, however, we let A, which in this paper has the inter-
pretation as the mean length of time of a free path of
a molecule, tend to zero, without changing the other
parameters of the gas, then it can be seen that the
variance of x(f) tends to zero which is clearly not
desirable.

From another point of view, it is shown in books on
gas dynamics (see Jeans?2) that the mean length of time
for a free path is const/viemp. Therefore, if A is to
tend to zero, we must let the temperature tend to in-
finity.

In this paper k(f, x) has the dimensions of temperature.
It is, therefore, multiplied by A2/A, where X is a new
constant parameter which gives still some measure of
the temperature or activity of the gas.

Representation of the gas as a stochastic process now
has the form

x(tF) = ult, ,x(4,)) + M&,/NVAWk(E,, x(,)),  (4.1)
x(t]) = x(t;)- (4.2)

Consider now a process

[%] Az, [tZ/A] /i
z(l) = = ZAA
(® i VA T

where the Z; are, as before, independent random vari-
ables with mean zero and variance one. [#/A] is the
greatest integer less than #/A.

A t is now fixed. The number of collisions »n from
time O to time ¢ is [¢/A]. We now let A~ 0. By defini-
tion [z(¢ + A) — z(f)]/A tends the £(?), the derivative of
Brownian motion. (4. 1) formally becomes

x(t) = u(t, x(1)) + rz(t)[R(L, x)]1/2 (4.3)
The stochastic equation (4. 3) is called an Ito equation
and has been extensively studied; see Ito5 or Doob®
for the theory of this equation.

We now make another assumption: that the k(¢, x(¢)) of
(4.3) is in fact 1. This assumption is necessary since,
while it is possible to derive a partial differential
equation for u, it has not yet been possible to derive
an expression for k(¢, x) in the limiting case of 4—0.
The assumption that k(¢, x) is 1 in the limit case can
be justified in a number of ways. It might be assumed
that the temperature becomes uniformly infinite
throughout the gas, in which case it is justified. The
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derivation of the Navier—Stokes equation (which is
what is really desired for the case at hand) usually
includes the agssumption that temperature variations
are negligible. Since, as has already been pointed out,
k(t, x) has the dimensions of temperature, it is again
justifiable to set &(¢,x) = 1. A third possibility of
justification is to change the original model. k(t, x) is
included in the model so that energy will be conserved
across collisions. If we drop this assumption and re-
place it with the assumption that only average velocity
is preserved across collisions and that the impact
force Z, is of constant variance, then it is again justi-
fied to set k(f, x) = 1. This assumption will be made
for the remainder of the paper.

Equation (4. 3) now reads

x(t) = u(t, x(D) + A (1), (4.4)
A rigorous justification that the system described by
(4.1) and (4.2) has a limit as A — 0 and thatit is of the
form (4.3) seems very difficult and has not yet been
obtained.

On the other hand, the fact that the stochastic differen-
tial equation (4. 3) describes a system whichis formal-
ly the limit of the model of Sec. 2 is fairly clear. Thus
(4.3) is introduced to describe such a limit.?

Let
Dx(?) = im E{[x(t + k) — x(8))/n|®,}
N b= 0+
and
D, x(t) = lin3+E{[x(t + k) — x(B]/k| 5},
h—

where @, and J, are respectively the o~algebras
generated by x(a) with 0 <= @ <= fand t = a < ©,

The operators D and D, are introduced and studied by
Nelson.8

Since it follows easily from the theory of Sec. 2, for
A> 0, that

D% x(t) = D2x(t) = f(¢, x(1)),

if x(¢) is defined by (4. 1) and (4. 2), it will be assumed
that the x(f) defined by (4. 4) has the following proper~
ties:

D2x(t) = D(u(t, x(1))= f(t, x(t))
and

D2 x(t) = Dyux(t, x(1) = f(2, %(2)

(4.5)
(4.6)

u, is the drift coefficient of the Markov process (4. 4)
with time reversed. See Nelson.®

Since NelsonlQ shows

Du(t,x(t)) = u, + uu + (\2/2u
and
D (Lx(t) = uy +up, — (a2/2um, ..,

it follows from (4.5) and (4. 6), if certain differenti-
ability and boundedness assumptions are also included
in the model (4. 4), that

u, +uuy, + (A2/2m,, = f(t, x) (4.7)
and

Ut +u*“*x— (AZ/Z)U*xef(t,x). (4'8)

We proceed to study the models (4. 4) and
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%, (8) = u, (t, x(2)) +A2,(8), (4.9)

where « and u, satisfy respectivelythe partial differen-

tial equations (4.7) and (4.8) and where 2,(¢) of (4.9)
is the derivative of Brownian motion with time re-
versed. See Nelson.10

It will now be shown that the expected value of any
function of the paths x(¢), where x(f) is the solution of
the stochastic equation %(¢) = u(¢, x(£)) + A%(f) and
where u(f, x) is the solution of the partial differential
equation (4.7), can be expressed as a Wiener integral,
or as a real path integral.

Lemma 4.1: Suppose u(t, x) satisfies (4.7) and
U, x) = u(f,x). Then
U +2J2 + 3220, + V(tx) + c(t) = (4.10)

Proof: Lemma 4.1 is proved by differentiating
(4. 10) with respect to x, and using (4. 7).

By suitable choice of V or U, the function c(f) in
(4. 10) can be made zero. It will be assumed that this
is the case for the remainder of this paper.

Equation (4. 10) is known as the stochastic Hamilton—
Jacobi equation, or as Bellman's equation, and has
been extensively studied by engineers; see Wonham11
or Flemming.12

Let EW{ F(z)|z(0) = x} be the expected value of the
function F(z) with respect to the Wiener measure that
has variance parameter A2, and with probability one,
has all its paths starting at x at time zero.

The main theorem of this paper can now be proved.

Theovem 4.1: Suppose u satisfies (4.7), that
lul =K, a constant,13 and that (4. 4) has a unique
solution.14

Then,
E{F(x(:))| x(0) = x}

—EwiF(x( ) exp[ (fov(t (D)t

+ U(T, x(T)) — U(0, x(o»ﬂ | x(0) = x%
V(¢, x) is the potential for the gas, U(, x) is a function
such that U, = u, where u satisfies (4.7),and F is an
arbitrary integrable function of the Brownian motion
paths x(*).

froof Since x = u# + AZ, it follows that x(. ) =
0 ul(a, x(a))da +x(0) + L(z( ) — 2(0)) and therefore
(- ) can be written as a function of z2(.) and x(0) = x:
x( ,2(*),x(0)). See Schilderl5 fora more thoroughdis-
cussion of this point.

(4.11)

E{F(x(-))} is really by definition

E«{Fx(-), 2(-), 2(0)) | 2(0) = 0O}

[Since only Z appears in (4. 4), z(0) is arbitrary, and
it is therefore set equal to zero.]

In the last Wiener integral, we change variables by

letting 2(f) = (1/A)(@(t) — u(t, x())). See (4.4), where
x(-) is the new variable of integration and x(0) is
fixed at x. Girsanov16é shows rigorously that

E{F(x(- )} is
E“‘%F(x( )] exp[ (fou(t x(8))dx(t)

—3 fguz(t,x(t))dtﬂ 'x(O) = x%

The integral f o U(t, x(£))dx(t) is called an Ito integral.
See Doob8 or Ito5 for its properties. [It should be
remembered that x(¢) has infinite variance and is ex-
tremely discontinuous, and therefore an Ito integral is
not quite the same as an ordinary Stieltjes integral.]
In the above works it is shown that if x(#) is Brownian
motion, which it may be considered in the above inte-
gral, then

U(T, x(T)) — U(0, x(0))
= fg Ut(t x(D)dt + [§ ULt, x(t))dx(2)

2 2 [Ty, (t, x(t)dt.
Since U, = u({, x) by hypothesis, we have
Jo ult, x())dx(t) = — f3 UL, x( (t)dt — > fo U, (t, x(t))dt
+ U(T, x(T)) — U(0, x(0)).

Making these substitutions, we get
E{F(x("))|x(0) = x}

= EWBF(x(- ) exp[_c_z) I (Ut + %3 U, + é(Ux)-?)dt

+ U(T, x(T))/»2 — U(0, x(O))/Az]I x(0) = x}.

By Lemma 4. 1, the last expression is

EvF(x(+)) exp [GE) [TVt x(t)dt + UCT, x(T))

— U(o, x(O))] [%(0) = x

b

as was to be shown.

Since % £2(¢) — V(¢ x()) is actually the Lagrangian for
the problem ¥ = — V,, and since fg(% %2 — V)dt —
U(T, x(T)) + U(0, x(0)) can be defined as its action
(see Feynman and Hibbs17), (4. 11) can be rewritten as

E{F(x(+ )} = [F(x(+)) exp[— (1/A2) (action)]Dx(t),

using Feynman and Hibbs integral notation.

As A — 0,then 1/A2 - o and the above integral be-
comes singular, putting all its mass on the path x(¢)
which minimizes the action, and E{F(x( ))} becomes
just F(y(*)), where y(*) minimizes the action. This is
shown rigorously in Schilder.18 As x — 0, it can be
seen from (4. 4) that the random motion in the gas is
going away. Another proof is therefore given, for the
simple case considered, of Hamilton's variational
principle. The theory presented in this paper can
most likely be generalized to other types of Lagran-
gians by using the theory developed by Varadhanl? or
Flemming.12
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Covollary 4. 1: — 1,(0, x(0))>] lx(T) — yé exp[U*(T, y)/22]. R
E{F(x(-)} _ _ . (4.12)
- L2 el L (v o e o8 earen 31 4TI o n e same e

p(0, x)dx Covrollary 4. 2:
y .

exp{U(T, y)/r2]

+ U(T, x(T)) — U(0, x(O)))} ‘x(O) =x

Proof: The proof follows directly from the defini-

tion of conditional expectation [that x(0) = x]. - (Ew{ exp [(1 /A2) <f g V(t, x(8))dt — U, (0, x(o))ﬂ
Let U, =u,. -
x| 2(T) = y}> L
Theovem 4.2: Suppose u, satisfies (4.8),that

|u,l = K, a constant, that (4.9) has a unique solution, ) . .
and that F is an arbitrary integrable function of the Prooj: Corollary 4.2 is proved by sett1'ng the F of
paths x,(¢). Then Theorem 4.2 equal to one, and by transposing
* exp[1/A2)U(T, v) to the left-hand side of (4. 12).
E{F((- )| x(T) = 3} ” 4.3 Suopose F and u. satistv the b
1 /rr heovem 4.3 Suppose F and u, satisfy the hypo-
= Eng(x( ) exP[)\—z (fo V(t, x(t))dt thesis of Theorem 4.2; then *

F(x(+)) exp[u/xz) (f oV (t,x(0)dt — U*(o,x(o»ﬂ |x(1) = y$

Eo
e[ (IG s — vo,p0)] [rn =]

E{Fl(-)) | x(T) = y}

(4.13)

-
Pyoof: The proof is immediate from Theorem 4.2 be derived from Corollary 4.2 of this paper. If (4.14)
and Corollary 4. 2. is integrated with respect to x and raised to the eth

Theorems 4.1 and 4.3 show that any macroscopic power, it is found that

parameter of the gas considered can be expressed as
a Wiener integral or as the ratio of Wiener integrals
that depend only on V, U(0, x), and U(T, x),or on V and
U,(0, x). Schilder15 shows how this type of Wiener
integral can be expanded in a power series inA.

exp[U, (¢, x)/A2]o(t, x) = exp[U(t, x)/A2],

whence the term exp[— U(0, x(0))/A2] of (4.11) can
be replaced by exp[— U, (0, x(0))/x2]p(0, x(0)).

Nelson20 shows that «,u,, and p are related by the It will now be shown that (7, y) can be expressed as
interesting formula the ratio of two Wiener integrals. This theorem is
due to Professor M. Donsker. See Varadhan.19
w(, %) = ult, ) — A 20,{t, x)/p(4, x), (4.14)
Theovem 4.4: Suppose u, satisfies the conditions
where p again is the density. This formula can also of Theorem 4.2 and that U (0, x) = ¢ (x). Then

)

Ev [(— Jov e, x(t)dt + <p,,<x<o»> exp[(l/xz)( Jovie,x(t)at — <p(x<o»>}lx<T) =y

u*(T, y) = T -
el exp[(mz) (Fove xona - ox(O))] =) = s
F
Proof: From Corollary 4.2, it follows that tion u (T, v). That the right-hand side of (4. 13) satis-

fies Burger's equation is shown in Schilder.13

d 1 {rr
uW(T,5) = — v ln-E"’geXP[—z— <f o V(t, x(8))dt — @(x(O)))] By construction it follows as A — 0 that the variance
A of X(t) tends to infinity. Thus what has been called
' A(T) = y%) _ pressure in Sec. 3 tends to infinity, and the equation of
- b

Sec.3, u, +uu,= — P, /p + f,becomes meaningless
the proof is obtained by changing variables in the as A~ 0. On the other hand, it has been in reality
above Wiener integral by letting x(f) = y(f) + v, by assumed that the u definedinthe limitas A — 0 satisfies
differentiating with respect to y,and then by changing  %; + “#, + (A2/2)u_, = f. The explanation for this
back to the x(f) variable of integration. ] phenomenon is that the ¢ derivative limit of «#, and the

A limit cannot be interchanged. If one is going to con-
sider a gas with an infinite number of collisions in
every finite interval, then the natural order of limits
is clearly to let the number of collisions tend to in-
If the F(x(*)) of Theorem 4.3 is lim h_,o{[x(t + h) — finity and then take the time derivative of velocity.
x(t)]/h}, then the left-hand side of (4. 13) is by defini- This is the order considered in this paper.

The partial differential equation (4. 8) is known as
Burger's equation and is used in the study of turbu-
lence. See Meecham.21
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Doob6 shows that p(¢, x) satisfies

pi+ p), = 3220,

that is, the Fokker—Planck equation. This equation
and the equation w, + uu,+ A2/2 u, = f coupled with
it, are the continuity and motion equations for the gas
considered here.

Nelson! has developed a different theory for the kine-
matics of stochastic motion.

Kirkwood22 has shown that random motion for
“liquids and other condensed systems” can be model-
ed on an Ito equation of the form X(¢) = f{¢, x(¢)) +
Bx(t) + rz(t) (see also Onsager and Machlup23), where,

as before in this paper, f is external force, x is the
position of the particle, and z is Brownian motion. It
is easy to show, however, that a fluid modeled on this
type of equation does not conserve energy (it is suf-
ficient to let f = 0 and that its average velocity vector
at a point does not satisfy the usual hydrodynamical
equations. See Schilder5 or DeGroot and Mazur.24

While the theory of this paper was developed under
the assumption that f has derived from a potential,
some of the results go through without this assump-
tion if the paper transpositions are made.

A later paper will show how the concepts developed
here can be applied to quantum mechanics.
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If one studies the canonical commutation relations (CCR's) of quantum field theory in the unitary Weyl form,
one does not know if one can find a common dense domain for the field operators since their domain of defini-
tion depends on the test function. We consider here a general class of test function spaces including the spaces
S and D of Schwartz and the space U, = R© of all finite linear combinations of a countable basis. It is shown
that there exists an invariant Garding domain D on which all fields are defined and strongly continuous. D con-
sists of analytic vectors for the fields. It turns out that the test function space can be enlarged by continuity.
For irreducible or factor representations it becomes even a Hilbert space, The basic idea of the proof is the
same as in the Schrodinger representation for one degree of freedom and very transparent., We simply use
rapidly decreasing functions in “@Q-space” and “P-space” as smoothing factors. That this can be done in the
infinite case also is due to a new and interesting measure theoretic result derived here. As an application of
our results,we mention that the renormalized fields (after removing the cutoff) of the 2" model of Glimm and

Jaffe possess a Girding domain for test functions in$ or D for each time.

1. INTRODUCTION

The canonical, equal time, commutation relations of
quantum field theory (CCR's),

(0%, 1), T, 1g)] = i6 Ox — x),
¢ (x, to); ®(x/, to) [((x, to), nx, to)] =0, (1.1)

are usually studied in the Weyl form. Heuristically, it
is obtained by first smearing the fields with real test
functions,

@(f) = 8(f, ty) = [d3x@(x,t0)/(X),

(g) = Mg, to) = [ d3xII(x, t,) g(x) .2
so that

[N, 1E©)] =i [f®e®a3x = i(f,2). (1.3)

Defining unitary operators

U(f) =ei*®,  V(g) = eil), (1.4)
one obtains, in a formal way, the Weyl commutation
relations

U(fl)U(fz) = U(fl +f2),
Vig)Vig,) =Vig, +g5), (1.5)
V(g)U(f) = et DU(N)V(g).

Taking Egs. (1. 5) as a starting point for a rigorous
investigation of the representations of the CCR's, one
avoids all sorts of domain questions connected with
the unbounded operators & (f) and II(g). So one defines
a representation of the CCR's to be a family {U(s),
Vig),f = Vg3 & € ‘UH} of unitary operators satisfying
Egs. (1. 5), where U, and U are real linear spaces
and where (f, g) is a nondegenerate bilinear form on
Vg X Vy; furthermore, one demands as minimal con-
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tinuity condition ray continuity, i.e., that U{\f) and
V(rg) are weakly continuous in X.

Ray continuity allows one to recover the smeared
fields as infinitesimal generators by Stone's theorem,
and the fields satisfy Eq. (1.3) on a dense domain.
However, all domains depend on f and g, and one does
not know if there is a common domain on which every
& (f) and 11 (g) is defined. This is unfortunate since in
applications it is often advantageous to work with the
fields which are linear in f.

In the present paper, a common domain for the fields
{®(f)} and {II(g)} is constructed under additional con-
tinuity requirements which are in general stronger
than ray continuity. If the test function space were
finite dimensional, this would follow immedoiately from
a well-known theorem in group theory by Garding.!

Following usage, we call a Garding domain a domain
on which all infinitesimal generators—in our case the
fields—are defined and essentially self-adjoint and
which is left invariant by the infinitesimal generators
and the associated unitary groups. If A is an opera-
tor in a Hilbert (or Banach) space 9, ¢ is called an
analytic vector for A if A?¢ is defined for each » and
if, for some { > 0,

T Blargl < . (1.6)

¢ is called enfire for A if Eq. (1. 6) holds for all 7 >
0. Analytic vectors are very useful since on them
one can consider power series in A which converge
absolutely. Furthermore, a result by Nelson? states
that a symmetric operator A is essentially self-ad-
joint on a domain D if D contains a dense set of ana-
lytic vectors.

In the following we take the same test function space
for ¢ and I, U = U, = Uy and, moreover, assume
that U is a nuclear space such as S, the space of
Schwartz, that U(f) and V(f) are weakly continuous in
f for the topology of U, and that ( f,g) is also con-
tinuous. We note that the Weyl operators can then be
regarded as a continuous representation of an infin-
ite-dimensional nuclear Lie group in the sense of
Gel'fand.3

In particular we have in mind the spaces S and © of
Schwartz and the space U, ~ R ® which consists of
all finite linear combinations of a countable basis
and hence is isomorphic to the space R ® of all
finite sequences. For U, the continuity requirement
reduces to ray continuity since U, regarded as a
union of increasing finite- dimensional subspaces, is
a nuclear space (as a strict inductive limit). The
spaces S, &, and U, are separable barreled nuclear
spaces,? and only this last fact will be used.

The basic idea underlying our construction of a Gar-
ding domain and analytic vectors is astonishingly
simple and taken from the corresponding problem in
the Schrodinger representation for one degree of
freedom. There the obvious thing to do is to consider
functions which decrease rapidly enough in x-space
and p- space to control the growth of any power of x
and p, e.g., one could consider hermite functions or
something similar,

@) = hix)e 1=, (1.7)
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where #(x) is a polynomial or a function not increas-
ing too fast. The very same idea will be applied here,
only that instead of the single norm |+| we will have
to deal with a countable number of norms.

In case of the metrizable space S, this idea can be
applied directly if one uses the form of representa-
tions of the CCR's given by Gel'fand3 for cyclic U(f)
and by Hegerfeldt and Melsheimer? for the general
case (“@-space”; cf. Sec. 3). For spaces such as D
and Uy, which are not metrizable, an additional mea-
sure-theoretic property is needed. This result (Pro-
position 2. 1), which seems to be new and quite inter-
esting, is proved in Sec, 2. A Garding domain is then
constructed in Sec. 3 along the ideas outlined above.

It turns out that in doing so one obtains actually a
stronger result which shows that the test function
space caningeneral be chosen larger than the original
0. This is spelled out in Sec. 4.

At the end of Sec.4 an interesting extension is made.
It is shown that for irreducible or factor represen-
tations one can extend the test function space to a
Hilbert space.

As an application of our results we note that for fix-
ed time the renormalized fields of Glimm and Jaffe®
in the $%* model (with the cutoff removed) possess a
Girding domain on which the fields are strongly con-
tinuous if the test functions are taken to lie in S or
D. The renormalized Weyl operators are continuous
in S and D due to the locally Fock property of the
limit state.

For infinitely many @, and P, (i.e., for a test function
space ‘09) similar results have already been obtained
by Reed’ using the realization of the CCR's of Gard-
ing and Wightman.® Inparticular, it was shown that U,
can always be extended to a Hilbert space. Reed's
results are recovered from ours as a special case in
Sec. 4. Reed's original derivation could not be car-
ried over to test function spaces like S or D; this is
an indication that the “@-space” realization of the
CCR's may be more advantageous.

2. SUPPORT PROPERTIES OF MEASURES ON
INFINITE-DIMENSIONAL SPACES

The following auxiliary measure-theoretic results
are of interest in themselves. The main result need-
ed for the next section is Proposition 2.1. For a
space like S it is an immediate consequence of
Lemma 2. 1, and the reader may omit the technical
details.

Throughout, U denotes a locally convex vector space
and UV’ its dual. Letfc U and F € U’. We write (f,
F) for the value of the linear functional F applied to
f. We consider the o-algebra B(7V’, V) of subsets of
U’ generated by all cylinder sets over finite-dimen-
sional subspaces of V. It is generated by all sets of
the form

0;p=1{F €V (f,F) € B CR}, (2.1)
where f € U and B C R is an open or a Borel subset
of the real line. Note that each f, regarded as a func-
tion on V', is measurable with respect to G(V/, V).

The next lemma is a simple variant of L.emma 3.4
of Ref. 9.
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Lemma 2.1: Letp be a continuous seminorm on
a separable space V. Then the space ‘U of all p-
continuous functionals on Vis a measurable sub-
space of U’.

Pyroof: The fact that V), C U’ follows from the
continuity of p(f) by [(f, F)| < cp*p(f) for F e

Putting 0/0 = 0 and ¢/0 = « for a = 0, we now de>
fine, for F € U,

p'(F) = sup \(f, )l p(H-1.

Then F € U, 1f and only if p’(F) < «. If {£} is a count-
able dense subset of U, then, by continuity,

p'(F) = sup [, P)p ()1

(2.2)

Since each (f,,F) is measurable so isp’(F), and
hence the set {F p'(F) < olis measurable. QED

Covollary 2.1: The dual norm p'(F) in Eq. (2. 2) is
a measurable function on U’.

In the next lemma, U is assumed to be a barreled
space. This is only to insure that each convergent
generalized sequence (net) { Jo } in U converges uni-
formly on weakly compact subsets K of U, i.e., that
(f,,F) is uniformly convergent for F € K. This is an
immediate consequence of the Banach—Steinhaus
theorem, 10 and therefore a detailed definition is omit-
ted.

Remark: Products, inductive limits, and quotient
spaces of barreled spaces are barreled.10 In particu-
lar all F-spaces (i.e., complete metrizable locally
convex spaces) and strict inductive limits (unions) of
F-spaces are barreled, e.g., S, D, and R ) =~
also note that a nuclear F-space is separable, 91
well as a strict inductive limit of such spaces.

Lemma 2.2: Let U be barreled and nuclear, and
let K be a weakly compact subset of V', Define a semi-
norm on U by
qK(f)= sup l(f;F)‘- (2-3)
FeK
Then this seminorm is continuous, and there is a sep-

arable continuous Hilbertian seminorm p on U and a
constant ¢ such that g, < ¢p and K C 'O’ c .

Proof: Continuity of ¢, follows from uniform con-
vergence on K, Now, the nuclear topology is given by a
basis family of separable Hilbertian seminorms on
.12 Hence one of these norms,p say, satisfies ¢, <
cp for some ¢ > 0. It follows that each g,-continuous
linear functional on U is also p-continuous, and so K C
UV, c 0. QED

Remark: We note that the dual norm p’(F) as de-
fined in Eq. (2. 2) is a separable Hilbertian norm on
U} since p induces a Hilbertian norm on U/ where
Jlis the null space of p. If the nuclearity assumption
is dropped, then p need not be Hilbertian, which will
be needed in Sec. 3. Nuclearity, however, is crucial for
the next lemma.

Lemma 2.3: Let U be nuclear and p be a normed
positive measure on U’. For each € > 0 there is a
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weakly compact set K C U’ with outer measure
p*(K) 21— €.

Proof: Since U is nuclear, there is13 a weakly
compact set K C U’ such that for every cylinder set
Z containing K one has u(Z) = 1 — €. Now u*(K) =
inf{7;u(Z )}, where Z, are cylinder sets with K C
U Z,. For each 7> 0 and each Z, there is an open
cylinder set O, with base in the same subspace of O
such that Z, < 0, and u(0,) < pu(Z) + n2-7, by the
regularity of normed measures on the Borel sets of
finite-dimensional spaces. Since K C UYT 0,,there is
a vy < o such that K C UPo,,by compactness. Since
a finite union of cylinder sets is again a cylinder set,
one has

Vo <0 o0
1—e<p(yo,) Sz:_?u(ﬁy) <§u(2u) + 1

for each 7. This implies p*(K) = 1 — €. QED
Now we can prove the main objective of this section,
namely that a finite (or o-finite) measure on V' is
concentrated on a countable union of normed sub-
spaces U}, of V.

n

Proposition 2.1. Let U be a separable barreled
nuclear space, such as S, D, or Uy =~ R®), and let p be
a finite positive measure on G(7’, V). Then there
exists a sequence {p,} of separable continuous Hil-
bertian seminorms on V,p, <p, < ..., with associa~
ted dual spaces ‘O},n such that

(i) p, as defined by Eq. (2. 2) is a measurable non-
negative extended real-valued function on UV, and

2 2SR
(ii) each ‘O;n is a measurable subspace of V', ‘0’ C
V), C - 0, —{F € V' p/(F) < f, and p, re-

strlcted to ‘O' is the dual (separable Hilbertian)
norm to p,;

(i) p(Yv; ) = u(v).

Pyoof: We can assume p(0’) = 1. For each posi-
tive integer » there exists a weakly compact subset
K, of U’ with outer measure p*(K,) > 1— 2-%, By
Lemma 2. 2, there is a separable continuous Hilber-
tian seminorm p, on U such that K, C ‘U;n cC?V. B

Lemma 2.1,U), is measurable and so p(0), ) > 1—
n n

2-7, By induction, one can choose p such that p; <
pzs... Then one has p; = p} = d‘U’ c

'O;z C...,and p (UnU£ ) = 1. The remalmng 'state-
ments then follow from the preceding lemmas. QED

For S or for a countably normed nuclear space of
Gel'fand and Vilenkin3 the proposition follows directly
from Lemma 2.1 since in this case U’ = U, ’0' for
suitable Hilbertian norms.

Let W be a subspace of VU’, A measure p is called W-
quasi-invariant if p(4) = 0 implies p(4 + g) = 0 and
conversely, for all g € Wand all A € B(V', V). pis
called W-ergodic if there is no nontrivial W-quasi-~
invariant measure which is absolutely continuous
with respect to p. In particular, if U has been embed-
ded in U’ by means of a nondegenerate bilinear form
on U, one may consider W = V. We have the following
additional result.
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Covollary 2.2: Let u be as in Proposition 2.1 and
W-quasi-invariant. If u(‘OI’> ) =0, then W C v,
n

n
Proof: Assume g & ‘O;n, £ €W. Then (U,

N (Ufp,, +A'g) = @ for X # A’ since otherwise (A —\')g
e ‘O"Dn and so g € ‘O;n . By quasi-invariance one has

w0y
disjoint sets of positive measure. This contradicts
p(U) < e, QED

In passing we note the following simple corollary.

+ Ag)
n

+ Ag) > 0,and so U’ contains uncountably many

Corollary 2.5 (zevo-one-property): If uis W-
ergodic and finite, then every measurable linear sub-
space £ C U’ has either zero or full measure.

Proof: If W C £,then £ is invariant under W, and
80 (L) = u(V) or 0. If g € W and g & £, then u(L) =
0, by the preceding proof. QED

3. THE MAIN THEOREM

Every representation of the CCR's in a separable
Hilbert space 9 can be realized by means of a direct
integral with a quasi~invariant measure on the alge-
braic dual of the test function space.® If one deals
with a continuous representation of the CCR's over a
nuclear test function space U, one can perform the
construction with a measure on U/, or more pre-
cisely on the o-algebra ®(V’,V). Since the bilinear
form (f, g) is nondegenerate and continuous,there

is a natural embedding of U in U’ so that we can as-~
sume O to be a subspace of V.

There is a V-quasi-invariant measure p on U’ with
p(V’) = 1 and a direct integral decomposition of $,

= [ o) du(F)

such that U(f) becomes multiplication by e#(/.F),

(3.1

009 () = 10D (3.2
an
0e0) 0) = (BEXN 4 010F +0, 6.9

where A _(F) is a unitary map from § (F + g) onto
H(F) andg satisfies, for y-almost all F,

A (FIALF +8) = A, AF) (3.4)
Since U(f) and V(f) are, up to a sign, on equal footing,
a similar realization holds in which V(g) becomes
multiplication by ¢i(&F). Indeed, if we put U(f) =
V(f) and ¥{g) = U(—g),then these operators fulfill the
Weyl relations, and hence there is a U-quasi-invari-
ant measure g, Hilbert spaces ! 153 (F) and operators

A(F) which yield a realization for U(f) and V(g) ana-
logous to Eqgs. (3.1)-(3.4).

The realization which diagonalizes U(f) may be call-
ed “Q-space” realization, in analogy to the quantum
mechanical situation, and “P-space” realization dia-
gonalizes V(g). In Q-space, the action of the field
operators &(f) is given by multiplication by (f, F) on
vectors in the domain of & (f),

(@(f) o) (F) = (f, F)o(F).
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The same holds for I1(g) in P-space,

In the following lemmas we exploit the Hilbertian
norms {p,} of Proposition 2.1. Let (F,F,), be the
scalar product on V) such that
n

pF)?2=(F,F), Fev, (3.6)
Note that since the scalar product can be expressed
by p,, (Fy,F), is a measurable function on V, inF
for fixed F;. "

Now let D, be a dense subset of 9, and let D, be the:
linear span of vectors obtained from D, by multipli-
cation with smoothing factors of exponential de-
crease,

D2: (P(F) % (fk, )é (gk, )g e-ph(F)z(E(F)’(:s-r?)

and finite linear combinations of such vectors; here
peDyandf, € Vg, cVn=12...,and M,N =
0,1,2,...,where for M = 0 or N = 0 the correspon-
ding factors are to be omitted. The factors in curly
brackets are only inserted to obtain invariance pro-
perties of D,. Note that U C U/, , by Corollary 2. 2,
so that (g, F) is deflned for g ¢ 'U and F € U . If

Fd 'O’ then e"#» (2 = 0 and we can define (p( )= 0.

N

Lemma 3.1: Let D, be a dense subset of § and
let D, be defined as in Eq. (3.7). Then D, is dense
ind, 1t consists of analytic, or rather entire, vectors
for each ®(f), and is invariant under {&(f),f € V}.

Proof: Note that, for F € U}, ,one has [(f,F)] <
1, ()P, (F) and |(g,F), | < p,(g)p,(F). Thus,by ele-
mentary calculus,

3;;111 | (4 F) |$ 9j=i+1 |(73',F)n|£ e-apl, (FP

n p (f)za-u/Z(_iV)"/z e v/2 (3.8)

]Vl

< ;Iﬁl p”(fk)g 3

for ¢ > 0. By Proposition 2.1, ¢(F) in Eq. (3.7) is
measurable and, by Eq. (3. 8), square-integrable and
thus in . Also ®(f)D, C D, for f € V. From Eq.
(3. 8) one finds, with a suitable constant c,

l&(H)voll <

and hence

2 Lle(vel < o

lollcv vv/2, (3.9

for all £> 0, by Stirling's formula. By the triangle
inequality, the sum of two analytic vectors is analytic.

Finally, to show that D2 is dense in 9, assume that
(o, @) =0 for all ¢ in Eq. (3.7) with M,N = 0. Let
{#,} be a sequence in D, With ¢ = s-lim @,. Putting
¢,(F) = e2F¥ @ (F), one then has

0= 00— [IwE)N2 et & ?ay = 0.

Hence ¥ (F) = 0 a.e.on '0;,n for each », and thus on
V’, by Proposition 2. 1. QED

Covollary 3.1: For ¢ € D,, ®(f)¢ is strongly con-



GARDING DOMAINS AND ANALYTIC VECTORS 825

tinuous in f for the nuclear topology of U and for the
topology generated by the seminorms {p,}.

Pyoof: f, = fo (V) implies p, (f, — fo) = 0 for alln,
Let ¢ be as in Eq. (3. 6). Then for suitable #,

l8(r) — 202 < 5, (7, — 12 [ by )2l 0(®) 12 > 0.

QED

It follows by duality in P-space that {li(g);g € O}
possesses also a dense invariant subspace of analytic
vectors, with analogous properties as D, above.
Hence we may take D, in the previous lemma to be
such a set, and we shall take in particular the linear
span of vectors which, in P-space, look similar as in
Eq.(3.7),
= M - 2 -~

Dy ¢(F) = 331 - F)é e WO I(F) (3.10)
where the tilde denotes P-space realization; we take
Y € 9 andp, to be the norms of Proposition 2.1 be-
longing to the measure p of the P-space realization.
Then one has estimates for |1(g)»¢| similar to
those for [|®(f)v¢| above.

Lemma 3.2: Let D, be defined as in Eq. (3.7),
with D, given by Eq. (3.10). Then D, consist of en-
tire vectors for {&(f),11(f);f ¢ U} and is invariant
under these operators. Furthermore, for ¢ € D,,
®(f)p, and II(f}¢ are strongly continuous in f for the
nuclear topology on U and for the topology generated
by the seminorms p, or p,, respectively.

Pyroof: Lemma 3.1 and Corollary 3.2 apply to
®(f). To deal with [I(g), we write p(F) for the multi-
plicative factors in Eq. (3.7) such that

@(F) = p(F)@(F).

From the @-space realization of V{g), Eq. (3. 3), we
have

— =1 ({V(rg) —1 })(F)
=— it~ HYp(F +78) — p(F)}(V(r£)®) (F)
+p(F)= it~ ) ({Virg) — 11@) (F).

(3.11)

(3.12)

By definition of II{g), the last term converges strong-
ly to p(F)(I1(g)@)(F) since p(F) is bounded. To deal
with the first term, the Hilbertian nature of the norms
{p,} is essential. Using the scalar product (F;, F,),,
we see that p(F + 7g) is differentiable in 7, and the
mean value theorem of calculus shows that the first
term on the right-hand side of Eq. (3. 12) converges
strongly.

Thus
(M) F) =— i 2= p(F +18)| o G(F)
+ pE)W(G) (F). (3.13)

The differentiation of the exponential brings down a
factor (g, F),. Hence,by Eq.(3.7),1I(g)¢ is again in
D, and depends continuously on g since both terms
in Egq. (3.13) do.

Using the Leibniz rule and the estimate for [ (g) ¢l
analogous to Eq. (3. 9), one finds after some calcula-
tion

(g)* el < Cryv/2 (3.14)

for some constant c. Hence ¢ is entire for II(g). QED

Our main result on Garding domains and analytic
vectors is now an easy consequence of the forgoing
lemma.

Theorem: Let {U(f), V(g)} be a continuous repre-
sentation of the CCR's with a separable barreled
nuclear test function space U, such as S, L, or U, in
a Hilbert space ©. Then there exists a dense domain
D C 9,a Garding domain, with the following proper-
ties:

(i) The fields {®(f), 11 (g)} are essentially self-adjoint
on D, and D is invariant under {U(f), V(g)} as
well as under all polynomials in the fields.

(ii) On D, any product of field operators {®(f,)} and
{ri( gi)},in any order,is jointly strongly continuous
in the /; and g;; in particular, any matrix element
of the form

(@,...o(H...MWg)... ¥

is a jointly continuous function if ¢,y € D.

(3.15)

(iii) D can be chosen to consist of analytic and even
entire vectors for the fields {&(f), [1(g)}.

Proof: Since U is separable, the representation is
a direct sum of representations in separable Hilbert
spaces. So we can assume § as separable. Let D, be
the domain of Lemma 3.3. We show that D defined as
the linear span of {U(f)V(g)}D, has the required pro-
perties, where f and g run through V. The procedure
is standard.

From the definition of the fields as strong deriva-
tives of the Weyl operators it follows that

O(gNU(NV( e = U(N)V(I(g e + (f,g’)U(f)V((g)qloe)

and a similar expression for ¢(f’). Hence the fields
are defined on D and leave it invariant since D, is
invariant. Clearly D is also invariant under U(f)V(g).

Since [1(g')w is strongly contimious in g’ for ¢ € D,
so is I g)U(f)V(g)e,by Eq.(3.15). The same holds
for Il replaced by . If one has a product of field opera-
tors applied to U(f)V(g)e the resulting vector is a
continuous function in each field separately because
each field can be brought to the left and the additional
terms originating from the CCR's are continuous. By
the kernel theorem for nuclear spaces this implies
joint continuity.

Turning to analyticity, we note that for ¢ € D, one
obtains from Eq. (3.15)

(g U(NV(ge = U(NV(gN(g) + (f,8)}7¢.(3.17)
From
I{i(g) + (F.gMv el <i{in(g) | + 1(f,g) 1} el

< 2v{ (g ¥ + I(f,g" ¥} el

< 22| g)rell +2v1(f,g) |7 lel
it then follows that U( f)V(g)¢,and thus every vector
of D, is entire for II( g’). The same applies to ®&(f’).

By Nelson's theorem, the fields are essentially self-
adjoint on D. QED

J. Math. Phys., Vol. 13, No. 6, June 1972



826

Remarks: The domain D constructed above is by
no means the largest Garding domain. One obtains a
larger domain if one uses smoothing factors
h(p'(F)?), with h € S(R1), and forms the union of the
resulting domains for all 2z € S and for all continuous
seminorms. For specific applications it may be
necessary to enlarge D in this way. For example, in
the Fock representation the vacuum  need not lie in
D, but it does lie in the so enlarged domain if Q —
(DO(F) = 1 and if p is the Gaussian measure, for then
there are nontrivial functions of the form exp{ P(F)}2,
with a suitable norm p on U, which are integrable;
hence one obtains ¢ y(F) = 1 by the smoothing opera-
tion.

For possible applications we note that ®(f)2 + [1(/f)2
is essentially self-adjoint on D,; in fact, a direct com-
putation shows that the vectors in D, are analytic.

To treat ®(f)™ and [1(g)™, one can use smoothing fac-
tors of faster decrease.

It may be worthwhile to point out the role of the
norms{pn} and of Proposition 2.1, This result is used
in the construction mamly to ensure that sufficiently
many factors exp{— p’(F)2} do not vanish, p almost
everywhere. It is at least conceivable that for more
general spaces the sets U, = {F ¢ U’;p'(F) < ©} have
all measure zero for every continuous semmorm p on
D.

4, EXTENSION AND DISCUSSION OF RESULTS

In the last section, we have proved slightly more than
the main theorem. It is an easy consequence of the
previous lemmas that the representation of the CCR's
can be extended to a larger test function space and
that the extended fields are still essentially self-
adjoint on the above Garding domain D.

To be more precise, the seminorms {p,} and {$,} are
actually norms since UV C UI;,, and thus |(f,g)| <

pn(f)p;(g) = 0 for all g implies f = 0. Hence we can
define metrics 4, and d, on U by

£, (1)
1 +pnif)

and d, with p, replaced by p,. The topology on U in-
duced by d, is just the one generated by the norms
and analogously for d,. We also consider the metrie

dy(f)=2,2" (4.1)

d=d, +d,. 4.2)
Corollary 4.1: Let the assumptions be as in the
main theorem. Then the representation can be exten-
ded by continuity to the completion V(d) of U in the

metric d. The extended representation is strongly
continuous in the metric d. There is a Gardmg do-
main D for the fields satisfying (i)—(iii) of the above
Theorem, with U replaced by V(d).

Proof: Convergence of a sequence {f} in d implies
convergence in the norms p, and p By Propos1t10n
2.1,(f,,F) then converges, 1 and i almost every-
where Hence U(f,) and V(f,) are strongly continuous,
by Lebesgue's bounded convergence. It follows14 that
the representation can be extended to V(d). The ac-
tion of U(f) for f € V(d) is given by multiplication by
ei(f.F) where (f,F) = lim (f,,F)for Fe U, ‘O’ . Note
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that the elements of U, ‘O’
als on O(d).

The action of &(f) in @-space is given, as before, by
multiplication by (f,F) with F € Un‘O;n, and similarly
forII (&) in P-space. One can now apply directly the
arguments of the last section to obtain a Garding do-
main as in (i)- (iii) on which, to begin with, products
of fields are separately strongly continuous in the
test functions. Since on complete metric spaces mul-
tilinear functionals are jointly continuous if they are
separately continuous, 15 this implies joint weak con-
tinuity and thus also joint strong continuity. QED

We remark that the norms can be chosen such that

p, = b, and such that 0(d) becomes a nuclear metric
space. For U = S, the above extension may be trivial
since S is already countably normed. For D, however,
this is not true. Further below we will also obtain an
important extension of S if the representation is irre-
ducible.

The result of Reed’ follows from the last corollary.
Reed considers as test function space the finite linear
span of an orthonormal set,i.e., 0 = V,. It is easy to
see that there is a space U,, complete with respect to
a norm p, such that U, < U, © U(d) and such that

p(f,) — 0 implies d(f, ) - O By corollary 4.1,the
f1e1ds with test functlons in U, have a Gardmg do-
main and are strongly continuous on it with respect
to the norm p. This is just Reed's result. It is also
instructive to apply the techniques of Secs. 2 and 3
directly to U, since in this case one can see directly
where the norms {p } come from and what they look
like.

are d~-continuous function-

Irreducible Representations

Denote by Xn( ) the characteristic function of ‘0’ C

U’ and by P, the projection operator given as multl-
plication by Xn(F in @-space. Since VC ‘O sone has
n

Xo(F + 8) = x,(F),and so P, commutes with {U(f)
V(g) g} Thus P, 9 is an 1nvar1ant subspace. Noting that
P c{U(f);fe "D}, one obtains P, {U(f), V@)V’ n
{U(f V(g)”, and hence P, = | or "0 for a factor re-
presentation., This means u(0, ) =1 or 0, a.nd there-
fore one can choose all p, to be’equal, PL=Dy= ,
so that a single Hllbertlan norm p, suffices. In the
same way one sees that all p can be chosen to be
equal. Defining a Hilbertian norm p on U by

p(N2 =p,(N2 + 5, ()2

one arrives as in Corollary 4.1 at the following inter-
esting extension.

(4.3)

Theovem 4.1: Let {U(f),V(g)} be a continuous
irreducible or factor representation of the CCR's
with a separable barreled nuclear test function space
D, such as S, D, or V, =~ R, in a separable Hilbert
space . Then there is a Hilbertian norm p on U such
that the representation can be extended by continuity
to a Hilbertian test function space 'Op obtained from

U as the Hilbert space completion of U in the norm p.

The extended representation is strongly continuous in
the norm p, and there exists a Girding domain D for
the fields satisfying (i)-(iii) of the main theorem,
with U replaced by 'Op.
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If the representation is not irreducible or not a factor
representation, we learn from the above argument
that it decomposes into a direct sum of representa-
tions in P, 9, (P, — P)9, (P; — P,) » etc. such that

U(f) is p, - continuous in (P, — P,_;}9. For fixed sub-
representation one can apply the same argument to
V{g), and thus we find that the representation is a
divect sum of subrepresentations in each of which

827

U(f) and V{g) are continuous with vespect fo some
Hilbertian noym (depending on the subrepresenta-
tion).
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It is shown that the construction of concrete models of Clebsch~Gordan decompositions for tensor products of
irreducible group representations leads to a wide variety of special function identities. In this paper the repre-
sentation theory of the rotation and Lorentz groups in 3-space is used to give elegant derivations of identities
involving Laguerre, Gegenbauer, hypergeometric, and generalized hypergeometric functions. Some of these

identities may be new in this general form,

INTRODUCTION

In Ref, 1, which we refer to as I, a method was des-
cribed whereby a knowledge of the Clebsch~Gordan
decomposition for the tensor product of two repre-
sentations of a group G, could be used to derive
special function identities. The idea is easy to des-
cribe. Suppose G has a family of irreducible repre-
sentations {D,} with Clebsch—Gordan series

Du®Dng@Dw’
w

such that each irreducible representation D, occurs
at most once in the tensor product. If {j,®} is a
canonical basis for D,, then there exists a relation of
the form

(a) ]h(w) = E Clu, n; v, m |w, h)jn(u) ® jzsr?)a
n,m

where the constants C(-|*) are Clebsch—Gordan coef-
ficients. Suppose we have an explicit function-space
model of the representation D, ® D,. Then the vectors
7w ® ) will be special functions and if the model is
simple enough, the special functions 7,*) can be com-
puted directly. In this case, expression (a) becomes
an identity relating the special functions j ® ;&
and 7). This identity can be inverted since the coef-
ficients C(-|-) satisfy orthogonality relations,

The above method is useful for a given group if there
is a procedure for constructing a variety of models
of the group representations. In Refs.2—4, a number
of such models are cataloged for groups of common
occurence in physics. Here we use these models to
give elegant derivations of identities associated with

the rotation and homogeneous Lorentz groups in 3-
space. Some of these identities may be new in this
general form; certainly their close relationship to one
another and to group theory is new.

Most of the following explicit examples are associat-
ed with the Lorentz group G, but the analogous ex-
amples for SO(3) are usually self-evident,

In physical applications, integral forms of these iden-
tities appear when one computes matrix elements
corresponding to a quantum mechanical system with
symmetry group SO(3) or G5.5-6 However, the group
theoretic method has validity independent of the com-
putation of matrix elements, so the results of this
paper are not presented in integral form. The reader
can write most of the following identities in various
integral forms by using well-known orthogonality re-
lations for the Laguerre, Gegenbauer, and hypergeo-
metric functions.

1. THE GROUPS SU(2) AND G,

The group SU(2) consists of all 2 X 2 unitary uni-
modular matrices. In Euler angles, every A € SU(2)
can be written as

Ao, 8, 0) (e‘i(%*‘/’z)/z cos(6/2),7e e v )2 sin(e/Z))
#1095 2=\ oite -0, 02 sin (6/2),ei{¢,* % Y2 cos(6/2)

-(L53)

If ab = 0 the Euler angles can be defined uniquely by
cos(8/2) = |a|, sin(6/2)= |b],

lal2 +1p]2 =1, (1.1)

0=6=n7,
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INTRODUCTION
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sentations of a group G, could be used to derive
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canonical basis for D,, then there exists a relation of
the form

(a) ]h(w) = E Clu, n; v, m |w, h)jn(u) ® jzsr?)a
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where the constants C(-|*) are Clebsch—Gordan coef-
ficients. Suppose we have an explicit function-space
model of the representation D, ® D,. Then the vectors
7w ® ) will be special functions and if the model is
simple enough, the special functions 7,*) can be com-
puted directly. In this case, expression (a) becomes
an identity relating the special functions j ® ;&
and 7). This identity can be inverted since the coef-
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The above method is useful for a given group if there
is a procedure for constructing a variety of models
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of such models are cataloged for groups of common
occurence in physics. Here we use these models to
give elegant derivations of identities associated with
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general form; certainly their close relationship to one
another and to group theory is new.

Most of the following explicit examples are associat-
ed with the Lorentz group G, but the analogous ex-
amples for SO(3) are usually self-evident,

In physical applications, integral forms of these iden-
tities appear when one computes matrix elements
corresponding to a quantum mechanical system with
symmetry group SO(3) or G5.5-6 However, the group
theoretic method has validity independent of the com-
putation of matrix elements, so the results of this
paper are not presented in integral form. The reader
can write most of the following identities in various
integral forms by using well-known orthogonality re-
lations for the Laguerre, Gegenbauer, and hypergeo-
metric functions.

1. THE GROUPS SU(2) AND G,

The group SU(2) consists of all 2 X 2 unitary uni-
modular matrices. In Euler angles, every A € SU(2)
can be written as
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%(902 — @t 37 = argh,

(1.2)

—z(@y + ¢,) = arga,
— 27 = @4, 95 < 27,

However, if ab = 0 these angles are not unique. As a

basis for the Lie algebra su(2) we choose the matrices

91, 82, 5, such that
A(0, 8, 0) = expdd;
A(¢; 0, 0)= A(O, 0, 97) = exP(pggo

[ 7
A(-Z_’ 6,— E’) = eXPGSz;
(1.3)
These matrices satisfy the commutation relations

(91, 92] = 93, [z, 1]l = 9o, [92, 851 = &1, (1.9)

Another convenient basis is given by

FF=329, +id, I =1ids, (1.5)
which belong to the complexification of su(2), Here,
(93, gl =+g% [g% 97]=285. (1.6)

The irreducible unitary representations of SU(2) are
D, 2u=0,1,2,,..,each defined on a (2u + 1)-di-
mensional Hilbert space 3¢, with ON basis {p,,: m =
—u,~u+1,...,u—1,u}. The defining relations are

I, =[wsm)wzm+ )]V2p .,
1.m

J3p, =mp,,
M=y ..., U,

where J *, J3 are the linear operators corresponding
to g*, 33, respectively, in the Lie algebra representa-
tion induced by D,. The matrix elements U, , (A) of
the unitary operators U(4) on ¥, which determine
this representation are

(u + ) (u— n)t )1/2
(u + n)} (u— m)!

U, . (4) =, UA)p,) = (

1
I'm—n+1)
X F(—u—nm—um—n+1;,~ |b/al?)
— /
< g (T

{u + n)! {u — m)!

X qutrgu-mhm-n

x e ilngpmo) pon.m (cosg), (1.8)
where
e (5 (5

1

X———— Flu+m + 1,—u+ m;
Tim+7r+1)

m+r+1;3(1-—x) (1.9)
and A is given by (1. 1). Here,{:, *) is the inner pro-
duct on ¥, , linear in the second argument and

F(a, b; ¢; z) is the hypergeometric function, see Ref. 7,
Vol. 1.

The group G4 consists of all 2 X 2 complex matrices
of the form

= (_‘I_E), a,b, €C, detA=|al2-[b|2=1,
(1.10)
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This is a real 3-parameter matrix group isomorphic
to SL(2,R).2 Furthermore, G, is the twofold covering
group of the homogeneous Lorentz group in 3-space.8
We can choose real coordinates (u, p, v) for A so that

A( ) (e’i(,ﬂ*ﬂ)/z Cosh(p/z) ei(v‘ﬂ)/z SInh(p/z))
V) = .
Py V)= gitu-0¥2 ginh(p/2) ei®w»/2 cosh(p/2)
(1.11)
Here we require,
fa] = coshp, |b| =sinhp, O0=p< o,
y =—arga—argh, v =argh—arga. (1.12)
The matrices §,;, ds, 3, such that
A(0,p,m) = exppd;, A(0,p,0)=exppd,,
(1.13)

A(“’ 07 0) = A(O’ O, !1) = expu 53)

form a basis for the Lie algebra §;o0f G;. The com-
mutation relations are

(81, 82)=— 83 [ 811= 8 [85 8] =~ 4.
1.14)

A more convenient basis for many purposes is gft =
— g ¥1dy, §3 = ig, in the complexification of Sa.
Here the commutation relations are

[é]+, C‘I—] =298, [33’ gi] =4 gia

identical with (1. 6),

We consider a class DY of irreducible unitary repre-
sentations of G4, defined for u > 0 (discrete series),
Here, D} can be realized on the Hilbert space & with
ON basis {j,: n=0,1,2,...}. The defining relations
are

(1.15)

I35, = W+ n)j,, I, =[(2u+ n)n+ 1)]V/25,,,,

I, == [nu+n—-1}¥25 ;. n=0,1,...,

(1.186)

where J *, J3 are the representation operators cor-
responding to g*, g3, respectively. (To be more pre-
cise, D} is a global representation of G only for 2u,
an integer. For 2« not an integer, D} is a local re-
presentation of G; and a global irreducible represen-
tation of the simply connected covering group of G,
(see Refs. 2, 8, and 9). The matrix elements of nr
are

Vo, m (A) = (G, VA)i,,)
rQu + n)m!\ /2 N -
:(——-—-——-—————-——~) . ahqgnlu-mpm-n
T(Qu + m)nd
Fl—n,2u +mym—mn+ 1; |b/a]?)

T(m —n+1)
1 1/2
_ I'(2u + n)m! e-il wrnvurm SB-a-n,u-*m
mf‘(Zu p— ~#u(coshp) *

(1.17)

where the coordinates of A are given by (1. 10), (1, 11},
and

BHz) =

1 (z + 1\ Geuy2 (z - 1) (&+ny2
re+p+1)\ 2/ 2
XFlv+E+1,6—pyp+ & +1;2(1 —2)). (1.18)



CLEBSCH-GORDAN COEFFICIENTS

As is well known, the Clebsch~Gordan series for
SU(2) is

U+v

D,@D,= 2,

w=lu-v|

® D,. (1.19)

The vectors {p, ,, =8 ® p:n=—u—u+1,...,
m=-—v,—v +1,...,v; form a natural basis for the
representation space 3, ® 3, while a canonical

basis for the subspace transforming according to I,

]

expla(xy, — x3) + B (x5 — %) + v(% — x,)]
o 4

= oz

(Jy + g + g + DV/2
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can be denoted {p¥:k=—w +1,...,w}. The
Clebsch~Gordan (CG) coefficients relating these two
bases are

Clu,my v, m|w, k) = (B, ,,, 210", (1. 20)
where (-, ")’ is the inner product on &, ® /. If the

basis vectors are chosen appropriately, the CG coef-
ficients are defined by the generating function

Q@ hiztds Biriatis

Jip*dy=0 my=i;

X

Ak iy 4 Ty Jptmy j3+m3<
Y Xy T2 2 g My My Hig

[ + iy +43) 1y — dp + jz)!

) J'3>

where the 3-j coefficients are

R b 1)’ C(jy, My} jo, Mo |jg — M 4)
mimzma \/-273—+T 1 715 J25 77E21J3 (1322)

and the sum is taken over all j,, m, for which (1.21)
makes sense, In particular, C(u, n; v, m|w, k) = 0 un-
less k=n+mand |u—v| <=w =<u+ v, The various
symmetries and explicit formulas for the CG coef-
ficients which abound in the literature can all be ob-
tained from (1.21), see Refs. 10 and 11.

The Clebsch~Gordan series for the tensor product
Dt ® D} of G, representations is2:6

°0Q

2 & Dt

utv+s*
=0

Die® D} = (1.23)
The vectors {j, ,, = j, ® i, :n,m =0,1,-++} form a
natural ON basis for the representation space X ® I’
A canonical basis for the subspace of ¥ ® ¥’ trans-
forming according to D} can be denoted

uwtvts

{jg:h=0,1,---}. The CG coefficients are

E(u’ n, ’U,mls,h) =<jn,m;jz>ly (]--24)

where (-, )’ is the inner product on 3 ® ¥'. With an
appropriate choice of basis vectors, the CG coef-
ficients are given by the generating function.

((Zu + 20+ 25— 1)I'QCu + 20 + s — 1)I'(2v + s)\1/2
sIT(2u)I'(2v) >
X (1 —by)2us (1 — bx)20 s(y — x)s

o T(2u + 2v + 25 + h)\1/2
_ 3 i
ke, m=0, .
X E(u,n; v,m|s, hlyrxmbt, [bx|<1, |by|< 1,
(1. 25)

We can expand the left-hand side of (1. 25) to obtain
explicit expressions for the CG coefficients, In gene-
ral they are rather complicated finite sums. How-
ever in the special cases s = 0 or 2 = 0, the sum con-
tains only one term and the CG coefficient reduces to
the square root of a quotient of gamma functions, as
the reader can easily verify.

(j1 + jg _j3)l (71 + ml)! (.71 —ml)! (]2 + mz)!(jz "mz)!(jg + m3)1(j3 _mg)!]llz

{1.21)

r

From the definitions (1. 20), (1, 24) it follows that the
CG coefficients satisfy orthogonality relations. Indeed
the coefficients E(‘) are real and satisfy

2 Ew,ng;v,my s, h)E,ny, v,my|s,h)=6,,0

%520 iy MMy ?
(1.26)

<
2 Elu,nv, m| sy, hy JE(u, 150, m sy, ko) =0, ; By 4 -
n,m=0 172 172

The coefficients C(*) satisfy similar relations except
that the sums are finite,

2. IDENTITIES FOR THE MATRIX ELEMENTS OF
SO(3) AND G,

Justasin I,Sec. 2, we can use products of matrix ele-
ments of the representations D,, DI to construct new
models of these representations. Since the methods
are identical with I we present only the results.

For fixed b and c, the functions

]
PRNA, A = 1 Elu,myv,mls,h)
n,m=0
X V@A)V (A),  h=0,1,2,---, (2.1)
form a canonical basis for a model of D}, under
the group action

[P(B)f(A, A") = f(AB,A'B), A,A,B€ G, (2.2)

on functions defined on G, X G,. Hence, V®)(A) is the
matrix element (1.17) corresponding to the repre-
sentation D}. Note that the sum on the right-hand
side of (2. 1) is finite since E(u, n; v, m|s, k) = 0 un-
lessn+m =s + h,

Using the transformation properties of the basis
p&#+2's) we can also show

[> o)
P A A = 2 Elu, s + j— ¢;0,¢18,7)
i=0

X Vi O (A ViR, (A, (2.9)
Equating (2.1) and (2. 3) we obtain a family of identi-
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ties obeyed by the matrix elements. In particular,
for A = A’ the identity reduces to the formula

nz')n E(u,n; v, m|s, h)V& (A)VE) (4)

= E(u, b; v, c|s, b+ ¢ — s)Vur v (A),

bre-s,k

{2.4)

since V&) (E) = 6, ,, for E the identity matrix.

The construction of models of the representations

D, of SU(2) is analogous to that given above, and
formulas (2. 1) and (2. 3) can easily be modified for
this case. Of special interest is the case where the
basis contains only one element {0 (4, A’), i.e., this
function transforms according to the identity repre-
sentation D,. Nonzero functions p{® (4, A’) can be
constructed only if # = v, in which case the analogy of
(2.1) is

pO(O)(A’A')
= 25 Clu, mu, —nl0,0) U (4) U (A4")  (2.5)

n=-u

with fixed b, ¢, The analogy of (2.3) is

7014, A") = Cly, — ¢; u, |0, 0) UM (A(A")Y).  (2.6)
Equating (2. 5) and (2. 6) we obtain a family of addition
theorems for the matrix elements, The simplest case,
b= c=0,u= I yields the well-known addition
theorem

P, {cosf cos6’ + sing sing’ cos(¢ — ¢')]

1
4
=57 I N 6,90, (6,9) @D
m= -

for the Legendre polynomials (see Ref. 12, p. 68).

3. DIFFERENTIAL OPERATOR MODELS

In this section we construct new models of the repre-
sentations D} as classified in Ref. 2, Chap. 5, and use
these models and the results of Sec.1 to obtain
special function identities.

The Type B operators

: 0 . 0
o pif(e L ;5
It =ef(x ax z86 x),

) s (3.1)
, o , ,
- — pib(y L 9 3 - _4;.9.
J—e’(xax+zae), J i35
and basis functions
n! 1/2

, o= ("t
il 6) (r(n ! 2u))

x x*L2wD(x)eiwme,  pn=0,1,2,..., (3.2)

form a model of D}, i.e., they satisfy expressions
(1.16). Here L{®(x) is a generalized Laguerre poly-
nomial (see Ref. 7, Vol. 1).

It follows that the functions
. (1) 8 (2)( 6)— n! 1/2
In.m (x’ 9) =In (x, ) InS X, - (r(n + 2“9

X qu}Zu—l)(ax)ei(u‘rn)e(__yﬂ!____ 1/2
I'(m + 27)
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X xUL(ZU“l) ([1 —_ a]x) ei(v+m)9’
m
nom=0,1,2,..., (3.3)

and the operators (3.1) define a model of DY ® D?
where a, u, v are real constants such that « > 0,2 >0,
Indeed,

ox a6 n
X (n+ D2 50 552

+[@v + m)(m + 1)]1/2 j€1) j(2)

N (1
= gi® (x%* 2 x> Py

+ j,(nZ)ew(x—a— —_ i._a_ — ax) 380 =[(2u + n)

3.4)

with similar interpretations of J~ and J3,

We now compute the basis vectors g, 8, h=
0,1,2,...,corresponding to the Clebsch—Gordan
series (1.23). From (1.24) we have

§i(%,0) = 20 Blu,mv,mls, k) (x, 6) 42 (x, 6).

n,m=0

(3. 5)

[Recall that E(*) = O unless n + m = s + .] On the
other hand, we can compute the j§ directly for this

model by using the fact that they satisfy (1.16) with
n=h, u=u+ v+ s. Indeed, from (3.2),

. h! 1/2
3%, 0) = cg >
T(h + 2u + 2v + 25)

X xUro+s Llf2u+20+2(§)-1) gi(usvrs+he

3.6)

where ¢, is a constant. To determine c , we equate
(3.5) and (3. 6) in the case 2 = 0. In this special case,
(3. 5) simplifies to

(s ITQRu + 2v + s — 1) T'(2u + s)T(20 + s)> 1/2
T(2u + 2v + 2s—1)

Jo=
x 3 (= 1] (s— n)lnd TQu + n)T@u+ s—n)]-/2
n=0

x j1¢2),. (3.7)

Substituting (3, 3) and (3. 6) into this expression, com-
paring coefficients of x%*?*$ on both sides of the re-
sulting equation we find

_ (a—1)s (I’(Zu + )T'2u + 20 + s —1)
“= Tew sITQ20 + s)

1
X(2u+2v+23-—1)> /2F<1—s—2v,

(3.8)

-—s;?.u;—afl_—l), s=0,1,2,...,

where F(a, B;y; 2) is the hypergeometric function
(see Ref. 7, Vol. 1) Note that ¢, is a polynomial of
order s in a. The final identity is obtained by sub-
stituting (3. 3), (3. 6), and (3. 8) into (3. 5).

For a = 0 this identity simplifies to
xS L{2u720+25-1) (x) (— 1)s

RIT(2u + s)T'Qu + 2v + 5 — 1)(2u + 2v + 2s — 1)\1/2
><< 21720 + )T (2u + 20 + 2s + 1) )
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= 20 Elu,mv,m|s,h) (M)Uz 120D (),

nom nil@ev + m)
3.9
A second model of D7 is defined by the operators
; 2 iz 0 ¥
JE = gti8 ((zz—l)w._ + -~ F )
9z (22 — 1)1/2 98 (22 —1)1/2/°
y: (3.10)

J3=-—l'a—'9',

and basis functions

720 = [[(2u + n)nt]~/2P-nun(z)ei(un)d

n=0,1,2,..., z=—coshp, (3.11)

where 7 is an arbitrary constant. It follows that the
functions

jn(,zr;ze) = jn (Z, 9)]”,(2, 8) =
x BT(2) e“’“"’e[r(zv + m)m 1]-1/2

i(v+moe
bl

[T'(u + a)rl]-1/2

x %::2’ —v-—m(z) e

vy +rry =7, nm=0,1,2-", {3.12)
and the operators (3. 10) define a realization of D} ®
D?. Indeed, writing J* = J* — ei07(22 — 1)71/2 we

have
I (Judm) = 3,(TT — €07, (22 — 1)-1/2);
+ Tt —eifr (22 — 1)-1/2)

with a similar interpretation of J~ and J3. From
(3.11) we see that the basis functions jj correspond-
ing to the Clebsch-Gordan series (1. 23) must be

i =c¢[TQu+ 2v+ 25 + h)n1]~1/2

~7r,~u-v-s-h i(u+v+s+p e
X
B .. (&e .

(3.13)

To compute the constant ¢, we substitute (3.12) and
(3.13), A = 0,into (3.7). Cancehng the common
factor

2 — 1\ wrorsrryz [z 4 1\ -(urvrs—2)2
2 2

on both sides of the equation and sefting z = 1, we
obtain

I(~u—~v—s5—7+1)
T2wWI{—7ry —u + DYI(~r, —v—5-—1)

¢, =

9 (I“(Zu + ) TRu + 2v + s—1)

sIT(2v + s)
1/2
X Qu + 2v + Zs~1)

X gFpl—8,— 20— s+ 1,u+ 7

2, — ¥y —v—5s—11). (3. 14)
Our final identity is obtained by substituting (3. 12),
{3.13),and (3. 14) into (3. 5). In the very special case

¥y = 7y = § = 0 this identity reduces to

TM~u—v+1)
(1 —u)l“(—v——l)(

T(2u + 2v) 1/2
T2u)r(2v)I'(2u + 2v + h)h !)

X P2k (2) =

ZE(unbh

n=0

B(2) B2 (2)
[T@u + n)TQRv + s —n)nl(s —n)1 |1/2°

n|0,h)

{3.15)

where B ,’,‘ (2z) is a Legendre function of the first kind
(see Ref. 7, Vol. 1). [In this special case s = 0, the
coefficients E(‘) are easy to evaluate explicitly.]

For our next model of D; we choose operators
gt = g0 ((xz —1) 5 a F ix ;9)
2 (3.16)
I3 =— =
00
and basis functions

nl 1/2 .
i g) = f—— 2" 2 . 1)%/2 i{u+n)o
7.(%, 6) (F(Zu ~ n)) (x 1)¥2Cx(x)e R

n=0,1,2,..., (3.17)

where C¥(x) is a Gegenbauer polynomial (see Ref, 7,
Vol. 2). i follows that a model of D} @ D7 is deter—
mined by the operators (3. 16) and basxs functxons

1 lm! 1/2
Qu + n)T'2v + m))

X (x2 — 1)(u+v)/ZC’? (x)cﬁz(x) gilurvrns m)s,
n’m’:o’lsza' ‘ (3.18)

jll,m (x’ 6) = jn (x’ G)jm(x, 8) = (F

The basis functions j; transforming according to
DY, ., canbe obtained directly from (3.17):

/2 (*2 - 1) (u+tv+s)/ 2
)

(x, 6) = ( bl
x
W T(u+ 20 + 2s + &

X Curvrs(y)eilwrvs e g p=10,1,2 -

. (3.19)

To determine the constants ¢, we substitute (3.18)
and (3.19) into (3.7) and divide through by the com-
mon factor (x2 - 1)*2¥2_ If s is odd, the right-hand
side of the resulting expression is odd and the left-
hand side is even. Thus

c, =0,

s odd, (3. 20)

I s is even, we compare coefficients of x5 on both
sides of the equation to obtain

. - (I‘(2u + §)(2u + 20 + 25 — 1)>1/2 2sT(v + )
=

siT{2v + s) TRu)I'(v)
X g Fou,— s,— 20—~ s + 1; 2u,— v— s + 1;1),
s even, (3.21)

Substituting (3. 18)-(3. 21) into (3. 5), we obtain our
general identity. In the special case s = 0, this
formula reduces to
172
) e

( h'Q2u + 2v—1)
E(u,n; v, h — nl0, h)

I'Cu + 2v + A)T(2u)T(2v

Mk

1}
(=]

n

X( ni(h — n)!
TCu + #)T(2v + 1 —~n

172
) C(x)CP, (%),
)
(3.22)
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where the coefficients E(-) can be simply evaluated,
Our next model of D} is defined by operators

) ) . 8
+ — o0 — —_ =
Jt = ei®{x(l — x) 3% — 736 qx),
. 2 , 0
- — pibfy 9 9.
J- = et Xao ”ae>’ (3.23)
]
3 - _ ;5
J° = ‘56’

and basis functions

I'(2u + n)\1/2 ,
Julx,8) = -——-—-—) XUF(— n,u + q;2u;x)e?®@mo,

(3. 24)

nl
n=20,1,2,,..,

where q is a constant and F(o, ; v, x) is a hyper-
geometric function (see Ref. 7, Vol. 1), It follows
easily that the operators (3. 23) and basis functions

I'(2u + »)T(20 + m)\ 1/2
Jnm (x) 9) = xurv
X F(—n,u + qy; 2u; x)
X F(—m, v+ q5; 2v; x) eilurvens m)e’

nlm!

nom=0,1,2,..., (3.25)

define a model of DY ® D} where g = q; + ¢,. From
(3.24) we see that the basis vectors ;s transforming
according to D}, ,., are given by

] T(2u + 20 +2s + K\1/2
]}f(x,e)zcs ht *

X F(—~hu+v+s+q;2u+ 20+ 2s; %)
s,h=0,1,2,---,

x giwvsrhye, (3.26)

To compute the constants ¢, we substitute (3. 25) and
(3. 26) into (3. 7) and equate coefficients of x**¥*S on
both sides of the resulting expression. We find

cS

_[T@u+ 20+ s— 1)TQ2u + s) 1/2
‘(s 1{2u + 2v + 2s — )T (2v + s))
r@Eul{ + g, + 8)
8 T2u + 20 + 25 — DT{v + ¢5) 3
—20—s+1;2u,—v—gy— st 11

Fy(~s,u+ qy,

(3.27)

Substituting (3. 25)—(3. 27) into (3. 5), we obtain our
general identity. In the special case s =0, it re-
duces to
(I‘(Zu)l“(%)l‘(?.u + 20 + h)) 1/2
T'(2u + 2v) !
X F(— h,u + v + q;2u + 20; X)

n
= ) E(u,n,;v,h —nl0,h)
n=0

(r(zu + n)TQRv + h — n)) 1/2
x ni — m)!
X Fl—n,u + qq; 2u;x)

X F{—h + n,v + gqg; 27; X). (3.28)
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The reader can discover other interesting special
cases of this general identity by varying ¢, and g,
e.g.,set g, =—u.

4., A DIFFERENCE OPERATOR MODEL
As shown in Refs. 3 or 13, the operators

Jt= eie((x——l)L—x—ié% + q)’

J"'=e‘ie(-—(x+'r)E+:vc+ii +r+q—1), (4.1)

a6
.0
3 _ ;8
J zae
and basis functions
T{2u + n)\ 1/2
=122
n!
Tu—q+ 1) x+7r+qg—u—n—1)
T(x+ 7% ~n)

X gFol=mu—qg—7r+1lu—q+1;2u,

x+,r_~n;1)ei(u+n)e, nzo,l’z’...
4.2)

form a model of D}, where 7, g are constants and
Ef(x, 68) = f(x + 1,0), Lf(x,8) = f(x—1,06). Further-
more, the operators

-~ -ig ;.0
J~ = ¢i0 g TV

. 3

— 1 é? 5 (4. 3)
and basis functions

. [T(%0 + m)
I (9) = T el (7)+m)9,

Thus the operators (4.1) and

; . 0
J"’ZQZG(—Z—a—a +v)}

J3 =

m=0,1,2..., (4.4

form a model of D}.
basis functions

T(2u + n)T'(2v + m)\ /2
5,0 = 15 200) = (L)

Tu—g+v+ 1) x+vr+g—u—v—n—1)
T(x +7v —n)
X gFpl-nmut+v—qg—r+lLutv—q+tl

u, x + v — w1y et @rornmd oy gy = 0,1,2, 40,

(4.5)

define a model of D} ® D}. The basis functions
4s(x, 6) transforming according to D%, , ., can be ob-
tained immediately from (4.2) with u replaced by
ut+ v+ sandn=h

TQ@u + 20 + 25 + h)\ 1/2
nt )
Tu+v+s—qg+1)
T(x+7r—h)
XTx+r+q—u—v—s—h—1)
X 3Fp (hyu+tv+ts—g—7r+1lutv+s
—q+1; 2u+t+2v+2s,x+7r—hl)

X ei (u+ v+s+h)e.

ix,0) = ¢, (

X

(4.6)



To compute the constants c , we substitute (4. 5) and
(4.6) into (3.7) and set x = —7 + 1. We can then
sum the right-hand side to obtain

<1"(2u +2v+ s —1)TQ2u + s)T'(2v + s)) 1/2
¢, =
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(—1)s
T(Qu+ 2v + 2s—1)
X sFp(—s,utv—gq—r+lLu+tv—q+]
x 2u,utv—q+1;1). 4.7)

s!(2u + 2v + 25— 1)
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Certain differential-geometric and Lie group theoretic facts that are useful in the systematic study and search

for spectrum generating algebras are presented.
1. INTRODUCTION

Dothan has pointed out! several ideas and possible
directions of research in connection with the “spect-
rum generating Lie algebras” of quantum mechanics.
Typically, such ideas also have analogs in classical
mechanics. Since the problems in classical mech-
anics often have a geometric foundation, one finds
interconnections between geometry and Lie group
theory, quantum mechanics and elementary particle
physics. The aim of this paper is to survey more
extensively some of these links than was possible in
Dothan's paper.

2. POISSON BRACKETS STRUCTURES AND CAN-
ONICAL TRANSFORMATIONS ON MANIFOLD

We adopt Ref. 2 as a basic reference for the ideas
and notations of differential geometry on manifolds.
Let M be a manifold of even dimension, with a closed
two-differential form w of maximal rank on M. A
diffeomorphism ¢: M — M is a canonical transforma-
tion if ¢ preserves the form w,i.e.,¢p*(w) = w. A
vector field X € V(M) defines an infinitesimal
canonical transformation if

X(w)=0 (2.1)

[X(w) denotes the Lie derivative? of the form w by
the vector field X]. The set of vector fields X satis-
fying (2. 1) forms a Lie algebra [under Jacobi
bracket (X, Y) — [X, Y]] of vector fields, that we
denote by V(w). It may be thought of as the “Lie
algebra” of the group of canonical transformations.

Let F(M) denote the C* real-valued functions on M.
The form w defines a Lie algebra structure

(fi,f2) = {1, o) called the Poisson bracket. To define
it, for f € F(M), let X, be the vector field such that

Set
{fl,f2}=—Xfl(fz)

for f,, f, € F(M).

(2. 2)

(2. 3)

Then, one can prove the following results.

The bracket { , } defined by 2. 3 makes F (M) into

a Lie algebra. (2.4)
The mapping f — Xf is a Lie algebra homo-
morphism of F(M) into V(w). (2.5)

The kernel of this homomorphism consists of the
constant functions on M.

To recover the classical expression for Poisson
bracket to be found in all mechanics books, suppose
($;,4,), 1 =i,j= m is a coordinate system for M
such that

w = dp; / dg;.
Then, for f € F(M),
af 8 , of @
X == — + = —. 2.6
s op; 0q;  9q; dp; (2.6)

Given h € F(M), the integral curves of the vector
field X, are the solutions of Hamilton's equations,
with % the Hamiltonian.2 Thus, if # is the function that
represents the total energy of the mechanical system,
a basic problem is to study these integral curves, i.e.,
to study the one-parameter group of canonical trans-
formations generated by X,. Now, in Ref. 2 certain
general insights of the “Lie theory” of ordinary
differential equations have been explained. In parti-
cular, they apply to the problem of finding the inte-
gral curves of X,.

Definition: A function f € F(M) is a symmetry of
h if

{f,h} =0.

If f satisfies (2. 7), then it follows from (2. 5) that

X} X,] = 0, hence that the one-parameter group
generated by X, and X, commute. The aim of the
theory of “spectrum generating algebras”, stated in
rather vague terms, is to study Lie subalgebras of
F(M), whose elements f satisfy commutation relations

(2.7
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it, for f € F(M), let X, be the vector field such that

Set
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Then, one can prove the following results.

The bracket { , } defined by 2. 3 makes F (M) into
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The mapping f — Xf is a Lie algebra homo-
morphism of F(M) into V(w). (2.5)

The kernel of this homomorphism consists of the
constant functions on M.

To recover the classical expression for Poisson
bracket to be found in all mechanics books, suppose
($;,4,), 1 =i,j= m is a coordinate system for M
such that

w = dp; / dg;.
Then, for f € F(M),
af 8 , of @
X == — + = —. 2.6
s op; 0q;  9q; dp; (2.6)

Given h € F(M), the integral curves of the vector
field X, are the solutions of Hamilton's equations,
with % the Hamiltonian.2 Thus, if # is the function that
represents the total energy of the mechanical system,
a basic problem is to study these integral curves, i.e.,
to study the one-parameter group of canonical trans-
formations generated by X,. Now, in Ref. 2 certain
general insights of the “Lie theory” of ordinary
differential equations have been explained. In parti-
cular, they apply to the problem of finding the inte-
gral curves of X,.

Definition: A function f € F(M) is a symmetry of
h if

{f,h} =0.

If f satisfies (2. 7), then it follows from (2. 5) that
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with 2 which are more complicated than (2. 7), yet

still sufficiently simple to be able to derive useful
information dbout the physical system. Certain use-~
ful general remarks about this program have been
made by Dothan.! Hence, we will not attempt to further
formalize the general features of the program, but
will instead proceed to study certain more specific
facts of a differential geometric nature. In later
papers in this series, we will return to more general
speculations.

3. TRANSITIVE LIE GROUPS OF CANONICAL
TRANSFORMATIONS

Let us suppose now that G is a finite dimensional Lie
subalgebra of F(M). Let G be the simply connected
Lie group, whose Lie algebra is G. Let us suppose
that G arises as the infinitesimal version of an action
of G on M as a group of canonical transformations.
Further, we will suppose that G acts transitively on
M. (The “spectrum generating algebras” of such
physical systems as the harmonic oscillator and the
hydrogen atom seem to satisfy this transitivity con-
dition, s0 it seems to be a reasonable speculation.)
Let L be the isotropy subgroup of G at a point of M.
Then, by the general principles of Lie group trans-
formation theory, M can be identified with the coset
space G/L. Our aim in this section is to investigate
the general conditions of the existence of a closed
two-form w on M that is invariant under G imposes
on G and L. We will suppose, for simplicity, that L

is a connected subgroup of G. Further, in this section
we will not suppose a priori that w is a maximal rank
form nor that M is even dimensional.

Theorem 3.1: The coset space G/L admits a
two-differential form invariant under G if and only if
there is a skew-symmetric bilinear form
w: G X G — R such that

w(L, G) =0, 3. 1)
w(Y,X],2)—w({Z, X}, V) — (X, [Z,Y)]=0
for X,Y,Zc G, (3.2)
o([X,Y],Z) + o(Y,[X,Z]) =0 for X € L,
Y,Ze G (3.3

Proof: Since G acts as a transformation group on
M, by the general principles of Lie theory G can be
identified with a Lie subalgebra of V(M). Let p be
the point of M for which L is the isotropy subgroup.

Then,
L ={X € G: X(p) = 0}. 3.4

Suppose first that a closed two-form w is given on M,
such that

g¥w)=w forallg ecG.
Then, also,

Xw)=0 forXcG (3. 5)
Define w by the following formula:

W(X,Y)=w(X, Y)p) for X, Y € G. (3. 6)

Then, it is readily verified that (3. 1)~(3. 3) follow
from (3. 4)-(3. 6) and the condition that dw = 0. The
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steps are reversible, and show that such an w gives
rise to an w satisfying (3. 6).

Kostant has given3 a general procedure for the con-
struction of a form w satisfying (3. 1)-(3. 3). Let G¢
denote the dual space to the vector space G, i.e., the
space of linear mappings a: G — R.

Theovem 3.2: Suppose that L is a Lie subalgebra
of G and « is an element of G? which satisfies the
following condition:

a((L, G]) = 0. (3.7
Then, v defined by the following formula satisfies
conditions (3. 1)—(3. 3), hence defines a G-invariant,
closed two-form w on G/L:

w(X, Y} = a([X,Y]) forX,Y cG. (3.8)
Pyoof: Notice that (3.7) is equivalent to (8. 1).
The other two conditions, (3. 2)~(3. 3), follow from the

Jacobi identity for the Lie algebra G.

Kostant's formula (3. 8) gives one class of homogen-
eous spaces G/L with invariant closed 2-forms.

We shall now prove that, if G is semisimple, all
structures are of this type.

Let G be a Lie algebra, with w a form satisfying
{3.1)-(3. 3). Suppose further that B is a symmetric
nonsingular bilinear form G X G — R that is invariant
under the adjoint representation, i.e., satisfies the
following condition:

B(X, Y], 2) + B(Y,[X,Z)) =0 for X, Y, Z € G. (3.9)

(For example, if G is semisimple, the Killing form4
will satisfy this condition.) Then, there is a linear
transformation A: G — G, such that

w(X,Y) = B(AX,Y) for X,Y € G. (3.10)

Theovem 3.3: If A satisfies (3.10),then itis a
derivation of G that commutes with AdL, i.e., it satis-
fies the following conditions:

[X,AY] = A[X,Y] forXeL, YeG  (3.11)

A(X, Y]) =[AX, Y] + [X,AY] forX, Y€ G (3.12)

Proof: Let us first prove (3. 11). Given X € L,
Y € G, set

A'(X,Y) =[X,AY] — A(X, Y]). (3.13)

Then, for Z € G,

B(A'(X,Y), Z) = B([X, AY], Z) — B(A[X, Y], 2)

= — B(AY,[X, Z]) — B(A[X, Y], Z), using (3.9),

= — w(Y,[{X, Z]) — w([X, Y], Z), using (3.10),

=0,
using (3. 3). Since B is nonsingular, (3. 11 follows.
To prove (3.12), set
A'X, Y)=A{X,Y])) - [AX,Y] — [X, AY]

for X,Y € G.
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Given Z € G,

B(A"(X, Z),Z) = B(AX,Y),Z) —B([AX,Y), Z)
— B([X, AY], 2)
=w(X, Y}, 2) + B(AX,[Z,Y)]) + B(AY,[X, Z])
=w({X, Y], 2) + o(X,[Z, Y]) + w(Y,[X, Z])
=0,

using (3. 2). Again, (3. 12) now follows from the
fact that B is nonsingular.

Covollary: If G is semisimple, there is an element
Z € G, such that

(Z,L] =0, (3. 14)

w(X,Y)= —B(Z,[X,Y]) forX,YeG. (3.15)
In particular, w is of the type given by Kostant's
formula. Further, the form w on G/L defined by w
is of maximal rank, with G/L even dimensional, if
and only if L is the centralizer of Z in G, i.e.,
L={Xe G [X, Z]=0}. (3.16)
Proof: A well-known4 theorem of Cartan asserts
that any derivation of a semisimple Lie algebra is
inner. In particular, since A is a derivation, there is
a Z € G, such that
A(Y)=AdZ(Y)=[Z,Y| forY eG
Equations (3. 14)~(3. 16) now follow readily from this
fact.

Remark: The referee has remarked that the above
argument can be sharpened to cover the more general
hypothesis (than semisimplicity) that G has vanishing
second real-coefficient cohomology groups. In the
case that w is a maximal rank form on an even-
dimensional M, this result is indeed known.3 Of
course, our aim is to apply it to the further case
where M is odd dimensional, e.g., the “energy surface”
of the phase space of mechanical system.

We can now apply these results to various classifica-
tion problems that are associated with Dothan's
general ideas concerning spectrum generating
algebras.

4. GENERAL FACTS ABOUT SPECTRUM GENERA-
TING ALGEBRAS

Let us now turn to the case where M is the phase
space of a classical mechanical system consisting of
a single particle, Then,

dimM = 6. (4. 1)

Suppose that G is a semisimple group of canonical
transformations that acts transitively on M. Let G
be the Lie algebra of G, identified with a subalgebra
of V(w) and F(M). Let L be the isotropy subgroup of
G at a point p € M. Then G and L satisfy (3. 14)~
(3.18). Further, let us suppose that % is a function on
M that is the Hamiltonian of the physical system.
Suppose that K is a connected subgroup of G that con-
sists of symmetries of %, i.e., such that
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(K, 1] =0. (4. 2)

Let N be the “energy surface” at p, i.e., the set of
points p’ € M, such that

r(p') =h(p). (4.3)

Then, in view of (4.2),K maps N into itself. Let us
suppose—as part of what is meant by “spectrum
generating algebra”—that the following condition is
satisfied:

K acts transitively on N. (4. 4)

Let B be the Killing form of the Lie algebra G. Let
w be the closed, maximal rank two-form on M defin-
ing the Poisson bracket structure. [In terms of the
usual canonical coordinates (p,q,), 1 =i = 3, w is the
form dp; A dg;]. Then, there exists an element Z € G,
such that L is the centralizer of Z in G and

w(X,¥) = — B(Z,[X, Y))

= B(X,Z],Y) forX,Z¢cL. (4. 5)

Further, we have the following result.

Theorem 4.1: 1If A is an Abelian subalgebra of G,
then

dimA — dim(AN L) = 3. (4. 6)
If A’ is an Abelian subalgebra of K, then
dimA’ — dim(A’ N L) = 2, 4.7

Proof: By (4.5) if X, Y are elements of an Abelian

subalgebra of G, then
w(X,Y)=0. (4. 8)

Now, w passes to the quotient to define a nonsingular
bilinear, skew-symmetric form on G/L, which is of
dimension six, which we may denote by w’. Now, a
linear subspace V C G/L is said to be isotropic if
w'(V, V) = 0. It is a fact5 of linear algebra that the
dimension of such an isotropic subspace is of dimen-
sion no greater than three. Now, the image of A in
G/L is such an isotropic subspace, by (4.8). Combin-
ing these two remarks proves (4. 6). (4.7) is proved
similarly.

5. MAXIMAL ORBITS

We will now abstract from the physicist's intuitive
idea of what is meant by a “spectrum generating
algebra, ” a precise problem in Lie group theory.
Suppose, for the moment, that G, L, K are Lie groups,
with L and K subgroups of G, and with G a “spectrum
generating algebra”. We have seen in Sec. 4 that one
of the conditions going into the “spectrum generat-
ing” condition is dim(G/L) = 6.

The dimension of at least one orbit of K is 5. This
suggests the following general problem:

Classify all triples (G, L, K), with G, L, K
connected Lie groups, L and K closed subgroups
of G, such that the following condition is
satisfied: There is at least one orbit of K on
G/ L, whose dimension is one less than the
dimension of G/L. (5.1)
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In this section, we will make some general remarks
about these possibhilities, in the case where K is
compact, (As Dothan remarks,! this case seems to
be the plausible one when one seeks “spectrum gener-
ating algebras” whose representations hopfully define
the “pbound-states” of a quantum mechanical physical
system.) In this case, one can use the known general
facts? concerning the structure of compact Lie groups
of transformations on manifolds. In the rest of this
section, we will summarize what can be said using
these facis.

Let M = G/L and suppose that K is compact. Then,
there is a positive Riemannian metric on M, such that
K acts as a group of isometries of this metric. We
will suppose that one such metric is fixed on M and
that it is complete. For p € M, let K¢ be the isotropic
subgroup of K at p i.e., the set of elements g € K,
such that gp = p. Recall? the definition of maximal
orbil: A point p € M is on such an orbit if the follow-
ing conditions are satisfied:

dimK? = dimK?’ for all points p’ € M. (5. 2)
Let p be a point of M, and let N be the orbit of K
through the point p. Let N, be the tangent space to
N at p. Let N; be the orthogonal complement to N,
in M, (with respect to the fixed Riemannian metric on
M), Then, K? acts on tangent vectors to M at p.

8, = &) (5.3)

forvEMp, g <G,
The action (5. 3) of K¢ defines a representation of K
by linear tranformations on M, called the fangent
linear isolvopy vepresentation. The infinitesimal
version of this defines a linear representation of K4
the Lie algebra of K?,by linear transformations on

M,

The following result can be proved, using the techni-
ques for the study of orbits of Riemannian trans-
formation groups given in Ref. 2.

Theovem 5.1: plies on a maximal ovbit of K if

and only if
Xv=0 forall XeK? allveN/. (5. 4)

Let us now translate condition (5. 4) into an algebraic
condition involving G. Let us suppose that G is a
semisimple Lie algebra, and that K and L are linear
subspaces that are nonsingular with respect to the
Killing form of G. Let K+ and L+ denote the ortho-
gonal complement of K and L in G, with respect to
the Killing form of G. Then, one has the following
relations:

G=KoeK+=L& L. (5.5)
{The direct sum in (5.5) is only a vector space direct
sum.)

[K, K+ € K+ [L, L] C L%
Suppose further that p is the identity coset element
of G/K, so that the isotropy subgroup of G at p is L.
Then, one sees that condition (5. 4) is equivalent to the
following condition;

[KN L,K4 C L. (5. 6)
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Now, the question arises of translating (5. 6) into a
more familiar algebraic condition on the triple (G, K,
L). We will attempt to do this here only in the case
where K and L are both symmetric subalgebras of G,
so that the following conditions are satisfied:

[K4 K] CK, [L4L4]CL. (5.7}
In addition, suppose that

K M L is a nonsingular subspace of G

with respect to the Killing form of G. (5.8)

Theovem 5,2: If conditions (5.7), (5. 8) are satis-
fied, then condition (5. 6) implies the following two
conditions:

(K+N L4 K0 L) =0,
KN L,K+N LY =0.

5.9)

(5. 10)

Pyoof: Let B(, ) be the Killing form of the semi-
simple Lie algebra G. Assume (5. 6); 5. 10 then

follows automatically. To prove (5. 9), proceed as
follows:

Suppose X, Y ¢ K+ N LY, Ze Kn L,
Then,

B(X, Y], 2) = — B(Y, X, Z))

-0, by (5.6).
Then, B(K* N L+, K+ N L+, KN L) = 0. (5.11)
But, using (5. 7), we have
[K+Nn L4 KEN LY CKN L. (5.12)

Because of (5. 8), (5. 11) and (5. 12) combined to prove
{(5.9).

Finally, in case (5. 1) is satisfied, we have the follow-
ing condition:
dim (K*N LY =1, (5. 13)

These results give us the tools to investigate exam-
ples of “spectrum generating algebras.”

6. SPECTRUM GENERATING ALGEBRAS ASSOCI-
ATED WITH COMPACT SYMMETRIC PAIRS

Let us first recall some ideas from the theory of
symmetric spaces.467 Let G be a Lie algebra, and
let ¢ be an automorphism of G, such that

g2 = {identity). {6.1)
Let K={X € G: 0|X| = X}. ThenK is called a
symmelvic subalgebra of G. A pair (K, L) of such
symmetric subalgebras is called a symmelric pair.
Such a symmetric pair will be called a compact
symmetrvic pairv if G is a semisimple Lie algebra of
compact type, i.e., G is the Lie algebra of a compact,
connected, semisimple Lie group G. (In Sec. 7 we will
extend some of the results to certain noncompact
groups G.)

Let us suppose that such a compact symmetric pair
(K, L) is fixed. Let K and L be the connected sub~
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groups of G generated by K and L. In Refs. 7-9,
certain general results are proved concerning the
orbit structure of K acting on G/L. In this section,
we will apply some of this work to the problem of
classifying spectrum generating algebras.

Let ¢ and ¢’ be the automorphisms of G which satisfy
(6. 1), such that

K={X¢cG oX) =X},

H={X¢c G o(X) =o' (X}
Then, H is a subalgebra of G, such that

L={Xec G ¢X) =X}
Set
6. 2)

o(H) = H.

Also,KN L ={X € H: o(X) = X}. Thus,KN Lisa
symmetric subalgebra of H. Set
P={XcH oX) =—X]. (6.3)
Let A be a maximal Abelian subalgebra of P, i.e., A
is a Cartan Subalgebra%.6 associated with the sym-
metric space H/K N L. Let A be the connected sub-
group of G corresponding to the subalgebra A. We
will now state a basic result, referring to Ref. 8 for
the proof. (Alternately, a proof could be given using

Theorem 5 and general facts about Riemannian
transformation groups.)

Theovem 6.2: Let p, be the identity coset of
M = G/L. Then, the orbit Ap, touches each orbit of
K at least once and is transversal to each such orbit
at the point of contact. At each maximal orbit, Ap,,
fills up the perpendicular space to the orbits. In
particular,

dimA = dimM — (dimension of each maximal orbit
of K). (6. 4)

Covrollary: The maximal orbits of K are of one
less dimension than M if and only if H/KN L is a
symmetric space of rank one.

[The corollary is of obvious interest in connection
with finding examples which satisfy (5. 1).]

Now, we can made further remarks about the possible
structure of L in case the following condition is
satisfied:

(6. 5)

In this case, set ¢” = o0’.
and

Notice that (¢”)2 = identity,

H={Xe G ¢"(X)=X}. (6. 6)
In particular, H is also a symmetric subalgebra of G,
hence the possibilities for dimA = 1 can be classified
using Cartan's classification of compact symmetric

spaces. However, we will not carry out this program
here.

Now, G is a candidate for a “spectrum generating

algebra” if G/L has a g-invariant Poisson bracket
structure. By Theorem 3. 3, this will happen if and
only if L. is the centralizer of an element of X € G.

In this case, L will be a maximal rank subalgebra of
G. If G is simple, the possibilities for L, may be read
off from the table on page 128 of Ref. 4.

For example, if G = SO(5, R), the only possibility for
L is the SO(3, R) X SO(2, R) subgroup of G. Now, as
Dothan remarks,! the spectrum generating algebra
for the hydrogen atom is G = SO(4, 1), which is a non-
compact real form of SO(5, R). (As we will see in the
next section, it is often possible to pass back and
forth from the “compact” to the “noncompact” situa-
tions using Cartan's construction of noncompact Lie
algebras.) Now, in the hydrogen atom, K is the sub-
group SG(4, R). It may now be readily verified, with
the aid of (6. 6), that H is also an SO(4, R) subgroup of
S0(5, R) with K N L equal to SO(3, R). Notice now
that H/K N L is indeed a rank one symmetric space,
hence to maximal orbits of K on G/L are five-
dimensional, as they are in the hydrogen atom.

Another example is provided by the harmonic oscilla-
tor, where G = SU(4), and where K and L are both
U(3) subgroups. In this case also it is readily seen
that the maximal orbits of K on G/L are five-dimen-
sional, while dim(G/L) = 6, and G/L as a G-invariant
Poisson bracket structure. Now we turn to the des-
cription of a method for generating noncompact
spectrum generating algebras.

7. CONSTRUCTION OF NONCOMPACT SPECTRUM
GENERATING ALGEBRAS

We have just given a method for generating compact
semisimple spectrum generating algebras. However,
the examples cited by Dothanl involve noncompact,
semisimple Lie algebras. We will now work out a
method for passing back-and-forth between these
two types.

First, let us present Cartan's method for defining
different “real forms” of the same complex Lie alge-
bra. Let G be a Lie algebra over the real numbers
as a field of scalars, and let o: G — G be an auto-
morphism of G, such that
a2 = (identity). (7.1)
Let us now define a “new” bracket structure on the
underlying vector space of G, to be denoted by [, |":

[x,v] = {X, ()] + [a(X), ¥]

(7.2)
+[X, Y] — a(X, Y]},

Now, we have the following result, whose proof is easy,

but which we will not give here:

Theovem 7.1: Formula (7. 2) defines|, ]"asareal
Lie algebra structure on the underlying vector space
of G. If we denote this Lie algebra by G/, then the
complexifications of G and G’ are isomorphic as
complex Lie algebras,i.e., G and G’ are “real forms”
of the same complex Lie algebra.

The following result is obvious from formula (7. 2).

Theovem 7.2: If L, is a subspace of G such that
[L, L] € L,i.e., L is a Lie subalgebra of G with res-
pect to the Lie algebra|, ], and if a(L) = L, then L
is also a Lie subalgebra with respect to the Lie
algebra structure [ , ] on G defined by formula (7. 2).
We can now apply these remarks to the problem of
constructing examples of noncompact spectrum gen-
erating algebras from the compact ones. Let G be
a compact semisimple Lie algebra; and suppose that
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K, L are symmetric subalgebras of G, such that

(G, K, L) satisfy the conditions (5. 3) needed to say

that G is a “spectrum generating algebra”. Let a be

an automorphism of G which satisfies (7. 1), such that
o)=L, aR)=K

Form the noncompact Lie algebra G’ which is a real

form of G via formula (7. 2). Then, by Theorem (7. 2),

L and K form Lie subalgebras of G, that we call L/,

K'. Then, one sees readily that L', K’ are symmetric
subalgebras of G'. It seems likely that (G’, L", K')

ROBERT HERMANN

satisfies the conditions needed to specify G’ as a
“spectrum generating algebra.” At least, the two
examples of most interest for physics,

(G =SU4), G’ =SU(1, 3); G = SO(5, R), G’ = S0O(4, 1)),

do indeed define G’ as a spectrum generating algebra.
(They correspond physically to the hydrogen atom

and harmonic oscillator). However, we will not go into
the Lie group theoretic details needed to settle this
conjecture, but will leave it as a starting point for a
possible later paper.
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In case a group of symmetries of a classical mechanics system acts on a locally transitive way on the energy
surface, it is shown how the time evolution of the system is related to orbits of one-parameter subgroups of
the symmetry group. In particular, this provides a group-theoretic interpretation of certain types of regulari-
zation of collisions. Generalizations of this phenomenon to quantum mechanics are also discussed.

1. INTRODUCTION

In Paper I' we have discussed certain situations which
are “maximally symmetric” in the sense that the
group of symmetries act transitively on the under-
lying space. In this paper we will pursue further the
study of such transitivity situations, concentrating
attention on the case where there is a “local group”
of canonical transformations which commutes with
the Hamiltonian and which acts in a “local transitive”
way on the energy surfaces. We will show how these
symmetries enable one to discuss the “collision”
properties of the classical equations of motion,
generalizing material that is already known? for the
hydrogen atom—Kepler motion situation. We shall
also discuss the question of extending a locally tran-
sitive group of Hamiltonian symmetries to a group of
canonical transformations that act in a locally transi-
tive way on classical state space. Here we encounter,
in a slightly different form, the phenomena discussed
in Ref. 3 of a one-parameter group of symmetries of
a system of differential equations,for which certain
orbits are also solutions of the differential equations
themselves. (The most classical version of this phe-
nomenon is the Lagrange rotating equilateral triangle
solution of the three-body problem.) We will also
briefly discuss in Sec.4 this phenomenon in a quantum-
mechanical context.

2. LOCALLY TRANSITIVE HAMILTONIAN
SYMMETRIES

Again, we will refer to Ref. 3 for the differential-geomet-

ric concepts and notations to be used here. Let M be

an even dimensional manifold, and let w be a maximal-

rank, closed two-differential form on M. (For exam-
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ple, M could be4,5 the cotangent bundle of a “configu-
ration space” manifold N. In this case, there is a
natural choice of two-form on M, whose associated
“Hamiltonian~Jacobi theory” gives the usual material
of classical mechanics.)

A diffeomorphism ¢: M — M, such that
P*w)=w

is called a canonical transformation. A local canoni-
cal transformation is an ordered triple (U, U’, ¢) con-
sisting of two open subsets U, U’ of M, together with a
diffeomorphism ¢: U — U’ which satisfies (2.1). A
vector field X € V(m) is an infinitesimal canonical
transformation if

(2.1)

X(w)=0. (2.2)
The set of all such vector fields is denoted by V{w)
and forms a Lie algebra with the Lie algebra bracket
[,] just the Jacobi bracket3 of vector fields. Given an
X € V(w), the integral curves3 of X define a family of
local canonical transformations on M. Let G be a Lie
subalgebra of V(w), and let M’ be a subset of M. G is
said to act in a locally transitive way on M’ if the
following condition is satisfied:

Given points p{,p5 € M’ which are suffi-
ciently close together, there is a local
canonical transformation generated by
integral curves of an X € G which maps
p1 into p3.

Suppose, for example, that M’ is a submanifold of M,
and that G is tangent to M’ i.e.,

2.3)
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K, L are symmetric subalgebras of G, such that

(G, K, L) satisfy the conditions (5. 3) needed to say

that G is a “spectrum generating algebra”. Let a be
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satisfies the conditions needed to specify G’ as a
“spectrum generating algebra.” At least, the two
examples of most interest for physics,

(G =SU4), G’ =SU(1, 3); G = SO(5, R), G’ = S0O(4, 1)),

do indeed define G’ as a spectrum generating algebra.
(They correspond physically to the hydrogen atom

and harmonic oscillator). However, we will not go into
the Lie group theoretic details needed to settle this
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attention on the case where there is a “local group”
of canonical transformations which commutes with
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“Hamiltonian~Jacobi theory” gives the usual material
of classical mechanics.)

A diffeomorphism ¢: M — M, such that
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is called a canonical transformation. A local canoni-
cal transformation is an ordered triple (U, U’, ¢) con-
sisting of two open subsets U, U’ of M, together with a
diffeomorphism ¢: U — U’ which satisfies (2.1). A
vector field X € V(m) is an infinitesimal canonical
transformation if
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The set of all such vector fields is denoted by V{w)
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[,] just the Jacobi bracket3 of vector fields. Given an
X € V(w), the integral curves3 of X define a family of
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subalgebra of V(w), and let M’ be a subset of M. G is
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For eachp’c M, the set {X(»'): X € G}

= G(p') generated by G is contained in 2.4)

Mp,, the tangent space to M’ at p’.

Then, one sees readily that, if the following condition

is satisfied, then G acts on a locally transitive manner

on M’:
G(p'):Ml;, for allp’e M’'. (2.5)

Example: Suppose that M is the state space of a
classical mechanical system, with w the canonical 2-
form. Use w to define a Poisson bracket structure on
FM). Given f € F(M), let X, € V(M) be the vector
field, such that

df = X; lw,

X/ (w) =0, Ii.e.,X;is an infinitesimal canonical

transformation,

{f1.fol ==Xz (fp)  for f1,f€ F(M).

Let & be a fixed element of F (M),considered as the
Hamiltonian of the system. Let f;,..., f, be functions
on M, such that {#,f,; = 0 for 1 <'a =n. These func-
tlons are called constants of motion. The vector field
Xfa then satisfies

(2.6)

0= [Xh’Xfa] = Xfa (h),

which indicates that the local canonical transforma-
tions generated by the X, are symmetries of the
equations of motion defmed by 4. Usmg (2. 6), we now
have the following result:

Theorem 2.1: Suppose that dimM = 2m. If the
values at each point of M of df,, ...,df, spans a
space of covectors of dimension (2m — 1), then the
Lie algebra of canonical transformations generated
by the Xf o Xf acts on a locally transitive manner

on the energy surfaces h~1(E), E € R of M.

For example, if # is the Hamiltonian of the hydrogen
atom or the harmonic oscillator, then it is well known
how to choose such constants of motion, which form
(under Poisson bracket) finite-dimensional Lie alge-
bras [SO{4, R) for the hydrogen atom, U(3) for the
oscillator].

Suppose now that, in general K is a Lie algebra of
infinitesimal canonical transformations on M, each
element of which generates a symmetry of 2. For
Ec R, set

Mg = h~Y(E).

Let us assume that the “energy surfaces” M are
submanifolds of M. Then, each X € K is tangent to
M. Let us suppose also that K acts in a locally
transitive manner on M;. Let X, be the vector field
on M such that dh = X, lw. Then, the integral curves
of X, are the solut1ons of the Hamllton equations,
with Hamiltonian k. Since X »(1) = {r,f} = 0, each in-
tegral curves also lies completely on one energy sur-
face M.

Theorem 2.2: The integral curves of X, that lie
on an energy surface M, are characteristic curves
of the 2-form w restricted to M;. (See Ref. 3 for the
definition of a characteristic curve of a 2-form.)

Proof: Since dh = X, Jw,we see that X, Jw =0
when restricted to M, (since dk = 0 on M), which is
the condition needed3 to assert that the integral
curves of X, are characteristic curves.

Theorem 2.3: H { — o(t) is an integral curve of
X,, which lies on M and if K acts locally transitively
on My, then there is an X € K such that ¢ is an integ-
ral curve of X. Further,if f € F(M) is such that
df = X lw, and if f; denotes the function f restricted
to M, then each point of ¢ is a critical point of fj.

Proof: To say that K consists of symmetries of 2
is to say that

X(h) =0
Hence, [X,X,] = 0 for all X € K.

Then, as was shown in Ref. 3, the one-parameter
group generated by X maps an integral curve of X,
into another integral curve.

Let p be the point of M such that 0(0) = p. Then, our
assumption that K acts in a locally transitive way on
M, implies that there is an X € K whose value atp

is precisely the tangent vector to o atp. Let us sup-
pose that this tangent vector is nonzero. (The result
is trivial in the case it is zero.) Then, as shown in

for all X € K. 2.7)

Rei. 3, there is a coordinate system x4,...,% , for
M, valid in a neighborhood of p, such that
0
0=x,00)= =x, (), X,= Fyut (2.8)
X1
Suppose that, in this coordinate system,
d 0
X=A —+A,— + -+ +A — 2.9
0x 4 ax, 0x,,
The coefficients 4,,...,4,, in (2.9) are then functions

ofxq,...,%,. Condition (2.7) implies that these
functions depend only on x,,...,x,. The condition

that X, (p) = X(p) implies that
A(0,...,0) =1,
! (2.10)
Ay(0,...,0)=0=---=A4,(0,...0).

The curve { — g(f), as the integral curve of X, start-
ing at p, is given explicitly as follows, in these coor-
dinates:

t— @0, - =(x(D),x50), -, %, ).
Then

dx

’ =1=A4,(0,...,0) =A,k,(),...,x,(),

@=0=A(x(t) E (1))

dt 22\ 9 Vm ’

dxm

e 0=A, k;®),...,x, (@)

The relations then show, explicitly, that the curve
t = of¢) is also an integral curve of X, which proves
the first part.

Recall that a point p € M is a cvitical point of a
function f, if df, (p) = 0. Suppose that df = X/w and
that ¢ — or(t) is a curve in M, which is an integral
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curve of both X and X,,. Then, by Theorem 2.2, the
curve ¢t = ¢(t) is a characteristic curve of w restric-
ted to M.

Hence,
df g(o(t)) = X(o(t))dw  restricted to My
= Xh(o())dw restricted to M,
=0,

which proves that each point of the curve £ — o(f) is,
indeed, a critical point of the function f.

Remark: The fact that f, restricted to the sub-
manifold My, has a critical point can be phrased in a
more symmetric way, using Lagrange multipliers.
In fact, one sees that f; has a critical point at the
point p € My if and only if there is a real number A
such that

df + Axdh =0

at p. (2.11)

(A is, of course, the Lagrange multiplier.)

Another way of looking at this has been pointed out by
Smale.? Consider the map M — RZ2 which assigns

to the point p the pair (f(p), 2(p)) of real numbers.
Then, the points p € N which satisfy (2. 11) are ob-
viously the points at which this map is not of maxi-
mal rank, i.e., the singular points of the map.

Finally, the general phenomenon encountered here—
solutions of differential equations which are also
orbits of groups of symmetries of the equations—has
been studied in various geometric contexts by the
author.3:7,8

3. REGULARIZATION OF SINGULARITIES OF
DIFFERENTIAL EQUATIONS BY MEANS OF
GROUP THEORY

Let M continue to be an even-dimensional manifold
with a closed, maximal-rank 2-form w. Let zZ be a

Hamiltonian function on M, and let X, be the Hamil-
tonian vector field, such that

dh = X, lw.

An integral curve ¢ — o(t) of X,, defined over the in-
terval 0 < ¢ < a, is said to have a singularity atf =a
if it cannot be continued beyond the point { = a. For
example, if M is the state space of a system of par-
ticles, a “collision” at ¢ = a would be such a singu-
larity, since some of the momenta of the particles
would go to infinity as ¢ — a.

Now, we must explain what is meant by “regulariza-
tion” of the singularity. Among the many possible
meanings of this concept, we choose a “geometric”
one: The energy surface M, on which the curve o
lies is to be embedded as a submanifold of a manifold
M’, such that X, arises by restriction to M, of a vec-
tor field on M’, and such that limo(¢) exists in M’ as
t—a.

For example, Moser? has constructed such an em-
bedding for the case where % is the Hamiltonian of
the hydrogen atom. In this section, we will discuss
certain features of this problem that can be looked at
in a group-theoretical way.
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Let us suppose that K is a finite dimensional Lie alge-
bra of infinitesimal transformations on M, consisting
of symmetries of #,1.e., such that X(k) = 0 for all

X eK.

Then, K acts on the energy surface M; = h71(E). Let
us further suppose that it acts in a locally transitive
way on M. Then, as we have seen, if £ — o(f),

0 = ¢ < a,is an integral curve of X, which lies on
M, there is an X € K such that o is also an integral
curve of X. We shall now describe a situation where
this fact may be utilized to extend ¢ beyond { = a.

Definition: Let K be a finite-dimensional Lie alge-
bra of vector fields which acts in a locally transitive
way on a manifold N. Let K be a connected Lie group
whose Lie algebra is isomorphic to K. Then, the in-
tegration of the vector fields in K defines a “local”
Lie group action of K on N. This action is said to be
globalizable if there is a closed subgroup L of K and
an embedding of N as an open subset of N = K/L,
such that the action of K on N results from the res-
triction to N of the vector fields in K acting on the
coset space K/L.

Remark: I the action of K is globalizable in this
way, then the geometric situation implies that an in-
tegral curve t = o(f), 0 = { < a,of an X € K, which
lies in N, can always be continued beyond a (in fact,
to —o < ¢t < ), into a curve lying in N’ = K/L. In
fact, this curve is just the orbit ¢ — g(¢)o(0) of the
one-parameter subgroup g(Z) = exp(tX) of K generated
by the element X € K.

Let us return now to the case where N = M, ,and K
results from the action of a Lie algebra of symmet-
ries of 2. Then, if N’ is such a globalization of N, it
follows that the integral curves of X, can be continued
into N'. For example, for the case of the hydrogen
atom, Moser has constructed N’ explicitly as
SO(4,R)/SO(2,R).

Now, unfortunately, there are as yet no general theo-
rems in the mathematical literature asserting when
a locally transitive action of a Lie algebra on a mani-
fold N may be globalized in this way. (This would be
analogous to the question—equally unknown—of the
possible “completion” of an incomplete Riemannian
metric.) However, at least these geometric remarks
do provide one with a geometric framework in which
to think of the problem, and provide us with a “geo-
metric” set of sufficient conditions for the “regulari-
zation” of singularities.

4, THE QUANTUM MECHANICAL ANALOGS

Part of our motivation for this work in classical
mechanics was to develop ideas that had an analog in
quantum mechanics. We will now develop this analogy
explicitly, focusing attention on the phenomenon inves-
tigated above in a classical setting of orbits of one-
parameter groups of symmetries that are also solu-
tions of the Schrodinger equation.

Let H be a complex vector space, with a real-bilinear
form (Y,,¥,) = (¥, | ¥, that is Hermitian symmet-
ric, in the sense that it satisfies the following condi-
tions:
Wyl W) =Wylwp*  fory,,y, € H,
(eyql o) =cXyylyy) forceC, Yy,¥, €H,
(Wly) > 0if ¢ € His= 0.
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Such a structure will define H as a Hilber! space.
(This is the terminology in physics; in mathematics
one adds completeness.)

Now let M be the projective space constructed from
H,i.e.,the space of one-dimensional linear subspaces
of H, M should be considered as the quantum mecha-
nical sfate space. We will now discuss some of its
differential-geometric properties. (It is one of a type
of “infinite-dimensional manifolds,” whose differen-
tial-geometric properties will be treated according
to general lines discussed in Ref.4.)

Let 7 be the map: H — (0) — M which assigns to each
nonzero ¥ € H the one-dimensional complex-linear
subspace to which it belongs. For each ¢ € H — (0),
denote by ¢ + the orthogonal complement subspace to
¥, i.e., the set of ; € H such that (¢/|¢;) = 0. One
can then regard the assignment iy — L as defining
a vector bundle over H — (0). Now, the fibers of this
vector bundle are clearly constant on the fibers of 7
(since (cy)* = Y+ for ¢ € C), hence there is defined
a vector bundle, which we denote by T(M) on M.

As the notation “T(M)” should indicate, T(M) can be
identified with the “tangent bundle” to the “infinite-
dimensional manifold M.” [For 7(y) € M, denote by
M., =¥ the fiber of T(M) over the point 7(¥).] To
see this, suppose that ¢ — Y (¢) is a curve in H — (0),
with Y/(0) = . Assign to this projected curve

t - my () in M the “tangent vector,” which is the
orthogonal projection on ¢ of the derivative (dx/dt)(0).
This element of Y+ = M, is then independent of the
lifting ¢ — ¥(¢) chosen for the curve t - 7( (£)).
Clearly, two such curves have “first order contact”
at ¢ = 0 if their “tangent vectors” in M, = ¥+,
assigned in this way, coincide. We will denote this
orthogonal projection in ¥+ by the notation

dy >
T 0

(o
Let A: H — H be a Hermitian operator on H, i.e.,
Wyl A¥y) = Ay | ¢, for ¥4,¢, € H. Let us suppose
that A generates a one-parameter unitary group act-
ing on H, denoted by U(t) = exp[— (it/h)A]. In other
words,fory € H

d
dt

U(t) permutes the one-dimensional linear subspaces
of H, hence acts as a one-parameter transformation
group on M. Let X, be the vector field on M defined
by this one-parameter group. Using (4. 1), we see that
fory €8S,

X, (n()) = 7~ GA/EW).
In particular, note that X, (7)) = 0,i.e.,7(y) is a

“singular point” for the vector f1e1d 1f and only if
Y is an eigenvector of A.

Uit =~ 2 Wew). (4.1)

(4.2)

Each such Hermitian operator A also determines a
real-valued function f,: M — R as follows:

fa@ @) = Ay | Ap) w1y

[Note that the right-hand side of (4. 3) is invariant
under the transformation ¢ — ¢y for ¢ € C, hence
(4. 3) really does define f, as a genuine function on

for ¢ € H — (0). 4.3)

M.] Let us compute the “differential” df, of f,:
Suppose ¢t — Y(t) is a curve in H, with Y (0) =
Then,

d—‘j £ @@ N,

“groell‘a

x (1) + W) Av) <<d‘” Ol +{(% ©

O a@)+( 22 ©)14y) )

V)

Now, in this computation, we can suppose that the
curve ¢ — Y(f) has been normalized so that
Wiy =1, (4.4)

With these normalizations, we then have

Y oy - g
E(O)Cw-

dt

4 0 {a4) + (% g)°
=(F ©

;_t oM, o= deE,*@E (0))}

O |mx,a @)+ (S © | inx, @ | @) *

[using (4.2)]
= (% I, aw)—( 2 ©Ox, 6w) .65

To interpret this formula in an interesting differen-
tial-geometric way, let us define w as a real, skew-
symmetric bilinear form: M, X M, — R, as fol-
lows:

Wy, ¥o) = ﬂi((tl/l |"1U2>* - <1P1 N/z))

for y,,y¥, € (w) =yt

Then, (4. 5) can be rewritten in the following form:

df"[” (dw “”)] ( % (0))

Now, as ¢ varies, w defines a “2-differential form”
on M. One can, in fact, prove that it is a “closed 2-
form” on the infinite-dimensional manifold M, when
the “exterior derivative” is defined as explained in
Ref.4. As y varies,y — X,() defines a “vector
field” over M. The functlon J4 the vector field X,
and the 2-form w are then related—using Eqs. (4. 7),
via the relation

4. 6)

(4.7)

df, = X, dw. (4.8)
This relation is then a typical “symplectic manifold”
situation.3-5 What we have done is to show that the
re01proc1ty between “observables,” i.e. “Hermman
operators and “one- parameter unltary groups,” i.e.,

“quantum symmetries,” which is a typical feature of
quantum mechanics, can be put into a “classical
mechanics—symplectic manifold” framework by ana-
lyzing the differential geometric structure of M, the
quantum mechanical state space.

After these general remarks, let us turn to the quan-
tum-mechanical analog of Theorem 2.4 and relation
(2.8). Let A and A, be two Hermitian operators on H,
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which commute and which generate one-parameter
unitary groups,t — U(t), ¢t = U,(¢),onH. (4, may be
thought of as the “Hamiltonian” of the system.) Let
7() be a point of M which is a critical point of f, +Af,
where X is a real constant, i.e.,d(]j4+AfAh) =0aty.

Relation (4. 7) now implies, as it does in classical
mechanics, that X, + )\XAh is zero at n(). Formula
(11.2) now implies that y is an eigenvector of

A + MA,. In turn, this implies, using the relation

[4,A,] = 0, that the orbits ¢ - Ut)n (), U,({t)n(y)
coincide, just as in classical mechanics.

Remavk: This “symplectic manifold” approach to
quantum mechanics has been emphasized by Kos-
tant.9 His ideas were presented at the 1969 Battelle
Rencontres on Mathematical Physics in Seattle, and
the presentation here is influenced by his presentation
there. I have also developed an alternate and related
approach in Ref. 10.
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Expansion of the Master Equation for One-Dimensional Random Walks with Boundary*
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In order to understand the behavior of coarse-grained equations in the presence of a boundary, the following
model is investigated. A homogeneous one-dimensional random walk is bounded on one side by some boundary
conditions of rather arbitrary form. The corresponding master equation is approximated by the Fokker-
Planck equation plus partial differential equations for the higher orders. The boundary condition for the
Fokker-Planck approximation is well known; but those for the higher order terms are here derived. To the
second order they amount to a virtual displacement of the boundary. The case of a two-step random walk,
however, gives rise to an unexpected complication, inasmuch as nonpropagating solutions of the master equa-
tion cannot be ignored in the boundary condition, although they do not contribute to the differential equations

themselves,

1. INTRODUCTION

In recent years much effort in nonequilibrium stati-
stical mechanics has been devoted to the derivation
of equations describing the time dependence of re-
duced distribution functions and macroscopic vari-
ables. These equations have been derived from the
exact equations of motion and are particularly simple
when some pertinent physical parameter is quite
small, Examples are the Boltzmann equation for a
low density gas, the Langevin and Fokker-Planck
equations for heavy particles in a bath of light parti-
cles, and the hydrodynamic equations in systems with
small spatial gradients. All of these equationscanbe
extended to situations where the parameter (e.g., the
density) is still small, but large enough so that the
lowest order equations are no longer valid. These
extensions have resulted in the Choh—Uhlenbeck equa~
tion! for dilute gases and the generalized hydrodyna-
mic equations.2?

All of the derivations mentioned above were carried
out in the thermodynamic limit and in the absence

of boundaries. It would be of great interest to derive
the transport equations for a system with boundaries,
but little progress has been made in this direction.3
Phenomenological considerations do supply a clue to
the expected results of such analyses, at least to the
lowest order. Thus, for example, the hydrodynamic
equations describing the bulk properties for non-
equilibrium fluids have the same form whether a
boundary is present or not. The presence of the
boundary merely imposes boundary conditions on
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these equations. We emphasize that these boundary
conditions are often not derived from molecular
theory but imposed on intuitive phenomenological
grounds. While the intuitive approach may work

for the lowest order equations, there is no assurance
that it will, and even less assurance that it will be
valid for the extended equations.

In this paper we study a number of discrete random
walk models in the presence of boundaries. These
models are of interest because they are fairly easy
to analyze and because they have been widely used to
describe stochastic processes in physics and chem-
istry. We expand the exact differential-difference
equation (master equation) and find to lowest order
the Fokker—Planck equation, and similar partial
differential equations for the successive higher
orders. The boundary conditions for these differ-
ential equations are also derived from the exact
master equation. The form of the differential equa-
tions is not affected by the presence of boundaries.
However, the boundary conditions which their solu-
tions must satisfy are not intuitive and can be deter-
mined only from a detailed study of the solutions to
the master equation itself.

2. THE RANDOM WALK MODEL

By “random walk” we mean a stationary, continuous
time Markov process whose range of possible values
consists of integral numbers n. The random walk

is unbounded when n ranges from — o to + 0, and is

bounded (on the left) when n takes on only the values
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which commute and which generate one-parameter
unitary groups,t — U(t), ¢t = U,(¢),onH. (4, may be
thought of as the “Hamiltonian” of the system.) Let
7() be a point of M which is a critical point of f, +Af,
where X is a real constant, i.e.,d(]j4+AfAh) =0aty.

Relation (4. 7) now implies, as it does in classical
mechanics, that X, + )\XAh is zero at n(). Formula
(11.2) now implies that y is an eigenvector of

A + MA,. In turn, this implies, using the relation

[4,A,] = 0, that the orbits ¢ - Ut)n (), U,({t)n(y)
coincide, just as in classical mechanics.

Remavk: This “symplectic manifold” approach to
quantum mechanics has been emphasized by Kos-
tant.9 His ideas were presented at the 1969 Battelle
Rencontres on Mathematical Physics in Seattle, and
the presentation here is influenced by his presentation
there. I have also developed an alternate and related
approach in Ref. 10.
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however, gives rise to an unexpected complication, inasmuch as nonpropagating solutions of the master equa-
tion cannot be ignored in the boundary condition, although they do not contribute to the differential equations

themselves,

1. INTRODUCTION

In recent years much effort in nonequilibrium stati-
stical mechanics has been devoted to the derivation
of equations describing the time dependence of re-
duced distribution functions and macroscopic vari-
ables. These equations have been derived from the
exact equations of motion and are particularly simple
when some pertinent physical parameter is quite
small, Examples are the Boltzmann equation for a
low density gas, the Langevin and Fokker-Planck
equations for heavy particles in a bath of light parti-
cles, and the hydrodynamic equations in systems with
small spatial gradients. All of these equationscanbe
extended to situations where the parameter (e.g., the
density) is still small, but large enough so that the
lowest order equations are no longer valid. These
extensions have resulted in the Choh—Uhlenbeck equa~
tion! for dilute gases and the generalized hydrodyna-
mic equations.2?

All of the derivations mentioned above were carried
out in the thermodynamic limit and in the absence

of boundaries. It would be of great interest to derive
the transport equations for a system with boundaries,
but little progress has been made in this direction.3
Phenomenological considerations do supply a clue to
the expected results of such analyses, at least to the
lowest order. Thus, for example, the hydrodynamic
equations describing the bulk properties for non-
equilibrium fluids have the same form whether a
boundary is present or not. The presence of the
boundary merely imposes boundary conditions on
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these equations. We emphasize that these boundary
conditions are often not derived from molecular
theory but imposed on intuitive phenomenological
grounds. While the intuitive approach may work

for the lowest order equations, there is no assurance
that it will, and even less assurance that it will be
valid for the extended equations.

In this paper we study a number of discrete random
walk models in the presence of boundaries. These
models are of interest because they are fairly easy
to analyze and because they have been widely used to
describe stochastic processes in physics and chem-
istry. We expand the exact differential-difference
equation (master equation) and find to lowest order
the Fokker—Planck equation, and similar partial
differential equations for the successive higher
orders. The boundary conditions for these differ-
ential equations are also derived from the exact
master equation. The form of the differential equa-
tions is not affected by the presence of boundaries.
However, the boundary conditions which their solu-
tions must satisfy are not intuitive and can be deter-
mined only from a detailed study of the solutions to
the master equation itself.

2. THE RANDOM WALK MODEL

By “random walk” we mean a stationary, continuous
time Markov process whose range of possible values
consists of integral numbers n. The random walk

is unbounded when n ranges from — o to + 0, and is

bounded (on the left) when n takes on only the values



EXPANSION OF THE

1,2,3,--. For the unbounded case we assume
homogeneity, i.e., the probability per unit time a,
for making a jump of ¥ units is independent ofn. If
the largest possible single jump is s units, we call
it an s-step random walk. Then the master equa-
tion for the probability p, ({) to be at site » at time ¢
is

R S

D =2 a,b,.,(0). (1)

r=-8

If a, = a_,, the random walk is symmelric. We shall
here restrict ourselves to the symmetric one-step
and two-step cases. We assume a; # 0 to ensure
that all sites can be reached. [See Ref. 3(b).]

For the bounded case we take the same Eq. (1) for all
positive # excepting a finite number of them near

the boundary. For the exceptional p, special equa-
tions are required, whose precise form is descrip-
tive of the physical properties of the boundary.
Clearly an infinite variety of boundaries is possible.
We shall call a boundary reflecting when the boundary
equations are such that total probability is conserved,
and absorbing if total probability decreases. Among
all varieties of absorbing boundaries one may single
out a special case, to be called purely absorbing,
which is the kind of absorbing boundary usually con-
sidered. [See Ref. 3(c).|

It is not hard to choose the boundary equations such
that the total probability increases, at a rate pro-
portional to the probability already present at the
neighboring sites; this kind of “stimulated emission,”
however, will be excluded. Moreover, for nonhomo-
geneous master equations, i.e., a, depending on #, it
often happens that the process is automatically
bounded due to the vanishingofa_, (r =1,2,...,5)
at n = 0; such “natural boundaries” are much easier
to treat and are not the subject of this article.

The bounded s-step random walk problem can be
solved exactly, in the sense that all p, (¢) can be found
for t > 0 when their initial values are prescribed.

In particular, the reflecting and the purely absorbing
case have been amply treated in the literature, 3 the
latter often in connection with first passage problems.
However, for reasons explained in the Introduction,
we are interested in developing an approximation
scheme based on the smallness of the individual
jumps. The first step of this approximation is the
Fokker~Planck or diffusion equation with the well-
known boundary conditions, viz,, the probability
density vanishes on an absorbing boundary and has
zero slope ona reflectingboundary. Higher order cor-
rections to the Fokker-Planck equation have previous-
ly been obtained for the unbounded case.® This article
is concerned with the higher orders in the presence
of a boundary. It will appear that a nontrivial com-
plication arises for multiple step random walks.
Rather than trying to provide an exhaustive treat-
ment of all possibilities, we shall confine ourselves

to three special paradigms.

It is convenient to define a pure boundary, meaning
that the recursion relation (1) is valid for all

n 2 s + 1 (supposing that a__ does not vanish), so that
only the equations for p,, py, ..., p; are modified. In
the case of a pure boundary the following equivalent
but more convenient way of formulating the boundary
conditions is possible. Introduce s auxiliary vari-
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ables pg, P_q, P-g, « - - P_s+q and stipulate that (1) is
valid for all » = 1, but that the auxiliary variables
are connected with the actual variables pq, poy,* -

by a set of s suitably chosen linear relations. How to
choose these linear relations will become clear in
the applications. Pure absorplion will be defined as
the special case that these linear relations have the
simple form py =p_; =+ =p_oq = 0.

3. ONE-STEP RANDOM WALK WITH PURE
BOUNDARY—EXACT SOLUTION

With suitable choice of time unit, Eq. (1) reduces,
in the symmetric one-step case, to

ﬁn = pn+1 + pn-l - ZPn- (2)

In the case of a pure boundary this is valid forn =
2,3, --. Inasmuch as only one-step jumps are per-
mitted, the special equation for p; must have the
form

j;l =Dy — 1+ C)ply (3)

with a single parameter c¢. For the total probability
W one finds

aw _ d
T =T L= by

=1

Hence the boundary is reflecting for ¢ = 0 and absorb-
ing for ¢ > 0. The case ¢ < 0 describes stimulated
emission and will therefore be excluded.

Equation (2) for n = 2 together with (3) forn =1
may be expressed in an equivalent way by declaring
(2) valid for » = 1 as well and putting

by = (I —c)pis (4)

(Note that p, is merely an auxiliary quantity and is
not equal to the probability that the particle has been
absorbed.)

According to the definition in Sec. 2 the boundary is
called purely absorbing when ¢ = 1.

To solve this bounded random walk problem exactly
first note that (2) is obeyed by

e~ Aizn (5)

provided that z and A are connected by the character-
istic equation

A=2—-2—1/z. (6)

For fixed time constant \» there are two roots z4, 2,
and hence two solutions of the form (5); thus the
general solution of (2) with time factor e~ *! is

BV = e M (Cy2% + Cy2B). 0]
We require that p{*) is bounded for n — «; it will be
shown that that is sufficient for obtaining a complete
set of normal modes. Hence one must have
|z,] <1and|z,| <1 (see, however, Appendix A).
As z,z, =1 according to (6), we may write

z,=et zo=e¢%, 0<s<m7, (8)
Note that in order to obey (2) forn = 2,3,---, it is
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necessary that (7) holds forn =1, 2, - -+. Thus owing
to the fact that the boundary is pure,all p, (1) have lo
be of this form. ¢ is related to x by (8), or

=2 — 2 coss = 4 sin23s. (9)

This covers the values 0 < )\ < 4, which determines
the eigenvalue spectrum of our bounded problem.

The constants C,, C, are now chosen such that (3)
is satisfied:

(1+c—=2)(Cyz; + Cyzy) =C122 + Cy23.  (10a)
Equivalently one may use (4) to obtain
C1+Cy=(1—-0c)Cqiz2q + Cyzy). (10b)
It follows that
—C/Cy=[1-(1—=c)e*)[1 -1 —cle?]. (10c)

The normal mode solutions of the bounded random
walk are now fully determined by (7), (9), and (10).

It is instructive to write the result in a more familiar
form, Write S(3) = ¢2in(") for the right-hand side of
(10c); note that |S(#)! =1 and 5 is real. With suitable
normalization the normal mode solution (7) may then
be written

pA(t) = e~At(2/m)1/2 sin[sn + n(3)]. 11)

Thus 7(#) is the phase shift due to the boundary and
S(#) is the “S matrix”, Note, however, that this S-
matrix is always unitary, regardless of whether total
probability is conserved or not! The orthogonality
and completeness of these normal modes is shown in
Appendix A. Consequently the final solution may be
written in terms of an evolution operator

2D =2 Unn(00,0)

Upnl®) = 2 [ sinfsn + n(s)] (12)

X sin[sm+ n(s)]e4t sin?(*/2)dg.

4, ONE-STEP RANDOM WALK WITH PURE
BOUNDARY—APPROXIMATE TREATMENT

Following the program outlined in the Introduction
we now investigate the approximations that are appli-
cable when the individual jumps may be treated as
small compared to the distances that one is inter-
ested in. Accordingly we set

en=x, p(t)=eP,1), (13)
and expand in €. In other words, we are interested
in an approximation method for solutions that vary
slowly compared to the size of the jumps. Of course
the result can be found directly by expanding the
exact result (12); but our aim is to find an independent
method for solving the problem in this approximation.

The master equation (2) gives for P(x,1),

P(x, ) = P(x + €, 1) + P(x — €, t) — 2P(x, t)

32P _ €4 34P

= €22 ___ —_—
ax2 12 5x4
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Using the new time variable 7 = €2t and expanding P,
P=pP0O + epW) + e2p@ + ...,

one finds successively

JP©  32p@

P BV (14a)
PO a2pQ@)

T T a2’ (14b)
P2  32p® 1 34pP©®
—a—_['_— = %2 ﬁ W, see (140)

These equations apply to all x > 0.
The boundary condition (4) translates into

P(0’ T) = (1 - C)P(€: T),
which, on expanding in €, amounts to

PO =(1—c)PO, (152)

PMW=(1—c)PD+ (1 — )Py, (15b)
P@=(1—-c)P@+ (1 —c)PW + (1 — c)PO",
(15¢)

(Here and in the future we abbreviate the notation by
writing P© for P©)(Q, 7), etc., and P©’ for 3P ©

(x, 7)/0x evaluated at x = 0,) The conclusion from
these equations depends on whether or not ¢ vanishes,

First for ¢ # 0, one concludes

PO =9, P®=[(1-c)/c]PO,

p(2)=[(1_c)/c]p(1)”... (16a)

In the last equation we have used the fact that P(©”

=0 as a consequence of P =0 and Eq. (14a), Thus
we find that to lowes! ovder, P(x, 7) obeys the familiar
boundary condilion for an absovbing boundary when-
ever ¢ does not vanish. The reason is that any absorp-
tion, however small, is sufficient on our slow time
scale to absorb everything that reaches the boundary.
The next two orders in (16a) may be written in the
form of the boundary condition

PO, 7) = €[(1 — ¢)/c]P'(0, 1) + O(e3).

That is, to first and second order the value of P(x, 7)
on the boundary differs from zero by an amount
proportional to its slope. The proportionality con-
stant I = €(1 — ¢)/c has been called the slip coeffi-
cient. 3.7 In the next order, however, the boundary
condition can no longer be expressed in terms of a
single slip coefficient; rather one finds

P, 1) = €[(1 —¢)/c]P'(0, 7) + €3[(1 — ¢)(3 — 2¢)/6c2]
X P"(0, 1) + «--.

For the reflecting boundary ¢ = 0, Eq. (15a) is moot,
while (15b) and (15c¢) yield

pOY =g, P =_ipor, (16b)

The same pattern continues in higher orders, e.g.,
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P@' = _ ;P _pO" = _ipa), (16c)
Equations (14), together with the boundary conditions
(16) constitute the desired approximate treatment in .
successive powers of €, In order to compare this
with the exact solution in Sec. 3 we write (11) in terms
of the continuous variable x, setting ¢ = €&,

€P,(x, T) = e~ (2/m)1/2 gin(kx + 7). amn

If one now expands A as given in (9),
A= €2k2_11_2€2k4 + SRR

one finds that, indeed, (17) obeys (14) in successive
orders.

To verify the boundary conditions, expand n as given
by (10):

n = Im log{l — (1 — c¢)e-ick}
= €[(1 —c)/cle + O(e3).

Substituting this in (17), one finds again that the suc-
cessive orders of (17) obey the boundary conditions
(16a). Note that, to second order, 7 is proportional to
k, which according to (17) simply amounts to a dis-
placement of the point where P(x, 7) vanishes from

x =0 tox =— [, This is equivalent with the existence
of a slip coefficient and does not go through in higher
orders.

In the reflecting case one finds by taking ¢ = 0 in (10),
n =31 — ek + O(e3).

On substituting this in (17) one easily finds agree-
ment with (16b). Here again one may represent the
effect of the boundary in first and second order as a
shift of the boundary. The probability density P(x, 7)
has no longer zero slope at ¥ = 0, but at x = 3¢. The
concept of a slip coefficient does not apply to the
reflecting boundary.

In spite of this agreement it is not true that the approx-
imate treatment leads to a convergent power series
expansion of the evolution operator (12). The solutions
of (14) involve all wave numbers k, whereas the inte-
gral in (12) contains values of k only up to n/€. The
solutions that we have added incorrectly are func-
tions that vary appreciably within a distance € and
are therefore meaningless; they decay in time like
e~ rather than e™". Of course this kind of error is
inevitable in any approximation in terms of continu-
ous functions, and presumably in any approximation
based on coarse graining. It demonstrates that the
expansion in powers of € can only be an asymptotic
expansion,

5. EXAMPLE OF ONE-STEP RANDOM WALK WITH
IMPURE BOUNDARY

Suppose a particle jumps randomly between neigh-
boring points of a one-dimensional lattice, but the

transition probabilities between the endpoint n = 1
and its neighbor n = 2 differ from the others:
n=234,...,

D, = Dpey + Pyoy — 200, (18a)

132 =pygtap,—(1+ b)Pz, (18b)
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Py =bby —ap,. (18¢)

Note that the total probability W is conserved.

To find the normal mode solutions we first solve
(18a) by setting p(*) equal to (7) for alln > 2, As to
p{M), we know its time dependence,

pIN(E) = e~ Mg;

but its amplitude ¢ is not determined by (18a). The
two boundary equations (18b) and (18c), however,
state

(1+b—2)Cq23 +Cy28) =C 23 + Cyz3 + aq, (19a)

(@ —x)g = b(C,2% + Cy23). (19b)
These equations determine C,, C,, and g uniquely up
to an arbitrary normalization constant,

In order to make the transition to the continuous
limit we set

en=1x, €2t=17, p()=¢€Px,7) forn=2,
Equation (18a) leads again to (14). Equations (18b)
and (18c) serve to determine p,(7) and also to find
the boundary condition for P(x, 7). We shall now use
the dot for differentiation with respect to 7, so that
the time derivatives pick up a factor €2. Thus (18b)

and (18¢c) become

€2P(2€) = P(3€) + (a/€)py — (1 + b)P(2€),
epy = bP(2€) — (a/€)p;.

Order €1 merely states p{® = 0. Order €0 yields

ap{® = bPO), (20)
but does not yet lead to a boundary condition for
PO, Order €! yields
0=—bPW+ (1 —-2b)PO + gpf2),
(21)

0 = bPW + 2bP O _ ap(@),

Hence P©’ =0 and ap{® = bP®, Thus to zeroth
order P obeys the diffusion equation with the boundary
condition for a reflecting wall. According to (20) the
probability for occupying site 1 is proportional to the
value of the continuous probability density at the wall,
The proportionality factor contains a factor € owing
to the fact that site 1 is only one state among a dense
aggregate of other states. To the next order one finds

PO = (B/a _g)p(o)”’
ap® = bP@ + b(2b/a—b —1/a)PO",
6. TWO-STEP RANDOM WALK WITH PURE
BOUNDARY
The symmetric two-step random walk is described

by the master equation

15,, = apn+2 + pn+1 + pn—l + C‘Pn-z —(2+ 20’)1);1- (22)
In the presence of a pure boundary this recursion
relation applies ton = 3,4, -+ and has to be supple~
mented by two special equations for p, and p,. We
take
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152 =apy t Pyt Py — bpz, (23a)
Py = apg + py —apy, (23b)

with two positive constants a and .
For the total probability one finds from (22) and (23),

W=(a+2—Dbp,+(a+1—ap,. (24)
Hence the boundary is reflecting when
a=1+ o, b=2+ a. (25)

Smaller values of a or b will not be considered as
they correspond to stimulated emission. Larger
values correspond to an absorbing boundary. An
equivalent formulation of the boundary conditions is
obtained by declaring (22) valid for all» > 1, and
setting

Po =[(2 + 20 — b)/alp, = Bp,,
by =[@+ 20 —a)/alp, — [(2 + 20 — b)/a?] p,
= Apy — (B/a)p,. (26b)

The constants A and B are simply abbreviations.
Note that one must have

(26a)

B<1 A<1+1/a.

The equality sign corresponds to the reflecting case.
The purely absorbing boundary is characterized by
A=B=0.

Solutions of (23a) are obtained by taking p, (¥} equal
to (5), where A and z are now related to each other by

A=2+2a—2z—(1/2)— 022 — (a/z2). (27
To each x correspond four roots 2, z,, 23, 2,4, S0 that
the general solution is

e M(Cq2h + Cozh + Ca2% + Cyz3).

When one of the roots has absolute value greater than
unity this solution grows exponentially for n — o,
unless the corresponding coefficient is zero. On the
other hand, there are two boundary conditions (23), or
equivalently (26), which can be satisfied only if at least
three constants C are available,

The full discussion of the roots of (27) is elementary
but laborious (Appendix C). When studying the contin-
uous limit, however, one is interested only in the low
values of A. In that case it is easy to see that, in
addition to the roots z, = e?*, z, = 7’ given by

=2+ 2a — 2 cos# — 2a c0s28, (28)
there is another pair of roots z3, 24 with lz4] <1,
and |z,| =1/lz5] > 1 (see Eq. 39 in Appendix D).
Hence

p(%)(t) =e M, eisn + C e-wn + Cg2% ). (29)

The term with z% decreases exponentially with in-
creasing n, and is therefore nonpropagating. The
phase shift  is still determined by 2" = — C,/C,.

Going to the continuous limit as before one obtains
from (23a)
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JP© 2p©)
ar = (1+ 40, (302)
P 2p
5— = (1 + 4a )2 R (30D)
IP@ P(2> 1+ 16a 94PO

+
—5— = +4 ) v 13 e (30¢)

The reason why the exponentially decreasing term
does not show up here is that 2% = z%/¢ collapses
into the origin. In this connection it is essential to
note that |z5| remains less than unity for € — 0.
In fact, one has from (27) with ¢ = €k,

A =€2k2 + ...,
so that
z250) = (0) + £22(2) +

Here 2 = 2 ;(0) is the third root of (27) for A = 0,
which is readily seen to lie between — 1 and 0.

On the other hand, it is clear that one does not have
the freedom to impose two boundary conditions at

x = 0 on the solutions of (30). The nonpropagating
mode associated with 2z, is necessary in order to
satisfy these boundary conditions. Thus even in the
limit one needs more detailed information concern-
ing the recursion relation (22) than just the form of
its continuous approximation (30).8

To find the boundary condition for P(x, ) at x = 0, it
is convenient to study the individual modes separately
for each time factor e~*%, Any factor A that may arise
in the boundary condition will ultimately be replaced
with (— 9/0¢), so that the boundary condition applies
to all normal modes and therefore to P(x, 1) itself.
Accordingly we substitute in (26),

PEN(E) = e~ M(eB, (ne) + C32%).
©)

To lowest order this leads to two equations for C,
alone:

C(O) B C(SO) (0)2’
0) (0)2

It follows that cgf” = 0, because B2®2 < 1,
The next order yields two equations for P{O) and C{V:

@ —BP? + {1 -BX%cY =0, (31a)
(1—A4+B/aP?+ {3 — A
+ (B/a)fP%cP =0.  (31b)

Unless the determinant vanishes, the onlv solution is
P}\O) = c§> 0. Thus to this order the exponentially
decreasing solution does not come in, and PO)(x, 1)
obeys the diffusion equation with the usual boundary
condition for an absorbing boundary. In the reflect-
ing case (25), however, one has 1 — B = 0 and
1 —-A + B/a = 0, so that the determinant of (31)
does vanish, Hence there is a nontrivial solution
PO arbitrary, C{V=0.
In this case, therefore, (31) does not lead to a boundary
condition. It is shown in Appendix D that the reflect-
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ing boundary is the only case in which the determinant
is zero.

To second order (26) gives

1 —B)P® + {1 — B2} P = 28P”, (32a)

—A80 + (B/a)2 2P

= (1 +A4-2B/0)P”. (32v)
By solving these equatlons one obtains the boundary
value of P)(x, 7) in terms of the slope of POXx, 1)

at x = 0. For instance, in the case of pure absorp-
tionA =B =0, one finds successively

(1 —4 +B/a)PV + [P

C(z) - [ 2 3) /(1 (0))]P(0)’
P(2) = Z(g) /(1 — Z(g)) P(l)”
C(S) - [ Z(g) /(1 _ Z(g))] Pil)l'

This may again be interpreted in terms of a slip
coefficient

=~ el29/a - 2}

or alternatively as a displacement of the boundary
point to

x=—1= €[/ -

In the reflecting case both coeff1c1e£1ts of (1)3( D in (32)
are zero and the only solution is C(3 =P, O, =0

(see Appendix D). After somewhat lengthy com-
putations one finds in the next order

P(l)’

Q)" ®) (0) 0)21-1
:—%P , C3 =P)\ [1"23 ]

(33)
7. THE TOTAL PROBABILITY

In this section we investigate the behavior of the total
probability in the successive orders of €. Provided
that the boundary is pure, one may use the Euler—
Maclaurin formula

o0

W=5 nt)=c % P

ne, 1)

= |7 P(x, 1)dx — 3eP(0, 7)

—2€2P'(0,7) + 7 €4P™0, ) + -+ -

Hence the successive orders of W are

WO = fo * PO, 7)dx, (34a)
W= j6°° PW(x, 7)dx — PO, (34b)
W = f0°° P@(x, 7)dx — 3P - 1pOY,  (34c)

Consider the one-step random walk treated in Secs. 3
and 4. Using (14) one obtains, for the derivatives with
respect to 7,

WO =_por
W@ =_pay _tpor,
W@ =_per _ ipwr _ ipor,

For the reflecting case each term duly vanishes when
the boundary conditions (16b) and (16c) are inserted.
For the absorbing case the equations reduce to
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w
[(3 — 2¢)/6c|PO~,

WO =
W@

—_por =_ pay,

—_pQ@ _
These equations may be combined into

W =— P'(0, 7) — €2[(3 — 2¢)/6c]P"(0, 7) + O(€3).
Consider the {wo-step random walk with pure bound-
ary treated in Sec. 6. One now has, for each normal
mode, using A = €2k2,

W(1) = e~k*7 <€Z} P,(n€) + C37— %3 )
Z3

Fx('o)m this one finds, taking into account that C{® =
Cc{ =0,

WO = _ (1 + 4a)PO),
WO = (1+4a)P®— 41 + 4a)PO"
W@ = e-#*1[— (1 + 40)BQ” — (1 + 4a)BW"
- %(1 + 10a)p(0)m_ k2C (2)23(0)/(1 _ 33(0))]'
For the reflecling, boundary it is clear that WO =0
and W® =0, see (33). It is now easier to find the
next higher order boundary condition for the reflect-

ing case from the conservation of probability, since
we found already C @) _ =0,

P@ = _ ipm,

Again this can be interpreted by saying that to second
order in € the slope of P(x, 1) vanishes at x = 3¢
rather than at x = 0.

For the two-step random walk with purely absorbing
boundary, one finds for the total probability

WO =_(1+4a)PO, WO=_(1 +40)PW’,

and to second order

. 20
W = e-kzr[_ (1 + 40)B@" + 1+4o §

© \2
— _I_%QE PO _ 2 <_Z3_> p(o)'J_

Hence,
W@ =1+ 4a)P(2
L (Lt 40 220 +2D) 14100\ om
— PO
2 ¥ _Z%O))Z [}

Finally consider the impure boundary case of Sec. 5.
One now has

W=p + ei Pne)
n=2

=p,— €P(e) + j:P(x, T)dx
— 3€P(0, 7) — & €2P'(0, 7).

From this one finds that, indeed, the total probability
is conserved in successive orders of €:

hd 00 -
w© = fo PO(x, 7)dx = — POY =0,
W= f0 _ pay _ 2p@
= (b/a)PO" _ (b/a — )P0} _ 3pOV =g,
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8. CONCLUSIONS

(i) Expansion of the master equation of a random
walk leads to the familiar diffusion equation for the
zeroth and first order, and to diffusion equations with
inhomogeneous term for the higher orders. These
differential equations are valid at all interior points
of the accessible interval.

(ii) In the case of a pure boundary, the continuous
probability density P(x, 7) obeying these equations
constitutes a full description of all probabilities; in
the case of an impure boundary one or more separate
quantities p(r), p,(7), - -+ are needed for the pro-
babilities at the sites near the boundary.

(iii) For one-step processes the boundary conditions
on P(x, 7) are obtained by substituting in the discrete
master equation simply p,(7) = €P(ne, T), possibly
with separate values for p,(7), p,(7),--+. For s-step
processes, however, one has to add linear combina-
tions of s — 1 additional nonpropagating modes of the
homogeneous master equation,

(iv) To zeroth order the result is: The slope of P (x, 7)
vanishes at any boundary that conserves prcbability,
but P(x, 7) itself vanishes as soon as there is some
absorption. To second order the same boundary con-
ditions apply but at a slightly displaced point. In
higher orders the boundary condition cannot be stated
in such simple terms.
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APPENDIX A

In addition to the solutions (7) where z,, z, are given
by (8), there may be solutions with Izlf <1, lz,| >1,
and C, = 0. According to (10) this requires that

zy; = (1 —¢)1, which is consistent with |z;| <1 only
when ¢ > 0. The corresponding time constant X is

x*=c+1+1/(0—1).

This is an isolated point of the spectrum because
A4 > 4. The corresponding normal mode solution is

p,f*)(t) = e—)\*t(]_ —c)™.

Note that one has z, = e?’*, where 4 is a pole of the
S matrix in the upper half of the complex # plane.
More explicitly, ¢, = 7 + ik with ex = ¢ —1. This
additional isolated solution has to be included when

¢ > 2, in order that the solutions are complete. How-
ever, this fact is not relevant when studying the con-
tinuous limit, because that limit involves only low
values of A.

To investigate the completeness of the set of solu-
tions (11) with 0 < ¢ < 7, we verify the completeness
relation, or to put it differently, we compute U,,, (0):

2 [ sinfon + n(s)] sinfsm + n())ds

T

1 2% -
=0y — 3z fo S(3)eirmy ds.

1 2n (eisn-m) __ giv Geem)+2in(3))dy
0

The integration path may be extended by adding the
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line from i to 0, and the line from 27 to 27 + ic,
because their contributions cancel owing to the per-
iodicity. Furthermore the integrand vanishes at i
since S(#) ~ e'’! whereasn + m = 2, For0 <c < 2,
there are no poles in the upper half plane, so that the
integral vanishes and the desired completeness rela-
tion is obtained. For ¢ > 2 there is a pole

45 = 7 t+ ik, whose residue yields for the integral

clc — 2)e~k rrm),

This shows that for ¢ > 2 one has to include the iso-
lated solution

PN = e M i[c(c — 2)]V/2(c — 1),

APPENDIX B

From (19) follows on eliminating ¢ and expressing A
through (9),

s l+(a+b—2)ei* + (1 —ble2i¢
=—e

C, 1+ (a+b—2)i’+ (1~ b2’

Again denoting this quantity by ¢2¢7 () one sees that

the normal mode solutions are given by (11) for
n = 2, and in addition one has

b sin[24 + n(8)]
a—x ’

. (B1)

pl(x) = e~ M(2/7)1/2

The denominator vanishes for A = a, but so does the
numerator.

The denominator of (Bl) has one zero in the upper
half plane when a + 2b > 4 and otherwise none, The
zero is given by

ei* ={2 —a —b +[(a + b)2 — 4a]1/2}/2(1 — D).

When going to the limit one has ¢ = €k, so that in
terms of % the pole moves to + {o when € tends to
zero. This is the reason why the corresponding
normal mode does not appear in the expansion in
powers of €;but it also demonstrates that the expan-
sion can only be an asymptotic one.

APPENDIX C
To solve (27) for z put z + 271 = 2w:

4dow? + 2w + A\ — 2 —4a) =0, (C1)
Either solution of this quadratic equation for w gives
rise to two roots z to be found from

22 — 2wz +1=0,

Thus the four roots of (27) consist of two pairs 2z, z,
and 24, 24, such that 2,2z, =1 and 232, = 1. In
order that there are at least three roots with |z jl
< 1, it is necessary that at least one pair has the
form e?’, e~i® with real #. Hence all admissible
values of A are of the form (28), and lie therefore
between 0 and

2 +4a + 1/4a = [(40)1/2 + 1/V4a) 2. (C2)
This upper bound is also the condition that the two
solutions of (C1)

w, ={— 1t [(4da + 1)2 — 4ar]1/2}/4c
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are real. In addition it is necessary that at least one
of these has the form cos#, i.e., that it lies between
—1and+ 1,

To-investigate this condition we have to distinguish
between the two cases a < 3 and @ > 7. In the case
@ < i, one readily finds that w_ < — 1, while |w,| <1
holds only for 0 < A < 4, This determines the spect-
rum of the bounded two-step random walk with

o < }; to each x in (0, 4) belongs a single normal
mode solution.

In the case a > j, the same nondegenerate spectrum
exists; but in addition one finds that for A between 4
and the upper bound (C2)both w, and w_lie in the
interval (— 1, + 1). Hence for these values of A there
are four admissible roots z;, and therefore fwo
linearly independent solutions of the bounded two-
step random walk with a > 4. For the low values of
A relevant for the continuous limit this complication
cannot occur,

APPENDIX D

The determinant of (31) is
1-B 1 — Bz2 ,
1—A+B/a =z1-—Az+ (B/a)z?

where z stands for z2{?. After subtracting the left
column from the column on the right, a factor 1 —z
splits off. Subsequently multiplying the top row with
1/a and adding it to the bottom row, and adding the
left column to the right one, we get

1 ) 1-B 1+ Bz
=213 1 q/a)—Aa (Q/2) +1+1/al"

The two elements of the left column are nonnegative
and will be denotedbyR =1—B, S=1+ 1/a —A.

MASTER EQUATION 849

In terms of R and S the value of the determinant is
found to be

(1 — 2}{RSz — (1 + 2)S +[(1/2)+1 + 1/a]R}.

The first and second terms in { } are negative (or
zero when S = 0). Hence, if we show that the coeffici-
ent of the third term is negative, it proves that the
determinant cannot vanish unless R =§ =0, i.e.,
unless the boundary is reflecting, It suffices to show

1+[1+ (1/a)}z <0, (D1)

where the explicit value of z is found from solving
(27) forx =0,

z2=20=—(1+1/2a)+ [(1/a) + 1/402]1/2, (D2)

On substituting this z in (D1), one easily finds that
the inequality is true. This completes the proof.

APPENDIX E

Equations (32) reduce in the reflecting case to
(1-22)C% = 2P,

{1+ (1/a)lz + (1/a)]e?CP = [2 — (1/ )] P

The determinant is

1+z — 2
1/z2Y+1—-z/a —2+1/c

=(2/2)1 — 2)2{1 + (1 + 1/20)z}.

The first two factors are not zero and for the factor
} one has, using (D1),

(1—2)

1+z+(z/20)>1+2+ (2/a) >0,

This justifies the statement that the only solution of
(32) in the reflecting case is PO’ = c®=0
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We determine entirely the n-body nonlocal potentials, parameters of a given Lagrangian field theory, in terms
of a set of independent functionals of the many-body propagators. These functionals are more suitable for the
description of seli-generating interactions than the many-body propagators themselves.

1. INTRODUCTION

In previous papers, 1.2 De Dominicis and Englert set
up a formalism for a systematic study of self-gener-
ating interactions in Lagrangian field theory.

The following procedure was adopted: One considers
the limiting case in which the set of all #-body non-
local interaction potentials (n = 2), the parameters of
agivennonlocal Lagrangian field theory, vanishes, 2=5
One then analyzes the structure of the n-body propa-
gators in this limit, The possible existence of non-
trivial (i.e., nonfree field), #z-body propagators would
give rise to self-generating interactions.

In other words, starting from a free Lagrangian field
theory, one first simulates an interaction by a set of
nonlocal potentials v,, # = 2. Then, in the limiting
case of the whole set vanishing, one searches an un-
conventional solution for the n-body propagators,
which exhibits some residue of the original inter-
action; this would imply self-generating interactions.

In order to make such an idea useful, the authors of
Ref 1 were led to consider the following problem:

Is it possible to characterize ab initio a Lagrangian
field theory by all its Green's functions, namely to
deduce from them the set of all #-body potentials?
This problem was solved! in a formally simple
manner;

The n-body potentials were expressedby the setofall
corresponding connected Feynman graphs, with con-
nected Green's functions as vertices and fully dress-
ed propagators, with reversed sign, as internal lines.

Putting these potentials to zerc enables one, in prin-
ciple, to search for self-generating interactions.

However, the inversion formula, 1:6 inspite of its
great formal simplicity, is not useful in realizing

this program, essentially due to the enormous com-
plexity of the set of all connected Feynmann graphs
contributing to the n-body potentials. For this reason
one introduces a set of independent I' variables, 2
equally suitable to characterize a given field theory
as the original Green's functions,and closely related
to them,

They are obtained from the corresponding Green's
functions, by undressing their external lines with suit-
able functionals of lower order propagators (a pre-
cise definition will be given in Sec. 2).

The crucial point is that the inversion formula, when
expressed in terms of these new variables, takes a
much simpler form than the original one. Indeed,
the potentials may now be expressed in terms of a
very restricted family of diagrams, thus making it
feasible to search for self-generating interactions.

Our aim in this work, is to determine explicitly the
n-body potentials in terms of the I' variables. In
Sec. 2 we give a set of definitions which will be used
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throughout this work and in particular a precise
definition of the I variables,

Together with the inversion formula, this yields the
functional relations relating the potentials {o the I
variables.

If the equations obtained by putting the whole set of
potentials ¢,, #» =2 to zero in these functional rela-
tions, have a nontrivial solution for TI', then these I
will characterise the seli-generating interactions.

These equations are derivable? from a stationarity
principle on a functional, which involves only the
n~body potentials expressed in terms of the first »
I variables namely v,(I%, ..., L), [, =0, m >n.
Hence, the structure of the equations, characterizing
the self-generating interactions, depends crucially
on these particular functionals; their explicit form
has been announced in Ref. (2) and we shall concen-
trate on rigorously determining these.

In other words, we shall express diagrammatically
the functional relations connecting the potentials to
the I' variables, taking into account the condition
I,, =0, m > n, denoted from now on by (modI,).

As we have mentioned, we shall find that only a very
restricted set of diagrams will contribute to v,. The
set of all other graphs will be eliminated by two dis-
tinet mechanisms.

The first is related to the particular functional
dependence of the potentials in terms of the T vari-
ables, which determines the numerical coefficient
with which a given graph appears in the expression
for u,; this coefficient, called the weight of the given
graph, may be zero. In that case, of course, this
particular diagram disappears from the set of con-
tributions to the potential.

The second mechanism is completely independent

of the functional relation and is of a purely topological
nature; namely, we shall prove that a large class of
diagrams is topologically forbidden.

The weight of an arbitrary graph is obtained in Sec. 3,
whete a general equation is given.

In Sec. 4, a systematic investigation is made of the
weights of graphs belonging to various families.

Section 5 is devoted to the topological problem.

2. DEFINITIONS

Amongthe following definitions, some are of secondary
importance for the development of subsequent work;
since these were completely defined in Ref. 1, we

shall herein merely give a brief indication to make
this paper self-contained. Only the rigourously given
definitions will be numbered.

Let &(x) be a spinless charged boson field (Heisen-
berg operator).

850
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Let Gpp (X1, v vey X591, 000,9,) = @I TH(x]) -+ ¢'(;)
: ¢"(y,‘)TQ), n = 2 denote the n-body propagator or

Green's function; | Q) is the normalized physical

vacuum and T the time-ordered product operator.

G, (%;9) = QI T2 (x); ¢*(y)| Q)

is the fully dressed one-body propagator.

Let Gy, (Xq, oo vy %,3%1, -+ -, ¥,,) be that part of G, not
containing independent propagations of any subset of
m < n particles; if G,, is expressible in terms of
Feynman diagrams, GZn is the completely connected
part of G,,.

Let Cop(Xq,.nny %43V, « - -5 V), 7 =2,denote G,, with
the 2n external lines removed.
Let W, (X1, ..y X501, « + +53,), 7 =2, denote any set

of nonlocal interaction potentials, symmetrized in
both x and y variables.

Represent by §£,(G;; Wy,,), m = 2, the functional of the
potentials represented diagrammatically by the sum
of all connected Feynman graphs drawn with W's as
vertices and G, as internal oriented (from an x to a y
variable) lines, having 2z external (oriented) lines.
Furthermore, each diagram is accompanied by the
numerical coefficient 1/g, where g denotes the order
of its symmetry group. This group is, as usual,
defined as the set of all permutations of the internal
lines of a given graph which leaves it topologically
unchanged.

Represent by 53, (G;; W,,,) the same functional as the
previous one, but with the 2n external lines amputated
from all graphs.

To denote the corresponding families of diagrams
(and not the sum of all its members), we use the
same symbols but without the superscript Z.

Denote by § = U,%,, the set of all connected Feynman
diagrams (of any order).

In the same way, ¥ = U, T, .

Definition 1: The dimension dimG of a given graph
G € § is the number of external lines of G;if G ¢ 7,
then dimG is the number of external stumps of G.

Definition 2: A 2p-subdiagram or a 2p-part of a
given G ¢ § is a member of F,, obtained from G by
cutting 2p (internal or external) lines; if G € F, the
same definition holds but after redressing G by exter-
nal lines.

We now define the three following classes of connect-
ed diagrams?2:

Definition 3: £5,(Gy; W) C §,,(Gy; Wy, ), m = 2,
satisfies the following requirements:

(i) Each member of &,, contains at most one W, and
no W,,,, m = n;

(ii) Let G,, be an arbitrary 2p-part of a diagram
belonging to §,,, p <n, then Gy € &ope

Examples of graphs belonging and not belonging to
g are given in Fig, 1.

Definition 4: I,,(Gy; W) € 55, (Gy;Wo,,), m= 2.
The members of this set are called irreducible dia-

grams and are defined by the following requirements:
Let Gy, be an arbitrary 2p part of a diagram belong-

ing to I,,, p < n,then Gy € &4, except for the whole

diagram (Fig. 2).

Definition 5: R,,(G; Wy )C &5, (Gy; W,,), m = 2.
The members of this set are called reducible dia-
grams and are defined by (Fig. 2)

R2n = egzngzn U 12n’

where we will always use the symbol € for the com-
plement (in the usual sense).

All these definitions hold for the corresponding
graphs with external lines cut. In the latter case we
use the same symbols with superscript—instead of ~,

Let Gi ¢ ¥, V i, If the G have a common subdiagram,
then they are said to intersect.

With these definitions in mind, we can now give an
exact definition of the I' variables mentioned in the
introduction.

Ty, (% =+ %,;9, *+* 3,), » =2, are the functions
symmetrized in both ¥ and y variables which satisfy
the functional relations

éZn = ggn(cl; FZm)’ m =2, (2- 1)
or, with external lines removed
C2n = g-%n(Gl; FZm)’ m= 2’ (2° 2)

On the other hand, the inversion formula, expressing
the n-body potential in terms of the connected Green's
functions, reads

WL

W L

wa&rﬁ:ij,, Wy Pw,
(h)

{c)

mO

(a)

FIG.1. (a) Graph belongjng to g76. (b) Graph belonging to g g (c)
Graph not belonging to £g; the dotted loop indicates the 4-part not
contained in £,.

FIG.2. (a) Graph belonging to I,. (b) Graph belonging to I, 4 (©
Graph belonging to Rg; the dotted loop indicates the 4-part not con-
tained ing,.
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Von = 5:2):71(_ Gly c2m)’ m = 2’

the notation — G, indicates that the evaluation of the
diagrams is done in the conventional way, but attri-
buting the value (— G,) instead of (+ G,) to each inter-
nal line,

Combining (2. 2) with (2. 3) yields
Vou = 54,0 SN (CH Y

This is the basic functional relation connecting the
n-body potential v,, to the set of I" variables.

(2.3)

m,l =2, (2.4)

We shall now make this relation explicit diagram-
matically (modI}, ), by determining the weight of an
arbitrary graph (drawn with the I as vertices) in
the expression for the potential.

3. THE WEIGHT OF AN ARBITRARY GRAPH

Let G¥ be an arbitrarily chosen member of the family
%y, (Gy; T,,); N stands for the number of internal

lines of the graph G. To alleviate our notation, we
shall henceforth drop indices whenever there is no
danger of confusion.

G

G Q
G
T
fe

(1) (b ()

FIG. 3. (a) The graph G;the two lines belonging to a particular

eile = 2) are marked by O and the four lines belonging to another
e (e = 4) are marked by X. (b) A connected 2-support (but not 2-
support). - denotes a stump. The dotted loop indicates the 4-part of
the 2-support not contained in £,. (c) A nonconnected 4-support.

r

FIG. 4. (a) the graph G;the
three lines belonging to a
particular ei(e = 3) are mar-
ked by O. - denotes a stump.
(b} A nonconnected 3-support
of G. (c) a 3-skeleton attached
to the 3-support in (b). (d) A
structure which is not a 3-
skeleton. (e) A different 3-
skeleton attached to the 3-sup-
port in (b). (f) A 3-skeleton
identical to the one in (c), by
symmetry properties of I',.

4
T

Boh

X3 X2 X 1
1, 1, 1
\ Xz Xy
iy
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Our task consists in determining the weight of the
given diagram.

With G we associate a set E; defined as follows:

E; is the set whose elements ¢} are the various sub-
sets of the N internal lines of G, including the empty
subset ¢; ¢ denotes the number of constituent lines
and 7 fixes the particular choice of these lines. Thus

{OsesN

1=i=s @)

We shall also need to consider the family § whose
elements are the subsets of F.

The dimension 2m of an element IZZm €§is defined
to be the sum of the dimensions of all graphs in /.

We define a mapping Fg: E; - §: e}~ F;(e) defined
in the following manner: F,(¢f) is an element £, , €
Fify (w¢) 18 Obtained from G by amputation of the e
lines of e4; 2¢ is the number of stumps resulting from
the above mentioned amputation.

A given element ,Z € Ef, image by F;; of one or more
et € E; will be called e-support (e,) of G, unless each
graph of £ is contained in a family g(G,; I')(cf. Def. 3).

(Clearly all the elements in Fal(Z) contains the same
number of lines so e is the same), In the latter case,
it will be called é-support of G, (g,), Fig. 3. A particu-
lar e(e)-support of G will be denoted e2(22).

E.=F-1 20
Let E, = F; {anue,ae 1.

§
Clearly E; C K,

Each e(é,) defines a set of e-skeletons (¢-skeletons) of
G obtained from es(és) by attaching to its 2e stumps, 2e
variables {x,,¥;}, 1 =i =< e, in all possible ways, sub-
ject to the following conditions:

(i) The insertion of e oriented lines joining x; to y;
for each ¢ must yield back the graph G.

Notice therefore that each e-skeleton has the same
topological structure as the corresponding ¢, but its
stumps are labeled with 2e variables according to the
above prescription,

(ii) Two e-skeletons are considered to be distinct if
their respective assignments of the 2¢ variables to
stumps are distinct, modulo the symmetry properties
of the T (Fig. 4).

It follows from these definitions and from the nature
of the functional relation (2. 4) that the number of dis-
tinct mechanisms leading to G, in the expression for
the n-body potential v,, is the number of distinct &
each one of these mechanisms can be realized as
many times as there are distinct e-skeletons attached
to a given €,

We define the partial weight P; (G) relative to a given
e, to be the contribution to the iveight of G, due to this
e,; clearly the weight of G equals the sum of all partial
weights.

We now proposed to determine PES(G).
From (2. 4), it follows that

('_ l)e, (3-1)

1 1
P G)=N—
5, 6) ‘& 8
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where N; = number of distinct ¢-skeletons attached The following two situations may arise:
to the given & ;4 = order of the symmetry group of .
&,;and g,z = order of the symmetry group of the (1) & is connected.

graph, representing the functional which achieves the

insertion operation defined previously. We shall

determine successively each of these quantities. We first consider (1).
1

{(2) e is not connected.

(i) Suppose that each element of Fgl(e) contains I, lines, picked out from a set of k, lines on which are defined
g, symmetry operations of G;

1<l,<k, l1=si=m, X l=e.
i

We clearly see here that for each element in Fzl(¢,) the numbers I;, k;, g; are the same.
It is clear that

—fe\fe—1)\fe—1;,—1 e— 1y —ly—eeo—1 _ el .
N?z'“l ! 1 ll 1)... 1 2l m-1 BRUTAN (3.2)
1 2 3 m i

@) &= =0 G =T, F 1D £ E e —D - G LT (3.3)
[ 1(1 0 1 1 ] [ m\m ) (m m m .
(iii) ES being connected, the functional g, is represented by the graph of Fig. 5.
Hence

S =e!l. (3.4)

Inserting (3. 2), (3.3),and (3.4) in (3. 1), we obtain

PES(G) - Hﬁ'_i [kl(k]_ —_ 1) .o (kl _ll + l)lg . [km(km_ 1). .. (km—lm+ l)]

1 Rt ky! 1 k,,! 1 1) g
_E(_l) ((k1—l1ﬁm>(@2‘127!Tz_l>“'(mrm—!>= g ril(liz)' @.5)

Since Iil(';:',) is the number of elements of F;1(€), we attribute to each one of these elements the value (~ 1)¢,and

1
'é—!(— 1)e

the partial weight in question is the sum of these values:

PG)=_ % 1k .6)

ZE€FG(E,)

We now consider Case (2). Let  be the number of connected components of &g; the latter are 77;-supports of 7
distinct 2p-parts of G, joined in G by ¢ lines;hence (Fig.6)

¥
im, =e—c.
i=1

(i) 'The number N ; is clearly the product of the N,;i. Denote by !}, k},1=j=mn;,1=i=<v, the analogs of [;, k;
in Case 1. Then

i
- = 1 i
Ny, =m! /I L1,

so that
r 7 mi'.
Nz:iI;IlN’;‘i:il;Il Hl“. (3.7)
j=1J
(ii) Clearly,
gz:;% 7 ) £ : (3.8)

(L] — 1) tef =24 + D] (B R ~ D+ )~ 15 + 1))

If the c lines, joining the 7 connected components, define K symmetry operation of G:

(iii) €, being nonconnected, the functional g >, is represented by the graph in Fig. 7 and
r
oz = K 1L m;!. 3.9)
Inserting (3.9), (3.8),and (3.7) into (3.1), we obtain
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m.) [ki(ki‘"l)"'(ki‘li +1)]...[knii...(ki — i +1)]1

PG =11 K i L L
s 5l ll” g K I1m;!
a7 l
, [RE(RE — 1) (i —[i + ioees (Bi ] . :
_ (— 1)e i (%5 ( 1 ) G} i+1) [k"zi (k"li l"li + 1)]: (—1)e r ™ k_?l (3.10)
s i i s AAl) @
i
-

being the number of elements contained in F;1(g),
the result is identical to the analogous case in Case 1.

Since the total weight P(G) is the sum of all partial
weights, we obtain the basic relation

P(G) = 2, (—1)e. (3.11)

ee EG

Therefore, the weight of G is entirely determined by
the structure of F;.

The basic formula (3. 11) leads to the following,

FIG. 7. Insertion opera-
tion (cf. Sec. 3) for a non~
connected e-support. The
hatched circles stand for
the connected components
of the e-support. The total
number of vertical lines is
c.

Theovem: If Gy, N = 0, is such that E; = E,, then
P(G) = 0.

Indeed, the number of elements of E; being 2,5 o(¥),
it follows from (3. 11) that
N
P@) =2 () (~1)*=0.

The case N = 0 corresponds to the diagram construc-
ted with only one I,,; in this case, £ contains just

one element viz. ¢, so that e = 0; trivially,

and

4, THE WEIGHT OF VARIOUS FAMILIES OF
DIAGRAMS

A. The Weight of a Diagram Belonging to g

Theorem 4.1: If G € g, then
FIG. 5. The graph representing the functional which achieves the

insertion operation (cf. Sec. 3). The hatched circle stands for the P(G) =0, (4_ 1)
connected 2-support.
To prove this theorem we need the following lemmas:
Lemma I: If G,, € g,,, each 2p-part (even if
. : p = n) is contained in g,,.
(i)
FIG. 6. (a) the graph G; Indeed, let £,, be a 2n-part of G:
(b) A nonconnected 4-sup-
port. The ¢ = three lines i s
discomnecting the graph G (1) 'Pz,, contains no I',,,, m > n, and at most one
(by amputation) are marked rzn,
Py O- (il) Each 2I-part of P,,, I <#,being a 2l-part of G,
(i) is contained in g, ; hence
P2n € §2n' (a)
(1 () Consider now a 2(z + 1) part Py @1y Of G:
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(i") Py (y+y) containsno Iy, m =z n + 1.

(ii") Every 2l part of P, .1y, [ <7 + 1 is contained in
g4, by (a). Hence

Py v € B2av1)

and so on by induction.

We note that this property is independent of modIy,,.
Lemma 2: If Gy, € &, ,then E; = E,. Consider a

1-support of G, which is the image under the mapping

F,, of the element e € E; containing a single internal
line 7 of G.

This line defines two types of subdiagrams of G:H¢
and H%, which, respectively, do or do not contain [ as
an internal line.

For an arbitrary subdiagram H of G, let F;(H) be the
part of the 1-support obtained from H by amputating
the line ! in G.

F,(H) is either a subdiagram of the 1-support, or a
pair of subdiagrams (according to whether F,(H) is
connected or not).

Clearly, F, (H},) = Hj,, so that by Lemma 1, we have

FG (Hgm) € g_2m’ v om,

Consider further the set N A4,

Each subdiagram of N H¢ is, by construction, and H?
subdiagram of G, Hence, each subdiagram S, of
F; (N, H*) belongs to g,,,, V m

Thus
F, (" He) € g.
[]
For an arbitrary He, Fj (He)contains one or more
subdiagrams containing F, (N H?)and hence is con-

tained in g; it follows that the 1-support of G, asso-
ciated to the line [, is contained in g.

Each e-support of G being a 1-support of an (¢ — 1)-
support of G, the above property is valid by induction
for all e,. This completes the proof of Lemma 2.

Theorem (4. 1) is an immediate corollary of the two
lemmas,
B. The Weight of an Irreducible Diagram /I,

Our first step will be to show that Lemma 1 also
applies to I, modI;,,.

To achieve this, we need the following:

Lemma 3: Given an I,,, each 2p-part (even when
p > n) is contained in g, (modI},).
Indeed, let P, (,.;ybe a 2(n + 1)-part of I,,. Then:
(1) Py.qy containsno Iy, m =n + 1by modI'y,.
(ii) Every 2l-part of P, .1y, { <7 + 1,being a 2]-
part of I,,, is contained in £,,; hence

Pz(n+1) Egz(nq)- (a)

Consider now a 2(z + 2)-part P, wra) of Ly, ¢

(i) Py ¢4.g) contains no Iy, m=n + 2, by (modl',,).
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(ii") Every 2l-part of Py (.0, ! <n + 2 is contained
in g4, by (a) and so on by induction,

Therefore the structure of subdiagrams of / and g
is identical (modT),). By a reasoning already used
in Lemma 2, we find that each 2p-part (p arbitrary)
of an ¢, of I,,, is contained in g, ,; since moreover,
dime, = 2(n + ), €, € £ ,.o(modl},,) ande > 0;
(if e, is not connected, each one of its connected
components is contained ing),

Thus,

Lemma 4: Eache,, e > 0, of an irreducible graph
I,,,is an &; (modI},,).

Only F,(?) € &,, and therefore

E,=E.
e=0

From (3. 11),
N
P(l,,) = Zg (—1e= 21(2’) —1e=—1. (4.2
eCEy e=

C. Reducible Graphs

An important class of reducible diagrams consists of
what we shall call the coverings RY,

Definition: We shall say, that a graph R¥is a
covering, if it is made up of a family {/¥}, 1 =i =N,
of irreducible graphs, such that v i 2 j, with
rnin=ae¢.

The I are called irreducible components of R¥
(Fig. 8).

An N convolution C¥ is a particular R¥ subject to the
following restriction:

Each I intersects exactly two others, except for two
of them, called endpoints, each one of which intersects
exactly one I

A linear N convolution L¥ is an N convolution satis-
fying: dim/¢ = dimlJ, V 4, j.

Our next task is to determine the weight of an L¥,
Consider a particular LY subjected to the following
condition: N(I¢, [i*1) = T, for each i. Let ] be an
irreducible endpoint component of L¥,

Let {l;}, 1 =4 =L be the L internal lines of I. Con-
sider the two sets E;~ and £, ~-1; to each element

e € E, n1,we associate a subset §; C E,n consisting
of:

(a) the L elements (¢,1;), 1=i= [,

(b) The (8) elements (¢, 1, 1), i=j, 1=i j=L;

() The element (g, Iy, I, ..., L).

FIG. 8. A possible RS5;the circles stand
for irreducible components of R5,
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By Lemma 4, §, C E;n;furthermore,E,.n = _ 1Y
8, so that, by (3.11) $CE N
P(LY¥y = 25 [L(-1)e1 +(§)(_ 1)e*2
e€F A1
L
doeee 117:)(___ 1)¢+L]
— L
= T oqu-n+ (B2

e €y N1
Foeen +<IZ)(— 1)1]
=— P(L¥-1},
On the other hand, we have shown before that P(I) =

— 1; the solution of the above recurrence relation is
therefore

P(LM = (— 1)V, 4.3)

Let us now consider an arbitrary reducible G¥ and a
setf of 0 = K <N internal lines of G; o this set we
associate the set E, in the manner that E; is associ-
ated with the N internal lines of G.

Let us introduce a subset E; C Ey, satisfying the
following conditions:

To each element e* € Ef, we associate a subset
&+ C E; containing the following elements:

{a) the element e*;
(b) the M elements (e*, 1), 1=i=M;

() the element (e*, Iy, Iy, ..., by);

where [, are the M = N — K internal lines of G, not
contained in the above mentioned set of K lines.

Ts % I

(1)

FIG.9. (a) Graph for which
EZ does not exist; the ele-
ment containing the lines
marked 0 satisfies (i) but
not (ii) in the definition of
E%{cf.Sec.4). (b) Graph
for which E, exists.

o o e |

FIG. 10. A diagram of type [12;J1,12 are the two irreducible graphs;
§1,571 and §2,5°2 are subdiagrams of I1 and 12, respectively.
Figure 9(b) is a particular case of this general configuration.
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The sets &, are restricted by the following two con-
ditions:

(i) 6xCE, Ve*eE}
(ii) U 83* = E;.
e*C—ZEg
For a given diagram G, the set E] may or may not

exist, according to the structure of G (Fig. 9) (If it
exists it is in general not unique).

Theorem 4.2: If the reducible graph G is such
that a set E} exists, then P(G) = 0.

Indeed, it follows from the definition of E; and the
basic relation (3. 11), that

PO= B [ 0 + M- e+ (M) pyere

toea. + (%)(_ l)e*ﬂw]

=2 e > (M) 1y7] = 0.

e*eEé m=0

In the case K = 0, the existence of E; implies by con-
struction &, = E; = E, so that we recover a pre-
viously obtained resuilt.

We shall now apply this result to particular reducible
graphs,

Consider first a reducible diagram, obtained by dress-
ing an irreducible graph either (a) by a second
irreducible diagram, or (b) by a member of g.

(a) The general structure of such a graph (denoted
112} is shown in Fig. 10, and a particular example is
given Fig, 9(b).

The two irreducible graphs I1 and /2 have no common
subdiagram, since otherwise they would form a con-
volution whose weight has already been calculated.

We shall first demonstrate that every subdiagram of
112 of type $12 (Fig. 10) is necessarily contained in %;
indeed, suppose this were not the case: two cases
may then arise:

(i) All subdiagrams of 12 (which are either entirely
contained in I, or in I2, or are of type S'12) are con~
tained in g; in this case, $12 is by definition a irre-
ducible diagram and /12 would be a convolution.

(ii) There exists at least one subdiagram of $12, not
contained in g, which by Lemma 3 is necessarily of
type §'12, 8’1 C §1 5’2 ¢ §2; §'12 must in turn
necessarily contain a subdiagram of type $"12, since
otherwise /12 would be a convolution, and so on;

This procedure must clearly come to an end; indeed,
from a certain stage onwards, the subdiagrams are
entirely contained either in I1 or in /2, so that, by
lemma 3, they are members of 7.

Thus the existence of a subdiagram 512, not contain~-
ed in g, is incompatible with the fact that /12 is not a
convolution. It follows that E}. exists and

E}ﬁz = (Ep, E}2),

where (Ep, Ep) stands for the totality of couples
(élaéz), él S E11, €y € Ele.

Hence by Theorem 4.2,
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P(12) = 0.

This property can be immediately extended to a
more general reducible diagram I12°'m ghown in
Fig.11;indeed,

EI,J‘.(Z-'-m = (E_:Il,EIZ, e ,—E—[m),
hence

P12 "m) = 0, (4.4)

(o) The general structure of such a graph denoted
IZ is indicated in Fig. 11(b) and a particular example
is given Fig.11(c). Clearly,

%

E
so that
P(g) =0.

i

E,

&)

(4.5)

More generally, for every reducible graph G, obtained
by dressing a covering RN by a diagram contained in
£,or by juxtaposition of m coverings,there exists a
set EJ: In the first case

Ej = Egn,

while in the second

E} = (Egny, Egiyy o ooy Egi,,).
The weight of such diagrams is therefore zero.

Thus the only reducible diagrams of nonzero weight
are the coverings R¥ but we shall show that only a
very restricted subclass thereof are topologically
permissible and contribute to the n-body potential

UZn‘
This is the content of Theorem 5.1 in the following
section.

(2)

FIG.11. (a) Diagram of type I12---m;J1 J2 _  Im are the m irredu-
cible graphs. (b) A diagram illustrating the dressing of an irredu-
cible graph / by a member of £. (c) A particular case of the general
configuration 11(b).

5. TOPOLOGICAL ANALYSIS OF COVERINGS R¥,

Theorem 5.1: The only topologically permissible
coverings R¥ of dimension 2%, are the linear convolu-
tions LY (modI,,).

Denote by M and M, an arbitrary irreducible com-
ponent of maximal dimension in R¥ and CynM, res-
pectively.

Clearly dimM = dimM,.
Lemma 5: For any covering R¥,we have
dimR¥ = dimM,

the equality may hold only if
(i) dimE=dim/l/, 1<, j=<N,

(ii) there is no subdiagram common to more than
two I,

(iii) there is no contribution to dimR ¥, originating
from intersections of I?,

(iv) all intersections of [* and their relative comple-
ments are connected,

(v) no internal line of R¥ is simultaneously external
to more than one I,

(vi) there is no couple (M,M ) such that C,n(M, M;)
is connected and contributes to dimR¥ .

We show (Appendix A), that the lemma is verified for
N = 2, and we proceed by induction to extend it for
all N.

The induction hypothesis (Ht.) is the following: Lemma
5 holds for each RZ, L< N,

The following two cases may arise.
Case 1: Cyn(M,M;) is connected (Fig.12),
We have
dimRN=m, + m; + m
dim N (M,C) =y + v,
dim N (M,,C) = py + vy,
dimM,; =m, + vy,
dimM = + v,

Suppose that 3 (, j) such that

dim/i # dimPV. (5.1a)

We shall show that the condition dim R¥ = dimM leads
to a contradiction.

Indeed,if dim R~ = dimM, and a fortiori dimR¥ =
dimM,, then

w, + My =V, (5.1b)

m,+m = vy, (5.2)

On the other hand, H; applied to the coverings
M; U Cen(M,M,) and M U Con (M, M,) leads to

my tm. +pu=m; + v,
mt+m, T =m+y,

so that
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m,+ = vy, (5.3)

m,+ = v, (5.4)
The equalities in (5.3) and (5. 4) are mutually exclu-
sive; indeed, by {5.1a), the two coverings to which we
apply H; cannot simultaneously satisfy condition (i)

M

FIG. 12, A typical con-
figuration illustrating Case
1,8ec. 5;m,m,, m, are con-
tributions to dim R¥ due to
MMy, Can(M,M,), respec~
tively; o and 4 are the
number of lines internal to
M,M,, respectively, and
external to Con{M,M,); v
and v, are the number of
lines external to M and
M,, respectively, and inter-
nat to Cov (M, M ).

FIG.13. A graph illustrating ®M; 71,72, ., I* are the boundary
components of ®¥;3,,8,,...,B, are contributions to dim®* but
not to dim R¥: & is the number of external lines of ®¥ contributing
to dimR¥,

FIG. 14. A typical configuration illustrating Case 2, Sec.5; m,m,
my 4 are contributions to dim RY due to these connected components
of CRN(M,MI) which intersect only M, M, and both, respectively;
the remaining symbols have the same meaning as in Fig. 12.
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of Lemma 5. Hence,
gt < v+, (5.5)

Combining, respectively, (5.1)-(5.4) it follows that

p=m, (5.6)

fy < myq, (5.7
which implies

ptv=M, {5.8)

By + vy = My, (5.9)

The equalities in (5. 8), (5.9) being mutually exclu-~
sive.

Since now N (M, C) (Fig.12) is a (u + v)}—part of M, it
must belong to F and can contain

(i) at most one I'y, and no Iy, L > M, whenever
(5.8) is an equality,

(ii) no I';, L = M, whenever (5.8) is an inequality.

The same analysis applies to N (M{,C). From the
mutually exclusive character of the equalities in (5.8)
and (5.9), it follows that N (M, C) and N (M,,C) cannot
simultaneously contain a T'y; and a FM;’ respectively;

the above situation is therefore compatible with the
irreducibility of M and M,, only if

p+m=M, (5.10)

Wy tmg = M, (5.11)
which implies

b= v, (5.12)

Yy = Vq. (5.13)

From the previous discussion, it follows that the
equalities in {5.12), (5.13) are, as usual, mutually
exclusive, so that

bt > vt g (5.14)

The desired property follows from (5.14) and (5.5).
Case 2: Cyn{M,M,) is not connected (N > 3)
(Fig.14).
We have
dmR¥=m +t+my +my, +0+ 0y,
dimM = u+v+ag,
dimM, =y, +v; +04.

Suppose that condition (5. 1a) holds. By repeated
application of H;, we obtain

o+ o0y tutpy Fmgy =M, (5.15)
c+vitm=syuy+tv+to, (5.16)
oy t vy tmy =y oty oy, (5.17)
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The equalities in (5.15)—(5.17) are mutually exclu-
sive. Indeed, by (5. 1a) the three coverings to which
we apply H, cannot simultaneously satisfy (i) of
Lemma 5, Summing (5.15)-(5.17), we have there-
fore

dimR¥ < M.

This completes the proof of Lemma 5, in the case
where condition (5.12) is satisfied.

¥ dimlé = dim/ for all i, j between 1 and N, then
since we can arbitrarily pick out M and M, we can
follow the procedure of either Case 1 or Case 2,
depending on our choice. It is easy to see that the
procedure of Case 2 leads to a condition less res-
trictive than does Case 1;we shall therefore choose
M and M, such that C,n(M, M) is connected.

We intend to show that
dimR¥N =M

leads to a contradiction, only if
m_ # 0.

The proof follows the same pattern as in Case 1,
except that (5.1) and (5.2) are replaced by equalities,
and (5.3) and (5.4), and (5.6) and (5.7) are not mutual-
ly exclusive,

By suitably combining these relations, we obtain

Wty = vt oy, (5.18)

bt +2m= v+, (5.19)
Equations (5.18) and (5.19) are contradictory only if
m, # 0; therefore, dim RN =M can only be realized if
m, =0

The condition dim R¥ > M leads of course to a con-
tradiction in all cases.

This completes the proof of (i) and (vi) of Lemma 5.

Conditions (ii)-(iv) have their origin in the corres-
ponding properties of a covering R2 (Appendix A).

To prove (v), it suffices to remark that a covering
RY containing ! such lines, is strictly equivalent, as
regards our analysis, to a topologically identical
covering, but of dimension dimR¥ + 2[,

Lemma 6. there exists no irreducible graphs I
such that dim7Z > 2x, (modI,, ). This lemma is an im-
mediate consequence of the definition of an irreduc-
ible diagram.

Lemma 7: Let R¥ be a covering of dimension 2n,
and It its irreducible components. Then dim[? =
diml/ = 2» for each 4,j (modT',); in addition, condi-
tions (i)=-(vi) of Lemma 5 are fulfilled.

This lemma is a corollary of Lemmas 5 and 6; It
expresses a very restrictive condition on the struc-
ture of a covering R¥ of dim2n (modl“z,,). We shall
show that, under this last condition, R¥ in fact satis-
fies a stronger condition,

To show the latter, we define the partial convering
®M of an R¥ to be a covering consisting of M irre-

ducible components of R¥, M < N, We call the boun-
dary components of ®¥, the I* € R¥ containing lines
external to ®M(internal or external to RY),

By lemmas 7 and 5, if dim R¥ = 2n, then

dim®¥ < 25, (5.20)

We shall prove that (5.20) is always saturated.

Lemma 8: Each partial covering ®¥ of a 2n-
dimensional R¥ is of dimension 2#z(modI,,). We shall
first prove (Appendix B) that the only permissible con-
figuration of an ®¥, is the one represented on Fig.13.

Let 11,12, ...,I% be the boundary components of ®¥,
By hypothesis

[
dimR¥=2n =23 @, + 6.

(5.21)
i71

On the other hand, by Lemma 7,

vy tB=2n, 1=i=<k, (5.22)
Summing (5. 21) and (5. 22),

k k

2200 + ) + 206, +6 = (B +1)2n. (5.23)

i=1 =1

By Lemma 5,
k

o; tyy=2m, 1=i=<k, 25B;+0=<2n. (5.24)
i=1

Equations (5.23) and (5.24) can be compatible, only
if (5.24) are saturated.

Hence
dim®M = 2,

Lemma 9: Let R¥ be a covering, and 1%, I/ two
arbitrary irreducible components. There exists (in
RY) at least one convolution whose endpoints are I*
and I, This property follows from the connectedness
of RN,

Define C (I*) to be the set of all endpoints of convolu-
tions, whose second endpoint is 7*, Qur aim is to
prove that C (I#) = RN, In the first instance C(I%) =@;
indeed, 3 j such that I* NI # O by definition of RV,

If C (I*) contained only I# and I/, R¥ would be noncon-
nected. Hence, C (I*) contains at least a third element
I™ and so forth. Step by step, we shall thus encom-

pass in C (I*¥) all irreducible components of R¥, QED

It follows from Lemmas 5 and 8, that any convolution
in R¥ contains no external lines (external or internal
to R¥) other than the ones external to the endpoints.

A corollary of this last property and of Lemma 9 is
that the whole covering R¥ takes the form of a linear

FIG.15. A typical _LN; a;, f; refer, respectively, to the number of
lines external to I* and internal to I©"1 and I**1; only a,, 8, contri~
bute to dim LV,
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convolution. This completes the proof of Theorem
5.1: The only topologically permissible 2z-dimen-
sional coverings R¥ are the linear convolutions L~
(modI',,). It follows from the preceding discussion
that only the two endpoints of L¥ contribute to dimL ¥,
In addition the L¥ have the interesting property of
conserving the number of lines. Indeed (Fig.15), by
Lemmas 8 and 5,

a; +B; = 2n, l<i=N-1,
dimL¥ =a, + By = 2n,
Thus
B; = Bj 1=i,j =N.
We also have
a; + By = 2n, l<i<N,
which leads to
a=0;, 1=<i,j=<N.

On the other hand, by the property
ay =0, =p;=py=n
of L2 (Appendix A), it follows that

a;=8,=n, 1=i=<N,

From this property and from the structure of an
irreducible diagram, it follows that each irreducible
component contains two I',, located inside its respec-
tive intersections with its neighbors, except for the
endpoints, which contain one I',, in the intersection
and one T, in its complement (Fig. 15).

In conclusion, we have demonstrated that only a very
restricted set of Feynman diagrams survives in the
complete expression for the n-body potential in terms
of the T variables (modT',,).

That is, collecting all previously obtained results:
o0
T
V2n(Gl; 1-‘2m) = FZn - IZn + E (_ l)NLgf’
N2
Iy, =0, m>n,

Except for the single I'y,, the only survivors are the
irreducible graphs, which appear either isolated or

as building blocks of generalized ladder diagrams,
i.e., our linear convolutions. The latter exhibit the
property, that the number of lines entering at one end-
point is conserved from one element to the next, all
the way to the second endpoint.
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APPENDIX A
Let us consider the 2-convolution C2 shown in Fig. 16:

J. Math. Phys., Vol. 13, No. 6, June 1972

Ca(n (11, 12) =1,

Cp(A,12)=12

dim N {1, 12) =y +86 +p =7,
dimll=a +y +p=p,
dimi2=06 +8+pu=gq,
dmil=a +6 +p +pu=p,
diml2=y +8 +p +p=gq,
o+ B =m.

Theorem Al1: For any convolution C2, we have

dimC2 < max[p,q] — 2u.

The equality holds only if the following conditions
are satisfied:

@ p=0

@) p=gq,

(i) y=0=a +tp=8+y,

(iv) Nn{1,72),71, and I2 are connected.

We shall show that the contrary leads to incom-
patibility between the structures of the two irre-
ducible components of C2.

p—p—2p<m

Case I: q——p——2u<m’

under these conditions

6 —p<B
y—p<a’

The following two possibilities may arise:
(i) y = b say y < 6, which implies that
P=ytat+tp<s+a+usxp.

Since I1 isa p-part of I1,it is contained in g5 and can
therefore contain no Iy, s = p; on the other hand, by
(A1),

r=y+b6+p<a+tpt+tdtp=p.

N(I1,12), being an r-part of I1, is contained in g, and
can therefore contain no I';, s = p; therefore neither
I nor its complement, relative to I3, viz, N(71,12),
can contain a Iy, s = p;this contradicts the irreduc-
ibility of 11,

The situation y > & leads to the same result.

(i) v =9,

which implies

pP=ytaotp=06+ta+tp=p,

where the equality only holds if p = 0.

Therefore, if p = 0,71 can contain at most a single
T, andno I, s > p, whereas if p = 0,1 can contain
no I',, s = p; on the other hand, by (Al),» < p, and
N{I1,12) can contain no Ty, s = p; once more we have
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a contradiction to the definition of I'. We must thus
reject Case 1.
Case 2 p—p—2u=m
ase 2: g—p—2m<m

This can be shown to be incompatible with the irre-
ducibility of I! and I2, by a similar analysis,

(p—p—2u>m
Case 3. {q—p—2u<m'
§p~p—2u>m
Case 4: .
lg—p—2u=m
S‘p—-p—-2p>m

Case 5 1q—p—2u>m.

Take, e.g., Case 4; we have
§—u>p

{y—uzd

The following situations may arise:

(i) 4y > 8, which implies
g=0+p+ply+Bru=gq

and so I2 can contain no T, s = q.

On the other hand, by (A2),
ryr=y+8+p>y+p+tutp=gq

and N(I1,12) can contain more than one I, or[y,

s > ¢, while simultaneously belonging to g, ;this con-
dition is then compatible with the irreducible charac-
ter of I2. On the other hand,if y = 6 + p, we have

p = pandby (A2)r =p,

Thus, whenever y = § + p, the situation is compatible
with the irreducibility of I1, as well, and so Case 4 is
realizable,

Cases 3 and 5 can be analyzed in the same manner,
and lead to analogous conclusions.

(p—2u—p=m
lg—2m~p=m
Under these conditions,

Case 6:

fo-p=8 (A3)
ly-—p=a
vy =90,

This implies p = p, the equality being realized if

p = 0. I! can therefore contain at most one T', and no
I,, s > p,if p = 0;in the event p # 0, I' can contain
no I';, s = p. On the other hand, by (A3),r = p, so that
N(I1,12) can contain at most one T,. Consequently,
this situation is compatible with the irreducibility of
I1, only if p = 0. Such is also the case for I2, under the
same condition.

Whatever p and p may be, the situation y = § is not
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It remains to show that the inequality is never satu-
rated if N1, 12) or !, T2 are nonconnected (Fig. 17).

Consider the case where N(I1,12) is nonconnected and

(A2)

suppose, e.g., that it contains three connected pieces

C,,Cy,Cy:

diml =¢ +a1+a2+a3=p,
dimi2 =8 + 8, + B, + B3 =g,
dimI! = a + B, + B, + B3 =5,
dim72=3+011+a2+a3:§,

dim N (1, 12) =0, +a, taz+8; +B, + B3 =7,
oat+B=m

dimC; =o; +8, 1=<i=3.

<TI0 > ‘) =

[:2

FIG.16. A typical 2-convolution C2;y is the number of lines internal
to C2 while external to I1 and I2; p is the contribution to dimC2
originating from N{f31,12),

B (1) (b

FIG.17. (a) An R2 with nonconnected N(/1,12) consisting of three
pieces. (b) An R2 with nonconnected C,1 N(11,12) and Cp N (11,12),

FIG.18. (A configuration where two distinct boundary components
(namely I1,12) of ®™ intersect the same connected component of Cpy ®M.
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<m
Case 1: »

g < m
Under these conditions,
o, ta, +ay;<p
By + By +Bs<a’

(A4)

which entails p < p and by (A4), » < p and a fortiori
dimC, < p.

This situation is therefore incompatible with the
hypothesis of irreducibility of I1; the situations

B, >2s0; and 258, = 25 o; can be handled in the same
way so that Case 1 is never realizable. The analyses
of Cases 3-5 can be carried out in the same fashion
and lead to the same conclusion; only the result of
Case 6 is different

p=m
Case 6: 3 .
q=m

In these conditions,

2o, =B
KN 45)
Z)B,' :Zai’

which entails p = p and, by (A5),» = p, so that
dimC, < p, i=1,2,3,

and this case is not realizable,

E. GUNZIG

Case (b) can be treated in precisely the same manner.
This completes the proof of the theorem.

APPENDIX B

Let R¥ be a 2n-dimensional covering and ®¥ a partial
covering of R¥. We shall prove the following lemma;:

Lemma B1l: Each connected component of ConRH¥
can have intersections with no more than one boun-
dary component of R¥,

In fact, since the inequality of Lemma 5 is saturated,

conditions (i)-(vi) hold and it is easy to convince one-
self that the latter restrict drastically the number of

possible configurations.

So as not to burden the reader with inessential de-
tails, we shall only give a brief sketch of the argu-
ment.,

A possible configuration violating Lemma B1 is
shown in Fig, 18.

By hypothesis,

dimRVN= 0,4, +§3 o, =2n
and, by Lemma 7,
l=i=<k.

v; T B = 2n,

Summing these relations,
4 k
(@2 + vy +ya] T2 [0 + ] +§;16,~ = (b + 1)2n.
i=3 i=

Now, by Lemma. 5, each of these & brackets are < 2.
So that this configuration is not realizable.

By similar reasonings, we are led to Lemma B1.

1 F.Englert and C, De Dominicis, Nuovo Cimento 53A, 1007 (1968).
2 See Ref.1.p.1021,

3 F.Englert, R. Brout, and H. Stern, Nuovo Cimento 584,601 (1968).
4 R.Brout and F. Englert, Bull, Am. Phys. Soc, 11, 21 (1966).

5 R.Brout, Topics in Bootstrap Theory, Cargése Lectures {Gordon
and Breach, New York, 1966),
6 C.de Dominicis and P, C.Martin, J. Math. Phys. 5, 31 (1964).

Calculation of a Certain Type of 6/-Symbol

E. de Vries and A. J. van Zanten
Institute for Theovelical Physics, Universily of Groningen, The Nelherlands
(Received 16 December 1971; Revised Manuscript Received 28 January 1972)

It is shown that, for an arbitrary finite simply reducible group, it is possible to express a certain type of 65-
symbol in which one of the representations is one-dimensional in terms of 3j-symbols {j & I}.

For an arbitrary finite simply reducible group, the
6j-symbol in which one of the irreducible represen-
tations is the trivial one (1) can be expressed in
terms of 3j-symbols [see Ref. 1, Eq. (18b)]. We prove
here the following similar result:

{ a1 }= (— 1)241%321) ‘1“ {71 d2 L, 171 ja jat. (1)
]1 ]2 i []1]

In this equation (— 1)45%(1;) is the phase factor be-
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longing to the irreducible representation, which is the
Kronecker product of the irreducible representation
(j3) and the arbitrary one-dimensional representation
(1,). The 3j-symbol {j & I} denotes the number of
times that the irreducible representation (I) is con-
tained in (j) ® (k).

Proof: We start from Eq. (27a) of Ref. 1, taking
() = (j3) and (j) = (1,), and substitute in the rhs T =
SR. This gives
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J1J2d —1)21
{1 2 3}—L——)—z—zx(jl)(T)x(jz)(RT'lR)
RT

j]_ j2 li B gz
x x(13)(TR1)xYs)(R)
(_ 1)2(1i)

Z} X(jl)(T)X(jz) (RT1R)
g2  RT
x X (T)x ) (R)x s (R)

(— 1)2(1,’) )
= TRET x 8 (T)

x XUz (RT1R)xUa)®(1:) (R), (2)

where we used the facts that (1,) is a one-dimensional
representation and that the characters are real.

Now there are two possibilities for (j,) ® (1,).

(a) (j,) is not contained in (7;) ® (1;). In this case the
6j-symbol in the lhs of Eq. (2) vanishes.

(b) (jo) is contained in (j;) ® (1,), and, because (1;) is
a one-dimensional representation, one even has (j,) =
(j1) ® (1;)-

From (a) and (b) we see that x(71)®(1:)(T) can be re-
placed by { j; j, 1;1x2)(T). We furthermore ex-
press the characters in terms of matrix elements
and apply the definition formula of 3jm-symbols and
an orthogonality relation (cf.also Ref. 2) and obtain

jljzjgl —1nzay
.. = { i . 1. (3,) (ig)
{11]2 1,f P {41 72 '}%)Dot]az (T)Dp’ (R)
x De(yjz)*(T)Dee(jz)(R)Ds,ff)@(li)(R)
. 1
=(—1)2 (1i){.71 J2 li}baeéay—.—'
[Jz]
(jz P j3®1i>*(j2 Iz j3®1i> (3)
% .
ge vy B m

By applying a symmetry relation for a 3jm-symbol
and an orthogonality relation, we get

}=(~ 1)2ir@ ) {3132 1, Hdz J2 j3 1,1
[42] (4)

J1 J2 I3
J1 2 15

The last 3j-symbol in Eq. (4) can be replaced by

{j; j2 ja), because (jy) ® (1;} = (j;) if the 6j-symbol
does not vanish. For the same reason [j;] = [j»],
which gives Eq. (1).

It is not difficult to check that the rhs of Eq. (1) is
symmetric in j; and j, as it must be.

Equation (1) can be used, e.g., for the calculation of
the 6j-symbols of the Dirac matrix group, which play
a role in Fierz transformations (see Ref. 3).

Along the same lines as in the proof of Eq. (1) one can
derive an expression for the square of a more general
6j-symbol in terms of 3j-symbols

{71 Jo ]'3}2
Ny 1) [51)0ds]

For the derivation of Eq.(5) one has to start from
Eq. (27) of Ref. 1.

{41 do datis o 1:H 4y da 1. (B)
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0.9, =0 When Ri,, + 0
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We prove that solutions to the equations I'},., = 0 and &;j:, = 0 exist locally when R, # 0. Previously this was

j
only shown for the special case of R?,, = 0.

1. INTRODUCTION AND SOLUTION OF INTEGRA-
BILITY EQUATIONS
In a previous paper,! we introduced a four-dimen-

sional nonsymmetric? Lorentz invariant field theory.
We showed that solutions to the equations

oY, ) ) . .

Py + gy, — I, In— T, I'p=Tl,.,=0, (1)
08;

a::l ~ I 8im— T%8p, =8k, =0 2)

exist locally. The problem of local existence depends

on showing that there exists a consistent set of field
components at the prescribed origin point.3 This is
not a trivial matter since the consistency conditions
(integrability conditions) involve more equations than
there are field components.

We introduce e%; by means of

ri, = ;. 9€%
jk = ea axk ’ (3)
&;=e%eh8,, @)

where g, is the Minkowski metric. We get from
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92e, 92eq,

dxioxk = oxkoxi

®)

the following consistency conditions (integrability
conditions):

Equation (6) implies, as well, that all the mixed
derivatives of g;;,I'},, e®; are symmetric. Com-
bining (6) with (1), we get

T4T%,, — T4T}

Gl + ry,rt,— F]ikr.gm =0. (M

im* jk

These are 96 relations for 64 I'},. In our previous
paper,we showed by explicit construction that non-
trivial solutions to (7) exist. This means that solu-
tions to (1), (2),and (6) exist locally.

In our previous work, we noted the possibility of a
theory based on (1) and (2),but not (6) and (3). In
this case,the consistency takes the form

EnlRlipi + 8RRy =04 (8)

ri,Rm ,+ T R™, — TnR: . =0, ©)

7
These equations follow from the requirement that all
mixed derivatives of tensor functions of g,,, ', be
symmetric. In this paper,we show that solutions to
(8) and (9) exist when Rijkl # 0. Thus,in fact,the
field theory based on (1) and (2),but not (6}, also

has solutions existing locally. Equation (8) consti-
tutes 60 equations and Eq. (9) is 384 equations (there
is antisymmetry in the indices p and /. Thus,we
have considerably more equations to solve than for
the R?;,, = 0 case.

By trial and error,we have come up with solutions
of (8) and (9). We first write

i, = a%aba7,Tg (x), (10)

&; = aaiaﬁjgaﬂ(x). (11)
At the prescribed point P,we choose g 5 (P) to be the
Minkowski metric (1,—1,—1,—1) and rg, (P) is chosen
to have the following nonvanishing components:

F%a =7 F%s, F%o = F%oy
I'§; =T8; T§o=T%,,

The a2,(P) are chosen arbitrarily. Under these
circumstances,we find Ri].kl # 0 and (8) and (9) are
satisfied.4 Furthermore,all 64 I'}, and all 16 g;, in
(10) and (11) can be made nonzero. This occurs,for
example, when we take a®;(P) to be

(12)

all =0.8’ alz =0 6, al =0.'5, alo =Ool5,
a?; =0.65, a2,=0.9, a?%;=0.25 a?, = 0.55,
a3; —0.712, a3, =0.58, a3;=0.13, a%;=0.62,
(101 =0.4, a02 =0.2, a°3 =0.1, aOO = 2.?1,3)

We also take I'}5; = 0.3, T}, = 0.4, I'§; = 0.5,

I'g, = 0.27. By means of a finite difference approxi-
mation, and with the help of a computer,we have

also found that g, I‘]’ﬁk all vary from point to point
[using (13)] and,f’hus, constitute a nontrivial theory.
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Furthermore,we have found, in all cases considered,
that the field values are independent of path within
a tolerance of nine decimal places. (The distance
from the origin was taken to be of the order of 0. 1),

2. INTEGRABILITY AND LOCAL EXISTENCE

We have made the statement that once we demon-
strate integrability,then local existence will follow.
We can ask,what does our computer work have to say
about this statement. So far as the computer mapping
is concerned, the only problem with respect to the
existence of a computer finite-difference solution is
whether the field value at a point is independent of
path from the origin. Thus,the existence of computer
solutions to the field equations in the vicinity of the
origin (where the field is taken to be finite) depends
only on integrability. Furthermore,so far as the
computer solutions are concerned, we can continue,
in principle, to lower the grid size indefinitely. Then,
the finite difference system would go into the exact
field equations [Eq. (2. 3) of Ref.1]. For any grid
size, the only problem with respect to existence of
solutions to the computer program is integrability.
Therefore,when dx! is infinitesimal, we conclude

that the exact mathematical solutions exists pro-
vided that integrability can be established. This is a
local result since we cannot infer that the field
remains finite everywhere.

We also point out that once the integrability equations
are established at the origin, then they hold in the
vicinity of the origin as well. We define

Alespr ETLRR™ , + TR, — TRRY 0 (14)
This has been established to be zero at the origin.
Note that since I'},., = 0,it follows that A, ., = 0.
Thus, it follows that 9A%,;,,/3x™ = 0 when we use
Al .. = 0 at the origin. We can do the same for all
higher derivatives that are finite. Thus,the integra-
bility equations are satisfied in the vicinity of the
origin,once they are satisfied at the origin.

We may also prove that solutions to the field equa-
tions exist locally once integrability has been estab-
lished, as follows. The field is assumed finite at the
origin point. By means of the field equations,we can
compute the higher derivatives of I‘;ﬁk entirely in
terms of F}k at the origin point. In a similar fashion,
the higher derivatives of g;; are given in terms of
'}, and g¥ at the origin point. Due to the finiteness

of the field at the origin, at least a finite number of
derivatives will be finite as well (since they are
given by finite products of the field at the origin).
When we set up the field equations in Ref. 1,we
assumed continuity for all finite tensor functions.
Thus, the conditions for Taylor's theorem are satis-
fied (see Apostol,® Theorems 5-14 and 6-21)
Taylor's theorem says® that the field can be approxi-
mated by a polynomial of degree n—1if the nth-order
derivative exists in the region containing P and R
{(where R is close to P). Thus,we may write

) P
ar;k> dxt + la I‘;.k )
oxt/ep 2 dxmgxn/p

X dx™mdxn + +- ..

TiR) = [}, (P)+
(15)

Now,by the field equations we see I'i,(R) is entirely
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given in terms of the field at the origin point P. Thus,
we can calculate Fj (R)[and by similar arguments

&ij .(R)] provided a consistent set of 1“]’ exists at P. A
consistent set of I's  at P must satisfy the require-
ment that the mixed derivatives® of all functions of
I'i, and g;; be symmetric. These relations are just
given by E]qs. (8) and (9). Thus, we conclude that

local existence depends on being able to obtain solu-

tions to (8) and (9) which, in fact, we have already
found. A solution to (8) and (9) is given by (10),(11),
and (12).

3. CONCLUSION

Thus, nontrivial solutions to (1) and (2) with R' =0
exist locally Further investigations of the I‘]k =0,
&;j., = 0 field theory appear elsewhere. 7

1 M. Muraskin, Ann. Phys. (N.Y.) 59,27 (1970). This reference
gives background material for the present paper.

2 We shall make a few comments about the T'}, = ', situation.
For symmetric 1’" »»ywe can make a general coordmate trans-
formation so that 1"l = 0 at the origin. Then it might appear that
Ti, = 0 at all points as a consequence of (1) and, thus,no non-
tr1v1al solutions would be possible for symmetric 1“!' However,
this argument is not correct since Eq. (1) is not covariant under
general coordinate transformations. Thus,the transformation
that leads to F‘ = 0 at the origin also 1mplies I‘]k , % 0.

3 See Sec.II for detalled discussion.

4 Rl,3, =— R1,4;3 is nonzero.

5 T.Apostol, Mathematical Analysis (Addison-Wesley, Reading,
Mass., 1957),pp. 96, 123.

6 The problem of consistency when the field depends on a number
of parameters as well as x,y,2,x0 is discussed in L. Eisenhart,
Continuous Groups of Transformation (Dover,New York, 1961),
Chap. 1.

7 M. Muraskin and T. Clark, Ann. Phys. (N.Y.) 59,27 (1970).
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It is shown how a new class of stationary electromagnetic vacuum fields can be generated from solutions of
Laplace's equation. These fields are a stationary generalization of the static electromagnetic vacuum fields
of Weyl, Majumdar, and Papapetrou, and are plausibly interpreted as exterior fields of static or steadily mov-
ing distributions of charged dust having numerically equal charge and mass densities.

1. INTRODUCTION

Coulomb's law and Newton's law of gravity are for-
mally identical apart from a sign. Hence, classically,
any unstressed distribution of matter can, if suitably
charged, be maintained in neutral equilibrium under
a balance between the gravitational attraction and
electrical repulsion of its parts.

Indications that this obvious Newtonian fact has a
relativistic analog first emerged when Weyl! obtained
a particular class of static electromagnetic vacuum
fields, later generalized by Majumdar? and Papape-
trou3 to remove Weyl's original restriction to axial
symmetry, and further studied by Bonnor4 and
Synge.5 The Papapetrou-Majumdar fields are to all
appearances the external fields of static sources
whose charge and mass are numerically equal (in
relativistic units: G = ¢ = 1). That they are indeed
interpretable as external fields of static distributions
of charged dust having equal charge and mass densi-
ties has been shown by Das,® who has examined the
corresponding interior fields.

Astrophysical bodies are electrically neutral to a
good approximation, and the Papapetrou—~Majumdar
solutions have up to now received little attention. It
seems to us, however, that they can play a useful, if
limited, astrophysical role in providing simple qua-
sistatic analogues for complex dynamical processes
like the disappearance of asymmetries in gravita-
tional collapse or the collision of black holes. In
reality, such a process always involves large kinetic

energies and at present can only be handled by elabo-
rate numerical integrations under the assumption of
small departures from spherical symmetry.?,8 How-
ever, for ckarged bodies in neutral equilibrium the
process can be made arbitrarily slow, and the details
easily followed as a sequence of stationary configura-
tions. While this procedure prevents us from con-
sidering features of undeniable observational impor-
tance, such as the emission of gravitational waves, it
is for that very reason ideally suited for isolating and
elucidating certain basic issues of principle relating
to the final phases of the process.

Some of these questions are pursued in detail else-
where.? Our purpose here is to demonstrate that the
Papapetrou-Majumdar class can be extended straight-
forwardly from the static to the stationary realm.

2. STATIONARY FIELDS

The metric of an arbitrary stationary field is con-
veniently expressed in the form10

ds? =g, dxrdx? = —fly  dxmdx

+ flw,dx™ + dx4)2, (1)
in whichf, v, ,,and w, are independent of the time
coordinate x4, The inverse of & is given by
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given in terms of the field at the origin point P. Thus,
we can calculate Fj (R)[and by similar arguments

&ij .(R)] provided a consistent set of 1“]’ exists at P. A
consistent set of I's  at P must satisfy the require-
ment that the mixed derivatives® of all functions of
I'i, and g;; be symmetric. These relations are just
given by E]qs. (8) and (9). Thus, we conclude that

local existence depends on being able to obtain solu-

tions to (8) and (9) which, in fact, we have already
found. A solution to (8) and (9) is given by (10),(11),
and (12).

3. CONCLUSION

Thus, nontrivial solutions to (1) and (2) with R' =0
exist locally Further investigations of the I‘]k =0,
&;j., = 0 field theory appear elsewhere. 7

1 M. Muraskin, Ann. Phys. (N.Y.) 59,27 (1970). This reference
gives background material for the present paper.

2 We shall make a few comments about the T'}, = ', situation.
For symmetric 1’" »»ywe can make a general coordmate trans-
formation so that 1"l = 0 at the origin. Then it might appear that
Ti, = 0 at all points as a consequence of (1) and, thus,no non-
tr1v1al solutions would be possible for symmetric 1“!' However,
this argument is not correct since Eq. (1) is not covariant under
general coordinate transformations. Thus,the transformation
that leads to F‘ = 0 at the origin also 1mplies I‘]k , % 0.

3 See Sec.II for detalled discussion.

4 Rl,3, =— R1,4;3 is nonzero.

5 T.Apostol, Mathematical Analysis (Addison-Wesley, Reading,
Mass., 1957),pp. 96, 123.

6 The problem of consistency when the field depends on a number
of parameters as well as x,y,2,x0 is discussed in L. Eisenhart,
Continuous Groups of Transformation (Dover,New York, 1961),
Chap. 1.
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where y”" is the 3 X 3 symmetric matrix inverse to
Youms @™ = y"™w, and w2 = y™y _w . The determi-
nants of Euv and y,, are related by

(__g)l/2 = f~171/2_ (3)

The 3-vector w,, in (1) is arbitrary up to an additive
gradient 3, A(x1,x2 x3) corresponding to the possi-
bility of making arbitrary time translations x4 = x4 =
x4 — A@x1,x2 x3). However,we can derive from it an
invariant “torsion vector”
f2Tm=—yY2emPagw,  or f27=—curlw(4)

in terms of a three-dimensional vector calculus em-
ploying v, dx™dx” as base metric.

We next consider a stationary electromagnetic field
F,, =9,4,— 9,4, in the space-time (1). The condi-
tion of time independence 2 4A‘1 = 0 yields for the
“electric” components

F4n =0,Ay, (5)
while the source-free Maxwell equations

8l gV2@FLr] =0 (6)
for ;1 = m give the “magnetic” components

@ Fmn = foy-1/2 gmnp apq) (7

in terms of a magnetic scalar potential ®, All remain-
ing components are then conveniently expressed in
terms of these six; for example,

@ Fri= Wiy @ frmn F4 m ,ymn’ (8)

an identity which follows readily from (1) or (2).
Equation (6) with u = 4 now yields, on substituting (8),
(7), (5) and (4),

div (f1VA,) = —f2 T°V&, (9)
Next, writing F, (= 3,4, — 8,4 ,) in terms of (5) and

(7) and expressing the cyclic identity em»? 8y Fppp =0,
we obtain
div (f-1V®) = f72 7+VA,. (10)

If we now introducell the complex scalar potential

v=A, +i®, (11)
then (9) and (10) combine to give
div (f-1V¥) =i f2 72V, (12)

We have thus reduced the entire set of Maxwell's
equations to the single complex equation (12).
3. GRAVITATIONAL FIELD EQUATIONS

The Ricci tensor

R;w = ap iy — aar‘ﬁu + I“Bo‘c‘r-gu - Fgarfv

for the general stationary metric (1) is conveniently
expressed in terms of a complex 3-vector G, defined
by
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2/G =Vf +ir. (13)
Then12

— 2Ry, =divG + (G* — G)-G, (14a)

— 2 f-2 (4)Rzz — .),-1/2 E”‘P‘I(aq Gp + GPG;)’ (15a)

20 pm¥q WR™ — vy, Ryy)=R, &) + G,GF + GG,
(16a)

Here, Ry, {y) denotes the Ricci tensor formed from the
3-metric y,,,dx mdx".

For the electromagnetic energy tensor

—4n T, =g F, F,5— ig“uFaB FoB,

one derives from the formulas of the previous sec-
tion
2FL Y = (VB)2 — (VA,)2,

81 f 1T, = (VB)2 + (VA,)?, (14b)

47 fL @Tp = 41/2 €mbe(0,0)(3, Ay), {15b)

— 47 fL@OT ™ = @rg)(0nE) + (07A,)(@"A )
—3 ym[(V®)2 + (VA ,)?] (16b)
with a7 = ym2 9, .

We can now impose the Einstein field equations

R,, =—8r 7,,. From (15a), (15b), we find

curl 7 = — 4V& X VA,
=i curl@VV¥* — v*Vy),

so that the equation

T H (VT — wwPY) =Vy amn
defines a real scalar ¢ up to an additive constant.
We next define a complex functionll

& =f —U¥* + iy, (18)
By virtue of (13) and (17),

fG=3VE + ¥V, (19)

Substituting (19) into the field equations (14a), (14b)
and employing (12) leads tol1

V28 =V E+(VE + 29*VY), (20)
while (12) itself can be written

FV2Y =VE-(VE + 20* V), (21)
and we note from (18) that

f=3(8+ &%) + wu*, (22)

Finally the field equations (16a), (16b) reduce to
— 2R, (y) = 38 (, &%)+ ¥E W, + ¥*EL LW,
— (8 + &)Y ,¥*,, (23)

in which, for example,
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28.(m5*,n) = (am'g)(ang*) + (ang)(amg*)'

The complete system of electromagnetic and gravita-
tional field equations for an arbitrary electromagne-
tic vacuum field are summed up in (20), (21), and (23).

4. GENERALIZED PAPAPETROU-MAJUMDAR
SOLUTIONS

So far, our considerations have been quite general.
We now examine whether solutions of the system (20),
(21), and (23) exist for which the background metric
Yo @% ™dx" is flat. In this case equations (23) [with
R,,(y) = 0] are satisfied if and only if there is a
linear relation
¥ =q+ b8, witha*b+ab*=—3
(as one easily verifies, for example, by choosing
& =x1 and &* = x2 as coordinates). Both § and ¥
contain arbitrary additive constants, and it is con-
venient to adjust these so that § » 1 when ¥ - 0, We
thus obtain
T =3eia(l—§), (24)
in which the arbitrary real constant @ represents the
“complexion” of the electromagnetic field. We can
submit this field to any constant duality rotation with-
out affecting the geometry.

If we now substitute (24) into (20) and (21), botk reduce
to

v2[(1 + 8)1] =0 (25)

which is Laplace's equation in Euclidean 3-space.

We conclude by summarizing the procedure for ob-
taining the complete field. (a) Write down a solution
of (25) in terms of any convenient coordinates x ™,
Suppose the Euclidean line element takes the form
Ymn@x ™dx? in these coordinates. (b) Obtain f, T, and
w from the equations

f = %(1 + é,)(l + g*)’

i1 T =v{[(1 +8)/(1 + &%)}, curlw=—f27. 26)
The space-time metric is given by (1). (c) Obtain
¥=A, +i® from (24). The electromagnetic field
can be found from (5) and (7).

5. EXAMPLE: CHARGED KERR-LIKE SOLUTIONS
The Kerr-Newman solution with m2 = ¢2 corresponds
to the simplest complex solution of (25). We choose

2/ +8)=1+m/R, withR2 =x2 + 32 +(z —ia)?,

(27)
where a and m are real constants and x,y,z Cartesian
coordinates. In terms of oblate spheroidal coordi-~
nates 7,0, ¢ defined by

x+idy =[(r — m)2 + a2]1/2 sing ei¢, z = (r —m) cosd,
the Euclidean 3-metric becomes

dxmdxn = [(r —m)2 + a2 cos26]{dr?/[(r — m¥2+ a?]

+ doz}+ [(r — m)2 + a2?] sin20d 2.

Ymn

Further, we find
R=v—m —1iacosf,
f=[(r—m)2+ a2 cos26]/(r2 + a2 cos?20),

¥ = ei m/(r—ia cos),
and, after a somewhat lengthy calculation,
w,, dx™ = {{@nmr — m2) a sin26]/[(r —m)2
+ a2 cos26]} d¢.

Putting everything together, we recover the charged
Kerr metric with »2 = ¢2 in its usual form.13

As a natural generalization of (27), one may consider
2 nom
=1+ E _k s
1+ 8 =1 R,

where R% = (r — ¢ ,)2, ~ is the Euclidean position vec-
tor, and ¢, an arbitrary set of constant, complex vec-
tors. The resulting metric will represent the field of
a set of arbitrarily spinning, charged Kerr-like par-
ticles in neutral equilibrium. For the static analog of
this solution, representing a set of Reissner-Nord-
strém particles with e, = m,; see Ref. 5.

Note added in proof: The stationary extension of
the Papapetrou—Majumdar solutions has since been
obtained independently by Z.Perjés, Phys. Rev. Letters
27,1668 (1971).

* Work partially supported by the National Research
Council of Canada.
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A new method is proposed for constructing examples in relativistic classical particle mechanics, starting with
the Poincaré group and space reflections as transformations of position and velocity variables for two free
particles and deriving equations for Lorentz covariant position variables for two interacting particles. The
advantages are that the equations do not couple the position variables of the two particles, and solutions yield
the particle world lines directly. Solutions are obtained for a special case.

I. INTRODUCTION

Requirements of relativistic invariance for interac-
tions of classical particles have been developed, for
example, as nonlinear partial differential equations
for the force functions of Newtonian equations of
motion,.1—5 Examples of physically acceptable solu-
tions of these nonlinear equations have been difficult
to find.5.6

Here we propose a new method of constructing ex-
amples in relativistic classical particle mechanics.
A relativistic system of particles is a Poincaré group
of transformations of position and velocity variables.
We begin with Poincaré and space-reflection trans-
formations of free-particle variables and look for
functions of these variables to use as position vari-
ables for interacting particles. Lorentz covariance
requirements in the form of nonlinear partial differen-
tial equations are the only nontrivial conditions these
functions have to satisfy.

One advantage is that these equations do not couple
the position variables of different particles, unlike
the Lorentz~-covariance conditions for Newtonian
equations which do couple the forces of different par-
ticles.1—5 Another advantage is that the solutions of
these equations yield directly the particle world
lines. This makes it possible to study their asympto-
tic properties.

In the next section we derive these equations for two
particles. In Sec.III we obtain their solutions for a
special case., Section IV contains conclusions and dis-
cussion,

II. EQUATIONS FOR RELATIVISTIC POSITIONS

We shall have occasion to consider only one particle
at a time. Let its position be y. After a Lorentz
transformation with velocity tanhe in the kth direc-
tion, the jth component of the transformed position at
time zero in the transformed frame is

¥;+ €,9;

to first order in €, where y and ¥ are the position and
velocity at time zero in the original frame.5.7:8 (Dots
denote time derivatives.) We can use a bracket-
generator symbol [ ,K] for Lorentz transformations
and [ ,H] for time derivatives,® and write

v, Kol = 9,9; =3[9, H], k=123 (1)
The first-order part of the similarly transformed
velocity is5.7-9

[9,, K] = 93 + 5,9; — b @ 2)
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We shall use a Poincaré group of transformations de-
fined for two free particles with positions x(¢) and
velocities v (¢). Thus
x(n)(t) = x(ﬂ) + v(n)t,
[x](n)’Ki] = xl(n) U](.”),

vt = v,

(IL. 3)
[P, K] =v®vM—3,.

We also use a space-reflection transformation under
which as usual x and v(#) are odd. Then we have
Poincaré and space reflection transformations of the
correct number of independent variables for two in-
teracting particles. It remains to find position vari-
ables for the interacting particles.

For the position of each of the interacting particles,
we writel0

(@ 4)

where x = x(1 — x(2), We assume the usual transfor-
mations of positions for space translations, rotations,
and reflections. This means that f, g,and % are
scalars invariant under space translations. We can
take them to be functions of the independent variables

y =x®) + fv@) + gv(@) 4 px,

a; =xv), g, =xv®@, o, =x2

0, =1—-v®? o, =1—v@? (L. 5)

ae =1 _v(l)-v(Z).
The whole problem now is to satisfy the Lorentz-

transformation condition (II. 1) for the position (II. 4).
This is

[y K:]=9:9;
or

[x(, K] + vO[f, K] + 0Pg, K, ] + [, K]
+f[”_,(1)’Ki] + g[v§2),Ki] + h[xj’Ki]
= (xlgl) +fvz(1) + gv§2) + hxi)[v}l) + (f + h),)](_l)
+ (& — h)v](.z) + I';xj], m. 6)

where [f,K,] can be calculated as [f,K;] = E]. (of/00y)
[a;, K] with [0, K] calculated using the bracket re-

lations of X and v, We get

[/, K] =207 + 0D f + 02Dy f + x,D3f, @LT)
where
D, =a1—a—-+ 2014—-—a—+ as——a—,
oa, ooy dag
Dzzaz—a—+ 2015——8—+01G 2 s
904 da s 00e
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D3=2azi_a6_a___—a5_a_’
004 0a, do,
D4=2a1_a_._a4_q__.a6_i.=D3 i_
dag ooy 00, di

Then substituting (II.7) and the bracket relations for
x and v in (II. 6) we obtain a tensor equation

Tij =0,

(II. 8)

where T, consists of ten terms with scalars multiply-
ing ﬁij,xixj,xiv](.l),xiv](.”, etc.

We can extract equivalent scalar equations from the
tensor equation (II. 8) by choosing a convenient set of
three linearly independent vectors a{™) m = 1,2, 3,
Then we obtain nine scalar equations

?j agm)Ti]_a](_m/) =§mm =0, (H. 9)
One choice for a{m jg a(1) = F(1), a(2) = %) and
a(3) = .10 This has the advantage of giving equations
with the least number of terms.

m,m' =1,2,3.

They are

Dyf —fD4—D3)f —(f +8)C4/D)—hf =0,

D1g ~fD4—D3z)g — (f +8)(Cq/D) + hf =0,
Dyh—fD,—Dy)h~ (f +8)C,/D =0,

Dof —gDy—D3)f —(f + 8)(Ce/D)— gk +1) =0,
Dyg—~ gDy —Djy)g— (f +8)C5/D) + g + 1) =0,
Doh—gDy —D3)h— (f + 8)Cy/D =0,

Dyf —hDy—D3)f —(f +8)NC1/D)—hh +1) =0,
Dig—h(Dy—D3)g— (f +8)Cy/D) + h(h +1) =0,

Dzh—hDy—D3)h— (f + 8)Cs/D =0, (I1. 10)
where
l—a, 1—a5 a
D=det [l—ag; 1—0a; a,
oy a, a3

and C, are the cofactors of @, or 1 — o, in D,

To solve these equations, we first bring the differen-
tial operators D; to a simple form by making a trans-
formation of independent variables,

If
Br=Vay, By=Va;, B5=ag/Voga;,

Bz = [(a 05 — aga,)/(a05 — ad) Vo,
By = [(agag — aya;5)/ (@405 — a2)[Vay,
and

Bg = a3 + [(@%ag + aga, — 20 0,04)/(a 05 — a)],

(O. 11)

then

J d
< Dy =By —

2 5 ’

38, ' 3B,
9

and D, =8, —.

4 2 28,

s D, =
2B, 2=F

Dy=8
(II. 12)

We now face the second difficulty in the solution of
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Eq. (II. 10). This is the presence of the determinant
D, which is clearly difficult to integrate. The sim-
plest way out is to ignore this term by imposing the
condition f + g = 0. In the next section we shall
obtain solutions for this case.

The determinant is just (v{1) X v(2)ex)2, Its presence
is a direct consequence of the choice of vectors a{m),
i.e., (1), ¥(2) and %. This can be remedied by mak-
ing another choice, e.g., v®?), v(2), and x, which is
equivalent to expanding v in terms of ¥ and % in-
stead of v(» and x as in (1. 4).10 This trick does give
equations which have no determinant, but the corres-
ponding differential operators like D; are more com-
plicated. It is quite difficult to bring these operators
to a simple form by a transformation analogous to
(Il. 11). We have so far not succeeded in finding such
a transformation, and the equations remain highly
intractable.

II. SOLUTIONS FOR THE SPECIAL CASE,f + g=0

After imposing the condition f + g = 0, the equations
for f and g coalesce into the following six equations:

Dy + Dy)g=—g, (IIL. 1)

Dy —Djy)g + 28Dy —D3)8—~ g2k + 1) = 0,

(IL. 2)
Dyg—~h(Dy—Dg)g + hh + 1) =0, (III. 3)
(D, + Dy)h =0, (II1. 4)
(D1 —Dyh + 2g(Dy — D3)h = 0, (ImL. 5)
Dsh—h(Dy,—D3)h = 0. (IIL. 6)

We now make another transformation of independent
variables (with hindsight):

Y1 = 252, Yo = 32/51, Y3 = (32/31)34, q
va = B2/B1)Bs + B3,  v5=Bs vs="he (L. 7)
Then
0
Dy + Dy =yy —,
9y1
0 0 0
Dy—Dy=yy —+ 2yp —+ 27’3(—"‘——)
91 dyy dya Ay
Dy _r __Q_,
2 Oyy
and
D,—Dy =22
2 a'ys

The solution of (Ifl. 1) and (IH. 4) is trivial and gives
Erisyz * t ve) = WrdEhz -+ ve)
h('yl,)’z te )’e) = h(’}’z s 7’6)

The remaining four equations take a simple form
after a change of dependent variables from Z to ¢:

g=[p + 2y3 — vk (1. 8)
Then the equations are
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d 0
2(72—8‘;2“‘”73_“*'74“6_)[%}—(73—6—‘[%}=0

dy3 dy4 dy3
(O1.9)
(OI. 10)
and
el 000 (II. 11)
vy [h:l f 3 !:h] = 0. (1. 12)

Two cases arise according to whether 9¢/dy5 is zero
or not.

Case I: 3¢/dy5 = 0: In this case & can be elimina-
ted via (III. 11), Then (III. 12) becomes

zz_¢<_a_¢;>2_2_amg_a_z¢_+ <_a9>29_2_¢_=0
a?’?i 33 Oyq Oy3 Oy4dys Oy4 ,87§
(1. 13)

After we use 7 in terms of ¢ from (II. 11), in (II. 10)
we use (ITI. 9) also and get

<_a_@_ + _a£> 99 <_a_2>2 = 0.
Ovq v3/ Oyq \Oys

Then (11I. 9), (ITf. 13), and (II1. 14) can be solved com-
pletely to give

(I1. 14)

qb(')’z e

which means that

ve) = 12005, v6)/ [ya — ¢o s, ve) v — v4),
(Id. 15a)

By, +* vg)=—1 (III. 15b)

glya *** ve) = 2yalyy — y3)/[ya — ¢o(75:76)]-

(IIL. 15¢)
Case II: 3¢/0y5 = 0: In this case
¢(')/2 tee '}’5) = ¢0(75, 7’6)
and if we define
8y = va, O3 =(2y3— ¢g)/2vy, and b, =1y,/vy,
Eq. (1. 9)~(O1. 12) become
Sk _ (IIL. 16a)
and _
Sh _z 2k (II1. 16b)
64 b3
Then
Tlyy *** ve) = (63,64, v576) (IIL. 17a)
and _ _
ceeme) = (dg + 2ya — 29,0F
g(‘)’z 7’6) (¢o Y3 ')’4) (III. 17b)

= 20,(¢pg + 83 — 8 k.

Some solutions can be obtained in this case by trial
and error, e.g.,

SHUKRE AND T. F,

JORDAN

il = [A(75576) + 63]/[B(Y5; 'YG) - 64]- (]II. 18)

One can try to get general solutions by expanding h
in a power series,

) :jz=z) a;(83,755 ) (6,4). (II. 19)
Then, substituting in (ITI. 16b), one gets the following
recursion relation for a; (prime denotes 3/953):

n

]Zz,oaja,’l_]. =@+ 1)a,,,. (1. 20)

Once a, is specified, all other @; can be obtained in

terms of it via (IIl. 20). However, summing the series
(or knowing if it converges) is yet another problem.

If we assume a, = e°3 and use (III. 20), it turng out
that e-%s% depends only on 6,e%s. Using this one can
integrate (III. 16b). The solution is given by the im-
plicit equation

i = cebs*ssh, (OI. 21)
where the integration constant ¢ depends only on v5
and yg.

IV. CONCLUSIONS AND DISCUSSION

We have two classes of solutions. The first is

(1. 15b), (III. 15¢c). Now y is the variable which
carries time dependence. From (II. 15) it is clear
that the position function (II. 4) is linear in ;. There-
fore it is linear in time. Hence the second time deri-
vative of the position, the acceleration, is zero. Thus
this set of solutions describes only free particle
motion.

In the second case we know two sets of solutions,

(II1. 18) and (II1. 21). For (I1I. 18) the position (II. 3)
looks quadratic in 8, (which carries time dependence),
but due to cancellations it is really linear in time so
that again we have only free particle motion.

The solution (III. 21) gives nonzero acceleration. But
as{—+ © (i.e,, 63 > = ©)

k2 t

— Qorltl®r, n=1

t—>=-o00
Hence the position function goes quadratically with
time as £ — + © and thus does not reduce to free
motion asymptotically. As { = — © the position could
behave either as a free-particle position or as [£]?,
n = 2. The latter is undesirable.

Thus of the two possible subcases of the special

case when f + g = 0, one is completely solved. These
solutions describe only freely moving particles. In
the second subcase we have obtained only two solu-
tions. These either describe free-particle motion or
do not satisfy the asymptotic condition.

It seems possible that even for the special case
f + g = 0 there would be some solutions which are
completely physical.
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1 D.G.Currie, Phys. Rev. 142,817 (1966).

2 D.G.Currie and T. F. Jordan, Phys. Rev. Letters 16, 1210 (1966).

3 R.N.Hill,J. Math. Phys. 8, 201 (1967).

J. Math. Phys., Vol. 13, No. 6, June 1972

4 D.G.Currie and T. F. Jordan, Phys. Rev. 167, 1178 {1968).

5 D.G.Currie and T. F. Jordan, in Leclures in Theorelical Physics.
Vol. XA (Proceedings of the Tenth Boulder Summer Institute for
Theoretical Physics), edited by A. O. Barut and W. E. Brittin
(Gordon and Breach, New York, 1968), p. 91,



CONSTRUCTING

6 J.G.Wray, Phys. Rev. D 1, 2212 (1970).

7 D.G.Currie, T. F. Jordan,and E, C. G, Sudarshan, Rev, Mod. Phys.
35 350 (1963).

8 D.G.Currie,J. Math. Phys. 4, 1470 (1963).

9 T.F.Jordan, Phys. Rev. 166, 1308 (1968).

10 Instead of expanding in terms of x and v{*) in (II. 4) one could ex-~
pand in terms of ¥ = (v(1) X y@))(y(1) x y@eg)1 1) =

EXAMPLES 871

@) X x)v() X v@lex)l and ¥ = (x X v{)y(l) x vi2lex)1,
Then we would have

y = xU + F¥W) + G¥2) + gz,

These F,G,and H are linear combinations of f, g, and # with coef-
ficients which depend on the o .

Identities Involving the Coefficients in the Asymptotic Expansion of the Outgoing Scattering
Solution of the Schrodinger Equation*

Donald Gelman
Department of Physics, C. W. Post College, Gveenvale, New York 11548
(Received 27 September 1971; Revised Manuscript Received 24 January 1972)

Scattering by a short-range potential is described by the wavefunction y having the asymptotic form

¢ o ek'r +Feikr v - where § has the series representation § = f(k, &7)/r + g(k, #7)/r2 + .- .. When
only the first term in this series is taken into account,the requirement that the particle current be conserved
leads to the optical theorem. By taking into account all of the remaining terms, we obtain a sequence of iden-
tities involving the coefficients f,g,---. These identities are formally analogous to the optical theorem, which

is seen to correspond to the first identity in the sequence.

1. INTRODUCTION

Scattering by a short-range potential is described by
the wavefunction ¢ having the asymptotic form

w — egiker 4 ﬂfeiki’, v 0, (11)
where
T = fk, kryr1 + glk, ErYr2 4+ O(r-3). (1.2)

Although the scattering amplitude f(k, E7) is the only
coefficient in the expansion of § with physical signi-
ficance,! neglect of the higher-order terms may not
always be justified. Such a situation arises, for ex-
ample, in the analysis of the regularization AZ = Tr
[exp(— BH) — exp(— BHO)] of the divergent partition
function Tr exp(— gH).

In particular, the continuum contribution to AZ is
given by2

lim (27)°3 [ dk e BEx(2k)1 §

r—>00

otr) da C,
C= @™ — ™) — @ - ¥,

where E, = (i%2/2m)k2 and Y0 = eik-r; g(r) denotes
the surface of a sphere of radius ¥ centered at the
origin, and the dot and prime denote differentiation
with respect to 2 and 7, respectively. Since the area
of o(r) increases as 72, the asymptotic expansion of
C must be correct through terms of order -2, Such
an expansion is clearly not obtained if only the first
term on the right-hand side of (1.2) is used.

When only the first term in the expansion of § is
taken into account, the requirement that the particle
current be conserved leads to the optical theorem3

[d7) 7, k7)12 = (4n/F) Im f(k, k),

the symbol ] d¥ denoting integration over all direc-
tions 7. The purpose of this paper is to determine
the consequences of particle current conservation
when account is taken of the remaining terms in the
expansion of .

(1.3)

The analysis is confined to the system consisting of
a nonrelativistic, spinless particle of mass » moving
in a short-range potential V(r). There is no pretense

of mathematical rigor. In Sec. 2, the fundamental
identity (2. 8) involving the surface integrals X and
Xs is derived. Asymptotic expansions for Xs and X
are obtained in Secs. 3 and 4, respectively. These are
used in Sec.5 to arrive at the identities? (5. 8) and

(5. 9) which constitute the consequences referred to
at the end of the preceding paragraph.

2. THE FUNDAMENTAL IDENTITY

The wavefunction ¥ = ¢ (k,r) having the asymptotic

form given by (1.1) and (1.2) is a solution of the

time-independent Schrddinger equation
[(—72/2m)(V2 + k2) + V(r)jy = 0. 2.1)

Since the potential V(r) is real, it follows from Eq.
(2.1) that the quantity

J=@*v) —c.c. 2.2)
satisfies the condition
V+J =0, 2.3)

Integrating both sides of Eq. (2. 3) over the volume
T(R), with 7(R) a sphere of radius R centered on the
origin r = 0, and then using the divergence theorem,
one obtains

Ponda?+3 = 0, 2.4)

where o(R) denotes the surface of 7(R).

Let ¥ be written in the form y = Y0 + s, with Y0 =
exp(ik+r) denoting the free-particle wavefunction and
Ys = Yk, r) denoting the scattered wave part of .
Substitution of this decomposition of ¥ into Eq. (2. 2)
then yields for the integrand of Eq. (2.4) the expres-
sion

P I =7+J0+ W+ W5, 2.5)

where JO is the free-particle counterpart of J and
where

= o35 s aw*)}_
W”[‘“’*(W) ‘P(W c.c.,
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1. INTRODUCTION

Scattering by a short-range potential is described by
the wavefunction ¢ having the asymptotic form
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where
T = fk, kryr1 + glk, ErYr2 4+ O(r-3). (1.2)

Although the scattering amplitude f(k, E7) is the only
coefficient in the expansion of § with physical signi-
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always be justified. Such a situation arises, for ex-
ample, in the analysis of the regularization AZ = Tr
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C must be correct through terms of order -2, Such
an expansion is clearly not obtained if only the first
term on the right-hand side of (1.2) is used.

When only the first term in the expansion of § is
taken into account, the requirement that the particle
current be conserved leads to the optical theorem3

[d7) 7, k7)12 = (4n/F) Im f(k, k),

the symbol ] d¥ denoting integration over all direc-
tions 7. The purpose of this paper is to determine
the consequences of particle current conservation
when account is taken of the remaining terms in the
expansion of .

(1.3)

The analysis is confined to the system consisting of
a nonrelativistic, spinless particle of mass » moving
in a short-range potential V(r). There is no pretense

of mathematical rigor. In Sec. 2, the fundamental
identity (2. 8) involving the surface integrals X and
Xs is derived. Asymptotic expansions for Xs and X
are obtained in Secs. 3 and 4, respectively. These are
used in Sec.5 to arrive at the identities? (5. 8) and

(5. 9) which constitute the consequences referred to
at the end of the preceding paragraph.

2. THE FUNDAMENTAL IDENTITY

The wavefunction ¥ = ¢ (k,r) having the asymptotic

form given by (1.1) and (1.2) is a solution of the

time-independent Schrddinger equation
[(—72/2m)(V2 + k2) + V(r)jy = 0. 2.1)

Since the potential V(r) is real, it follows from Eq.
(2.1) that the quantity

J=@*v) —c.c. 2.2)
satisfies the condition
V+J =0, 2.3)

Integrating both sides of Eq. (2. 3) over the volume
T(R), with 7(R) a sphere of radius R centered on the
origin r = 0, and then using the divergence theorem,
one obtains

Ponda?+3 = 0, 2.4)

where o(R) denotes the surface of 7(R).

Let ¥ be written in the form y = Y0 + s, with Y0 =
exp(ik+r) denoting the free-particle wavefunction and
Ys = Yk, r) denoting the scattered wave part of .
Substitution of this decomposition of ¥ into Eq. (2. 2)
then yields for the integrand of Eq. (2.4) the expres-
sion
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where JO is the free-particle counterpart of J and
where
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J. Math. Phys., Vol. 13, No. 6, June 1972

(2.6)



872 DONALD GELMAN

2.7

Ws = [\DS*G;D;):, —c.c.

Since Eq. (2. 4) is valid for JO as well as for J, it fol-
lows from Eq. (2. 5) that

Poy da(W + W)= X + X5 = 0. (2.8)

(It should be noted that this equation is valid for all
values of 7, and is therefore an identity in ».)

3. ASYMPTOTIC FORM OF Xs

The quantity & defined by (1. 1) is assumed to have
the series representation

o0
¥ = E fn‘)’"(”+1),
n=0

with £, = f,(k, k%), and with f, = f and f,= g. Using
Eq. (3.1) and the relation3

(3.1)

Ys — ggikr’ r = ©, (32)

one can easily show that

% - §,eh, (3.3)
where
§, = ik§ + -aa-g (3. 42)
o0
= 20 yur (3. 4b)
n=0
Yn = ikfn —n n-1° (3.40)

Substituting (3.2) and (3. 3) into Eq. (2. 7), and then
using Eqgs. (3. 1) and (3. 4b), we find that Ws has the
asymptotic form

Wws - §, — c.c., (3.5)
where w

F,= §*¥F, = nZ=)0 c,r ¢, (3. 6a)

n

¢, = ]Zj) I Y nes (3. 6b)
The asymptotic form of the surface integral

X2 § da
is therefore given by

Xs - %‘2 B,¥ ", (3.7a)
where "o

B, = [ dr(c, —ch). (3. Tb)

4. ASYMPTOTIC FORM OF X

The asymptotic form of W, obtained by substituting
(3.2) and (3. 3) into Eq. (2. 6), is

W — Feirr@m) —c.c., (4.1)
o0

F,=F, +ikuF = 25 a, v 1), (4.2a)
=0

a, =itk(l +p)f, —nf,-1, 4.2b)

where i = £+7 and where Egs.(3.1) and (3.4) have
been used. Introducing the usual spherical polar

J. Math. Phys., Vol. 13, No. 6, June 1972

coordinates, with % as polar axis, we have from (4.1)
and Eq. (2. 8) that

X= $oydaW =72 [ dg [T duw (4. 32)

- J§Tdgeitrr2 —c.c., (4. 3b)
where

1= [l duggen, . 3¢)

Substitution of Eq. (4.2a) into (4. 3c) and interchange
of the order of summation and integration then yields
for I the series representation

o0
=25 Ja,)r &0 (4.4)
n=0
where the functional J is defined by
J[w] = f_ll due iy, (4.5)

Integrating by parts N times, with N an arbitrary
positive integer, we obtain for J the asymptotic
series®

N
J[w] =23 p [w](ikry™ + Gkr)y ¥ J[wW)], (4. 6a)
n=1
where the functional p, is defined by
pn[w] = egnthry w(ﬂ-l) }_ia

(4. 6b)

and where w ("™ denotes the mth derivative of w with
respect to u.

Consider now the decomposition

I=8y+Ry, N=2 (4.7a)
of the series (4. 4), with
N-2
Sy=2 J[a,] oD 4. )
n=0

and with Ry denoting the sum of the remaining terms
in the series for I. From Eq. (4. 6a), it follows that
R, is of order »~W*1), 1t also follows from Eq. (4. 6a)
that in order to obtain S, correct to order 7V, the
coefficient J[a,] in Eq. (4. 7b) must be correct to
order v~ W=1) ~ We therefore make the substitution
N-n-1
I[a,] = El p;la,) @hr)i + 0@ )
=
in Eq. (4. 7). This leads, after some algebra, to the
relation

N-2
Sy = 20 g, 7D+ O(r¥-1),

(4. 8a)
n=0
where .
9, = -Z)o (ik)_(n_j+1)pn-j+1[aj]' (4 8b)
j=

The asymptotic series for 727, correct to order » ¥
for any N = 0, is therefore given by?

N
r2l = E an“”,
n=0

and, in view of (4. 3b), the corresponding series for X
is

N

X = 25 (,—uy)r™, “.92)
n=0

u,= foz" dpeitrq, . (4. 9b)
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5. IDENTITIES INVOLVING THE COEFFICIENTS f,

Since the relation X + Xs = 0 is satisfied identically
for all values of 7 [see the remark at the end of Sec.
2],it follows from (3.7a) and (4. 9a) that the equation

Bn+un—u’;=0 (51)
holds for all integers» from 0 to N. Since N is arbi-
trary, however, Eq. (5. 1) must hold for every non-
negative integer =n.

Substituting Eqgs. (4. 8b) and (4. 6b) into Eq. (4. 9b), we
see that #, can be written in the form

u, =

n

1 Nl 2 . . at1-1
jZ:E) (i) i 1)f0“ dpeirrfemibrug ]|,
In view of the fact that the integrand is independent
of ¢, it follows that

u, = 2nfe2ikr o (— 1) — a, (1)], (5.2a)
where u
a, =25 (kY @iV =D (5.2b)
i=0

and where a,(*1)= @, |,_,;. Substitution of Eq.(5.2a)
into Eq. (5. 1) then yields

B, + 2nlar (1) — a,(1)] + 2n[e2i47 @, (— 1) — c.c.] = 0.

Since this relation must hold for every value of 7, we
conclude that

B, = 21[a,(1) — c.c.] = 4mi Ima, (1) (5.3)
and that
a,~1)=0. (5.4)

Equations (5. 3) and (5. 4) are the essential results of
this paper. Our final task is to express them directly
in terms of the coefficients f,,.

From Egs. (3. 6b) and (3. 4c), we find after performing
some elementary manipulations on the summations
that the integrand of Eq. (3.7b) is given by

n n
¢, —c¥ =2ik -Eo];*f"_j + jZ)l(n — 2 + V)Y f. (6.5)
5T -
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To express the quantity a, in terms of the f,, it
should first be noted that the coefficient a, defined
by Eq. (4.2D) is, in addition to being explicitly depen-
dent on , implicitly dependent on it through the fac-
tors f, and f,_;. With this in mind, the relation

m =1,

(5.6)

a{m = ikm f{ D + k(1 + ) fim™ —nf oy,

may easily be established by mathematical induction
on the integer m. Substituting Eq. (5. 6) into Eq.(5. 2b)
and juggling the summations, we obtain

n n
a,= (1 +p) 2 GRYILLE) — 25 k)il — 2f + DD,

= =

! ! (5.7)
It then follows from Egs. (3. 7Tb), (5.5), and (5.7) that
Egs. (5. 3) and (5.4) can be written as

n
2ik jZ:)O{ Jar £, — (a/k) Im[GRY 759 (1)]}

¥ il (0 — 2 + D{faP£2, £,
~

+ 4mi Im[(GR) £ 5D (1]} = 0 (5.8)
and
n
2 e —2j + D)ERyIfYD(1) =0, (5.9)
j=1
respectively.

When n = 0, Eq. (5. 3) reduces to
2ik [d7 f¥f, = 8ni Imfy(1),

which is equivalent8 to the optical theorem [see Eq.
(1.3)], and Eq. (5.4) is satisfied identically since
ag= (1+ u)f,. Forn =1,Eq.(5.4) is again satisfied
identically since a, is also proportional to (1 + p),
and Eq. (5. 8) becomes, after some rearrangement of
terms and the substitution of f for f; and g for f;,

Jar (f*g + fg*)

= (4n/k) Img(1) — (4n/k2) Res*(1). (5.10)
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All tensors of contravariant valency two, which are divergence free on one index and which are concomitants
of the metric tensor, together with its first two derivatives, are constructed in the four-dimensional case.
The Einstein and metric tensors are the only possibilities.

1. INTRODUCTION

In the general theory of relativity the Einstein field
equations in vacuo are frequently introduced by solv-
ing the following problem: To construct all tensors of
valency two, the components A#* of which are:

(a) concomitants of the metric tensor g; ; and its
first two derivatives, i.e., !

Ahk =Ahk(gij; gij,ygz'j,ys); (1.1)
(b) divergence free, i.e.,?2

Ahk P =0; (1.2)
(¢) symmetric, i.e.,

Akt = Akh, (1. 3)

(d) linear in the second derivatives of g;;.

The field equations iz vacuo are then assumed to
take the form
ARk = 0, (1. 4)
Cartan3 and Weyl and Vermeil? have shown that the
only A”* with the properties (2)-(d) is
Ak = gG e + pght (1. 5)
where a, b are constants and G** is the Einstein

tensor,5 in which case (1. 4) gives rise to the usual
Einstein field equations with the cosmological term.

Recently the problem of constructing explicitly all
A% which satisfy (a)-(c), without insisting on the
severe restriction (d), was solved, 6 the general
solution being

Jap-1Jay

]
hk ks hhp sk iy
A= a 6.t ¥R ¥2...R
i w8 Jiyesrdgy “thyhy L

+ aghk, (1. 6)

iy
where a(,,a are constants and 6 1... jx is the general-

ized Kronecker delta, By virtue of‘the fact that if
n <N, then

Byeesi
O iy =0

identically,? (1.7
it is easily seen that, for » = 4, (1. 6) reduces exactly
to (1. 5). Consequently (a)-(c) and the assumption of
the four-dimensionality of space implies the linearity
condition {d), in which case, in general relativity, the
apparently crucial assumption (d) is superfluous.

It is the purpose of this note to show that in the four-
dimensional case the symmetry condition (c) is also
superfluous, in the sense that it is a consequence of
(1.1) and (1. 2). More exactly we shall prove the
following.

Theovem: If A** gsatisfies (1.1) and (1. 2), then
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Akk = qGhE 4 pght

is an inevitable consequence for n = 4.

We should stress that no assumptions are made with
respect to the first index of A% (for instance, we do
not assume that A#*,, = 0),

2. PROOF OF THE THEOREM

The purpose of this section is to construct, for n = 4,
all tensors A** which satisfy (1.1) and (1. 2), without
insisting that (1. 3) be satisfied.

By virtue of the fact that A** is a tensor satisfying
(1.1) the quantities

GARk
ag'rs.tu

are the components of a tensor of contravariant
valeney six with the following symmetry properties,8

Abkrs, tu — (2-. 1)

; = sSr.tu = ARRTS,
ARkrs ity = Ahkisr.tu — Ahkrs ut,

{2.2)
Ahkirs,tu + Ahkoru,st 4 Ahkirt,us — O,
from which it can be shown that
Akkrs, tu — Ahk,’tu,rs‘ (2‘ 3)

Furthermore, it is easily seen that (1. 2) is equivalent
to the condition

Abkrs,tu + Ahuirskt 4 Ahtirsuk — (), (2. 4)

In view of (2. 3), Akk'7s.tu satisfies a cyclic identity

similar to (2. 4) on the indices krs,

We introduce the tensor A##i7s.txiab.cd defined by
0 ARk Ys tu

A hkvrs,tuab,cd =
agab,cd

(2. 5)

and, since
Abhkvs, tusab,cd — Ahkcab,cdirs, tu,

then Akkvs.tuab.cd wi]l have the same symmetry and
cyclic properties in the indices kkabcd as it has in
hkrstu, viz., (2. 2), (2. 3), and (2. 4). In Appendix A
we prove that because of these properties

Ahkirs, tujab,cd — () (2. 6)
when n = 4, the essence of the argument being that
some of the twelve indices of A#*.7s.tu/ab.cd myst

coincide in a four-dimensional space. By virtue of
(2.5), (2. 6) implies that

Ahkrs, tu — Ahk.‘vs,tu(gab;gab c).

However, since A%*:7s.tx jg a tensor, it must be inde-
pendent® of g, ., i.e.,

(2.7

AR sty — ahk,’rs,tu(gnb)’
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where ahkrsitv ig a tensor satisfying (2. 2)—(2. 4) and
is a concomitant of g, only.

From (2.7) and (2. 1) we thus see that
APk = ghtirsitug 4 Ohk(g g ),

which, as usual,? by (2. 2) and (2. 3), can be expressed
in the form

Akl = %ahk,'vs.tuR”su + Bhk(gab)’ (2.8)

where B** is a tensor and a concomitant of g, alone.
Consequently, the problem of finding the most general
Ar® gatisfying (1. 1) and (1. 2), in a four-dimensional
space, reduces to the problem of finding $%* and
akkrs.tu which has been solved elsewhere. In fact

it can be shown that®

pH = b, 2.9)

where b is a constant, while any tensor of contravar-
iant valency six which is a concomitant of g, alone
must be of the form?0

alkirs.tu — ghkrs,tu y phkrs, tu

(2.10)
with
ahkirs.tu = g ghkgrsgtu + g ghkgrigsu + g ghtgrugts
+ a ghTghsgte + a ghrghigs + g ghghugts
+ a,ghsgtrgtn + agghgklgTe + ggghigkugty
+ ay ghtghrg s + allghtgksgm
+ @, ghlghugrs + a ghughigts
+ ay,ghughsgrt + a,  ghughtgrs (2.11)
and
bhkirs.tu = (b, ghkevstu + b, ghveksiu + b, ghschriv
+ byghtekrsu + b ghuehris 1 b ghrehstu
+ baghSehriu + hoghichrs + b ghuchris
+ byogTehkin 4 b grtehbsu 4 b gruchkst
+ byggstehtr + b gsughtrt

+ by gtuehtrs) Vg, (2.12)

where the a, b, p=1,...,15, are constants, ¢%/*
is the Levi-Civita symbol, and g = [det(g;)|.

If we now impose (2. 2)~(2.4) on a**:i7s.tv gnd make
use of Appendix B, we find

A5 = Qg = Qg = Qg =019 = Ay

=a,3 =04 =a (say),
Ay = Qg =04 =0q = Ay =Uy5=— 20, aq=4a,
{2.13)

We substitute (2. 4)~(2. 13) in (2. 8) and observe that
phkrs, tuR irou = 0,

to find
AP = _ BaGhk + bghk,

which is the desired result, since « is a constant.

Finally we remark that in general (1. 3) will not be
a consequence of (1,1) and (1.2), ¢**/vg and

ehtrstug abR /g being counter examples in
spaces of dimension two and six, respectively.
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APPENDIX A

The purpose of this appendix is to show that, for
n =4,

AbRirs tusab,cd — (),
We shall adopt the following notation,
Ahksrs,tuiab,cd = (hk; vs, tu; ab, cd),

and we shall suspend the use of the summation con-
vention in this appendix.

If five or more of the indices rsiuabcd are equal then,
by virtue of (2.2), (kk;7s, tu;ab, cd) =0.

If four of the indices 7sfuabcd are equal, then we also
find (hk; vs, tu; ab, cd) = 0 by (2. 2) and (2. 4).

If three of the indices rstuabcd are equal, the only
quantities which are not trivially zero from (2. 2)

are equivalent to (ba; ii, jk; jf, ik), (ba; i, jj; ij, kk),

(ba; 11, jji; i, k1), (ba; i1, i, ik, j1), (ba; 4, jB; j7, il),

(ba; i1, jj; 21, kk) and (ba; @i, kL; ik, jj), where ¢, j, k, [ are
distinct indices selected from 1, 2, 3, 4 and b, a are
any of 7,7, k, 1. Clearly, by (2.4),if ¢ =i or a =,
then all these quantities vanish. By setting a =k

and ¢ = [ in turn, and using (2. 2) and (2. 4), we find
that the remaining quantities also vanish in this case,

Finally, if two of the indices »sfuabcd are equal, then
it is not difficult to show, from (2. 2), that (bi; i/, k;
ij, k1) and (bi; i, kl; ik, jl) are the only independent
quantities which are not trivially zero, The first of
these is easily dealt with, but the second requires a
little more analysis, which we now give in order to
illustrate the technique. By repeated use of (2. 4)

we see that

(bi; 4, kL ik, j1) = —

1
2
1
=+ 3
1
4

(b; i, kL; ik, jI)
(bl; ii, kl:ik, jj)
(bk; ii, kl; 4L, jj)
$(bL; i1, ks il, jj)

= — i (bi; id, kk; 11, jj)
=0.

APPENDIX B

The result which is required in deriving (2. 13) is
the following: If

a,ghhgrsgin + o ghkgrigsu 4 g ghkgrugts
+ a4gh'rgksgtu + asghrgktgsu + a6ghrgkugts
+ a7ghsgkrgtu + asghsgktgm+ agghsgkugtr
+ oo ghigtg s+ ay ghtghsgme + oy, ghtgkugrs
+ @, gmghgts + @, ghughsgrt + a, s ghughtgrs
+ (Blghkerstu + Bzghrekstu + 53ghs€k7tu
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+ B4ght€k-rsu + Bsghu€krts + igsgkrehstu

+ B7gks€hrtu + Bsgktehrsu + ngkuehrts
+ 610 grsehktu + Bllgrtfhkm + Blzgmehkst
+ BI 3gst€hkm + Bl4gsu€hkrt

+ B 5 gtrehtrs) /g = 0, (B1)

where o, B, p=1,...,15 are constants, then
a, = 0. This is easily seen as follows. Consider
three orthogonal vectors X,,Y;, Z; each of nonzero

DAVID LOVELOCK

length, If we multiply (B1) by X, X, Y Y. Z,Z , then
clearly a; = 0. The remaining @, vanish in a similar
way.

We note that in general we cannot conclude from
(B1) that B, = 0, in view of the identity

gaiejkhl + galeijkh + gahelijk +gaé€hlij 4 gajekhli =0
which follows from

ijkhl _ar_stuv __
6rstuvg € =0

1 Unless otherwise specified, Latin indices run from 1 ton. A
comma denotes partial differentiation.

2 The summation convention is used throughout. The vertical bar
denotes covariant differentiation.

3 E. Cartan, J. Math. Pure Appl. 1, 141 (1922).

4 H. Weyl, Space-Time-Matter (Dover, New York, 1922), 4th ed.,

pp- 315 ff.; H. Vermeil, Nachr, Ges. Wiss. Gittingen, 334 (1917).

If X* is any contravariant vector field, then we define the Rie-

mann curvature tensor R,:,, the Ricei tensor R, , the curvature

scalar R, and the Einstein tensor G, by

Xije—Xiyy =Ry X> R

Ry

_ i
wi = Bl

R =g%R
respectively.

6 D. Lovelock, J. Math, Phys, 12, 498 (1971).

7 For applications of this result see D.Lovelock, Atti Accad.Naz.
Lincei Rend. 42, 187 (1967); Proc. Cambridge Phil, Soc. 68, 345
(1970); Matrix Tensor Quart. 21, 84 (1971).

8 H. Rund, Abhandl. Math. Sem. Univ. Hamburg 29, 243 (1966); J. C. du
Plessis, Tensor 20, 347 (1969).

9 D. Lovelock, Arch. Ratl. Mech. Anal. 33, 54 (1969).

10 M. A.McKiernan, “Tensor Concomitants of the Metric Tensor,”
Demonstratio Mathematica (to be published).
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Weyl's method for the construction of irreducible tensors of the unitary group is used to construct a basis for
any irreducible representation of U(k) or GL(k) in terms of Bose creation operators. A simple way is indicated
to select a complete but not over complete basis from the functions obtained. The basis obtained can be useful
in nuclear or molecular calculations, as well as in some mathematical problems.

1. INTRODUCTION

The orthogonal Gel'fand basis! for the IR (irreducible
representation) of U(k) is well known and has found a
wide range of applications.1-3 Yet earlier a nonortho-
gonal basis of irreducible tensors was used. These
tensors are obtained by applying Young symmetri-
zers4 to the indices of reducible tensors. This basis
was introduced by Weyl® using essentially arguments
of the permutation group. We shall describe this
basis in terms of Bose creation operators in the next
chapter and we will call it for short the Weyl basis.
Although Weyl used this basis to obtain many results,®
the basis itself has never been investigated in similar
detail as the Gel'fand basis. Thre first problem arises
from the fact that, the basis is over complete; that is,

the number of states obtained is larger than the dimen-

sion of the IR.

In Sec. 3 we shall therefore eliminate the redundant
states and give a method to obtain a complete but not
over complete basis, which we will call the reduced
Weyl basis. In the following chapter we show that we
could proceed similarly if we wish to use Fermi
operators, which are important for many applications.
Finally we point out some possible applications in
molecular and nuclear physics, as well as in mathe-
matical problems.

2. THE WEYL BASIS IN TERMS OF BOSE
CREATION OPERATORS

We assume to have a set of Bose operators 71§,
i=1,...,k s=1,...,k with the standard commu-

tation relations
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[75,m¢] = [(n;5)* ()T =0 (2. 1a)
[ﬂ? s Tl;)ﬂ = '5st5ij~

We then know2.3 that any product of N such operators
forms a basis vector for the IR [N ] of U(k X k). We
may pass to the subgroup

W) X Uk) C Uk x k),

and
(2.1b)

.2)

where U(k) is acting on the upper and U(%) on the
lower indices alone. The IR in both groups have to
be identical. We may have an arbitrary basis vector
of a certain IR of U(k) even if we chose the vector to
be of highest weight with respect to U(k).3 We there-
fore must be able to construct any basis vector of the
IRf={[fy,...,f:] of U(k) as a homogeneous poly-
nomial in which each term contains f1 operators n},
S5 operators n%, etc. and finally f, operators n%. Here
¢ is an arbitrary index that for each operator 7§ may
take any value from 1 to k. Certain restrictions will
appear later.

If we now take the construction prescription for the
Weyl basis, we immediately obtain such polynomials.
We draw the Young diagram and fill in the creation
operators in such a way that in the first row all upper
indices are one, in the second two, etc. Thus the
highest weight structure with respect to U(%) is imme-
diately apparent. The lower index has to be numbered
and it proves to be convenient to give in turn an upper
index denoting the row it stands in and a lower index
for the column. Thus a creation operator reads as

s
nis .
m
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1. INTRODUCTION

The orthogonal Gel'fand basis! for the IR (irreducible
representation) of U(k) is well known and has found a
wide range of applications.1-3 Yet earlier a nonortho-
gonal basis of irreducible tensors was used. These
tensors are obtained by applying Young symmetri-
zers4 to the indices of reducible tensors. This basis
was introduced by Weyl® using essentially arguments
of the permutation group. We shall describe this
basis in terms of Bose creation operators in the next
chapter and we will call it for short the Weyl basis.
Although Weyl used this basis to obtain many results,®
the basis itself has never been investigated in similar
detail as the Gel'fand basis. Thre first problem arises
from the fact that, the basis is over complete; that is,

the number of states obtained is larger than the dimen-

sion of the IR.

In Sec. 3 we shall therefore eliminate the redundant
states and give a method to obtain a complete but not
over complete basis, which we will call the reduced
Weyl basis. In the following chapter we show that we
could proceed similarly if we wish to use Fermi
operators, which are important for many applications.
Finally we point out some possible applications in
molecular and nuclear physics, as well as in mathe-
matical problems.

2. THE WEYL BASIS IN TERMS OF BOSE
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We assume to have a set of Bose operators 71§,
i=1,...,k s=1,...,k with the standard commu-
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[ﬂ? s Tl;)ﬂ = '5st5ij~
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may pass to the subgroup
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lower indices alone. The IR in both groups have to
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of a certain IR of U(k) even if we chose the vector to
be of highest weight with respect to U(k).3 We there-
fore must be able to construct any basis vector of the
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nomial in which each term contains f1 operators n},
S5 operators n%, etc. and finally f, operators n%. Here
¢ is an arbitrary index that for each operator 7§ may
take any value from 1 to k. Certain restrictions will
appear later.

If we now take the construction prescription for the
Weyl basis, we immediately obtain such polynomials.
We draw the Young diagram and fill in the creation
operators in such a way that in the first row all upper
indices are one, in the second two, etc. Thus the
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diately apparent. The lower index has to be numbered
and it proves to be convenient to give in turn an upper
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As an example let us consider the IR f = [421] of
U(4).
1
N1 n;2 LIFR! n};
2 2
;2 N2 (2.3)
s

Here the lower indices i, are still arbitrary. We now
apply the Young operator as defined in4 to these in-
dices. Because of the Bose character of the i the row
symmetrization is superfluous and we only have to
antisymmetrize the columns; we may achieve that by
forming the corresponding determinants, if we omit

all factors of the symmetrizers and antisymmetrizers.

We may do this as any normalization of nonorthogonal
states is meaningless. For Example (2. 3) the homo-
geneous polynomial then reads as

(2. 4)

Alf? ,3A11,2A 1A 1
where the A are defined according to the notation of
Ref. 2 as determinants:

AS =13, (2. 5)

K3

asf =mgnt —nsnl,ete.

The polynomial (2. 4) must be either a basis vector of
the IR [421] of U(4) or zero. The latter is obviously
the case if any two lower indices standing in the same
column are equal.

We obtain a basis vector of f if we impose the just
mentioned condition, because the monomials obviously
form tensors and the homogeneous polynomials are
formed according to the standard Weyl procedure.*
There cannot arise any loss of generality from put-
ting all upper indices s into the sth row as any other
ordering would either yield zero (if two equal upper
indices appear in the same column) or would at most
differ by a sign caused by the reordering in the de~
terminants. The fact that the basis is complete if we
choose all possible lower indices follows from the
construction, but will be independently proved in the
next chapter. We find that all states constructed in
the described manner will have a well-defined
weight,3 which is very important for all applications.

3. THE REDUCED WEYL BASIS

Up to this point we essentially gave a reformulation
of well-known facts in the second quantized picture.
We now reach the main purpose of this paper; namely
to formulate and prove a method for selecting a com-
plete, but not over complete set of these states.

‘We will achieve this by imposing an ordering condi-
tion on the indices i$, similar to the conditions exist-
ing for a standard Young tableau.4 These conditions
are (as we shall prove in this chapter and the appen-
dix)

ifm <m' (3.1a)

T ifs<s'. (3. 1b)

We can see that the conditions vary from those for

standard Young tableau by allowing also the equal
sign in Eq. (3. 1a).

We now define a set of numbers a§ that will uniquely
characterize our generalized tableau. @ indicates
the number of times a lower index ¢ appears in the
row s. Conditions (3. 1a) and (3. 1b) immediately show
that

as =0 ifi<s, (3.2)
Further restrictions on the a$ are imposed by Con-
ditions (3. 1a) and (3. 1b) but we Ywill not obtain them
explicitly; rather we define a new set of numbers

g
Hg = 25 a5, (3.3)
i=s
Here s < g < k must hold and we find
Hg =/, (3.4)

The numbers H§ again characterize the generalized
Young tableau uniquely. Further we can explicitly
formulate Conditions (3. 1a) and (3. 1b) as

s > Hs >
Hy= Hj =

Hg™l, (3.5)
These relations may be checked by comparison with
(3.1a) and (3. 1b) if we keep in mind that Hj is just
the number of ns with { < g in the row s of the tableau
defined by (3. 3). Conditions (3.5) are identical to
those for a Gel'fand scheme.2 If we consider that the
generalized Young tableau and therefore also the
numbers H$ characterize uniquely our selected Weyl
states, we obtain the important result that the number
of states we selected is equal to the number of
Gel'fand states and thus to the dimension of the IR of
U(k) considered. Note though that this by no means
implies that the selected Weyl states are Gel'fand
states; such an assumption is false, except for U(2)
where the states are determined by their weight.

We mentioned earlier that Weyl states are of definite
weight. The components of the welght are given by

=Z}aé=§;,1HiS—Z)H (3. 6)

States of different weight are obviously orthogonal.

We have already shown that the number of basis states
in the reduced Weyl basis defined by Eqgs. (3. 1a) and
(3. 1b) are equal to the dimension of the correspond-
ing IR. In order to prove that we have a complete but
not over complete basis we thus have to show that the
states selected by Egs. (3. 1a) and (3. 1b) are indepen-
dent. This is done in the Appendix;the method con-
sists in defining an order for states of equal weight
and then showing that the leading term

k s

snls 1(7’)1

3.7)

of the product of determinants of a certain state does
not appear in any state that is “lower” according to
the ordering defined (the author is grateful to P.
Kramer for suggesting the idea of this proof). This
fact is sufficient for the independence of the states.
We have thus shown that the states selected by Con-
ditions (3. 1a) and (3. 1b) form a complete but not over
complete basis. Note that the proof for completeness
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does not make use of the knowledge that the general
set of Weyl states is complete; but only that they be-
long to the IR f of U(k).

4. OTHER PROPERTIES OF THE WEYL BASIS

We shall now proceed to show a few other properties
of the Weyl basis. First we note that we made at no
point in Sec. 3 or in the Appendix use of the Hermitian
properties Eq. (2. 1b) of the creation operators. We
know® that if we replace Eq. (2. 1b) by
[ns,(n)*] = Az, (4.1)
where A is a number depending on the indices s,¢,7, ]
we may construct from these operators a Lie algebra
of GL (k) rather than U(k). The Weyl construction is
valid for GL (k) and the dimension of finite (nonuni-
tary) IR of GL (k) is equal to the dimension of the cor-
responding IR of U(k). Therefore our prescription
(3. 1a) and (3. 1b) will also select a reduced Weyl
basis for finite IR of GL (k) that is complete but not
over complete. In a sense the Weyl basis seems par-
ticularly interesting in this case as nonorthogonality
of the basis is unavoidable, and therefore no longer
constitutes a drawback of the Weyl basis as com-
pared to the Gel'fand basis.

Going back to the group U(k) we may also ask our-
selves what happens if we consider only states of
weight

w=(1,1,1,...,1). (4. 2)
This was done by Moshinsky7 for Gel'fand states and
he finds that these “special” Gel'fand states form a
basis for a Yamanouchi or orthogonal representation
of the permutation group S(¢). As the Weyl states
have well-defined weights, we may immediately single
out the “special” Weyl states. These are a linear
combination of the “special” Gel'fand states and thus
also form a basis to the same IR of S(k). Considering
the way the basis is constructed we can identify it
with the basis for the rational (natural) representa-
tion of S(%).8 Note that also in the derivation of the
rational representation of S(&), the problem of redu-
cing the basis occurs and its solution is by no means
trivial.

We finally wish to indicate that the whole procedure
developed in Sec. 3 and in the Appendix may be equ-
ally well carried through if we use Fermi operators?
(b$)T instead of Bose operators #§. The main dif-
ferences that appear in the analysis are the following.

The IR of U(k) and U/(R) are not equal but associate?;
therefore we obtain the highest weight state in U(k) if
we fill the s column of the IR f of U(k) with operators
{p$)*. It then is adequate to apply first the column
antisymmetrizers and then the row symmetrizers. As
the columns are automatically antisymmetric,our
states are products of permanents. We may then
closely follow the reasoning for bosons to obtain the
reduced Weyl basis. Note that in relations (3. 1a) and
(3. 1b) the upper indices of i continue to characterize
the row and the lower ones the column;thus the lower
indices will coincide with the upper index of the
Fermi operator. The proof that the number of states
in the reduced basis is correct remains the same;
while the independence proof of the Appendix may be
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applied after reflecting the pattern at the diagonal if
we keep in mind that it does not matter whether the
permutations considered stem from determinants or
permanents; only the ordering will have to be done
according to the reflected pattern. Note that the basis
in terms of Bose and Fermi operators are not identi-
cal as row symmetrizer and column antisymmetrizer
are interchanged in the second case, and the two
operations do not commute.

5. APPLICATIONS

The Weyl basis may be applied in various ways ir.
calculations of nuclear and molecular physics. First,
it may be a valuable tool to choose physically signifi-
cant trial wavefunctions. This is immediately obvious
in molecular physics because, if we want to obtain the
valence bond states, e.g., given in terms of the permu-
tation group in Refs.9 and 10,in a second quantized
picture (Fermi operators) these turn out to be Weyl
states. From this fact we recognize the importance
of the Weyl basis; but the result has been known for a
long time,.

We may hope to find similar applications in nuclear
physics in the framework of cluster and supermulti-
plet considerations. One possibility appears if we
wish to extend Brink's model.11 We make use here of
the fact that Deenenl?2 has found that the second quan-
tized picture is compatible with the elimination of the
center of mass motion, and gives explicit prescrip-
tions how to proceed. For a more detailed descrip-
tion, especially of the non-a-clusters Deenen consi-
ders, it may be important to include excitations at the
centers (e.g.,to obtain a d-cluster). Yet we might
still want to consider only orbitally symmetrical
states at each center. This certainly will be possible
with the Weyl basis. Similar applications may be
considered if we are looking for a~like four-particle-
four-hole excitations. Note that both the application
in molecular physics and the one in Brink's model
involve nonorthogonal orbitals and thus Weyl states
of GL (k).

The physically significant states, we may select in
such a way, are not lying in general within the re-
duced basis defined in Sec. 3. We will thus in each
case have to ensure independence of the chosen
states. Nevertheless, the problem is not very critical
if we chose only a few states from the basis and
avoid obvious dependences arising from the inter-
change of indices in the determinants or permanents,

Quite a different type of applications may arise from
the simplicity of the Weyl states, which are just pro-
ducts of determinants. For instance, the overlap of
two states must be an integer if we consider ortho-
gonal orbitals. We may hope that a simple algorithm
to obtain these integers can be found, and this seems
even more probable as we know for the case of mole-
cules the Pauling numbers10 that may be easily
obtained. If we know these overlaps, the matrix ele-
ments of the generators as well as other quantities
such as representation matrices may be readily ob-
tained. It may then turn out that,in a similar way as
is well known in molecular physics,10 Weyl states
also prove to be particularly efficient for computa-
tions in nuclear physics.

Another more mathematical application of the re-
duced Weyl basis was found by Sharp.!3 He points
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out that this basis is a particularly simple solution

of the internal labeling problem (labels to distinguish
different states of the same weight within a basis of
an IR). Thus he finds this basis to be particularly
useful to solve the external labeling problem (multi-
plicity labels in the reduction of Kronecker products),
using Speiser's theorem that connects the two pro-
blems.

APPENDIX

We shall proceed to prove the independence of the
Weyl states selected by Conditions (3. 1a) and (3. 1b)
in Sec. 3. To do this we first define an appropriate
ordering of these states. This is achieved by arrang-
ing the numbers a that characterize a state into a
triangular matrix, where s is the row and i the
column index:

1
aiasa

1

2

2
aza

WK wH

(A1)
a

We then inspect the a column by column from top to
kottom, and we say that a state ¢ characterized by
numbers ¢§ comes after a state a characterized by
as if we find for the first ag = c§ that a§ > c¢§ holds.

The monomial (3.7)

t+V

/,

FIG.1. The figure shows a section from a generalized Young
tableau that characterizes a state from the reduced Weyl basis.
Only parts of the rows { — u, ¢,and { + v are shown.

nod A2
s

JLIL g)es (A2)

is the leading term of the polynomial a. We now have

to show that this term does not appear in any poly-

nomial c¢ that comes after a. This will be a sufficient

condition for the set of polynomials to be independent.

As polynomials of different weight are orthogonal we
may concentrate on the ones having equal weights.
Therefore we have that a] = ¢} = w,. We assume that
all ¢§ = ay up to a certain ¢t < al. This is exactly
what is implied by the statement that ¢ comes after a.
We thus have less operators 7} in the row ¢ of the pat-
tern describing the polynom1al c than in the same row
of the pattern describing the polynomial a. We now
have to find out whether any term in the column anti-
symmetrizer will yield the monomial Eq.(A2) when
applied to the pattern characterizing c.

This will not happen because any permutation, that is
contained in the column antisymmetrizer, will, when
increasing, the power of 7{, simultaneously lower the
power of some UH that is equal in the leading term of
both polynom1als This may be seen by considering a
part of the pattern characterizing ¢ which is shown in
Fig. 1. There u,v,! are positive integers. The lower
index j can only appear above to the right or below to
the left, but never below to the right of the n} accord-
ing to the relations (3. 1a) and (3. 1b). We may now
try to obtain a term in the polynomial ¢ with a higher
power of the n{ by considering a permutation involving
nt #;but such a term would automatically have a lower
power of ni-* than the direct term. On the other hand
according to the assumption a{™ = ¢ * and thus
power of n}““ may not be reduced, and we have by con-
sequence to discard these permutations. We may in
turn consider permutations involving n]‘-*“. The power
of this operator is not fixed by our assumptions; but
in order to obtain a nt we have to permute the lower
index with one of an operator n]‘._l and by consequence
lower the power of this operator. Yet our assumption
was that also af_; = ¢!, and thus also these permuta-
tions cannot yxeld the monomial Eq.(A2). Another
possibility does not exist as we may easily see in
Fig. 1. Therefore the leading term expression (A2)

of a does not appear in the polynomial c.
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It is proved that the modified Fredholm determinant F of the three-dimensional Lippmann-Schwinger equation
in the theory of scattering by spherically symmetric potentials is related to the Jost functions f, of angular

momentum / by

~ o . -
F= I {7 exp[(20 + 1) TrK, ]},

where K, is the kernel of the Ith radial Lippmann-Schwinger equation. The relation between the multiplicity of
the zeros of F and the degeneracy is discussed, and a relevant theorem for Hilbert—Schmidt operators is

proved. .

The theory of potential scattering is most commonly
formulated in terms of the integral equation on R3,

Y(r) = eiker + [(Ar)GHk; T, ') V(r W(r), (1)

where the Green's function G*(k;r,r’) is the integral
kernel of the boundary value of the resolvent operator

G(E) = (E — H)1,

of the self-adjoint extension H to L2(R3) of the nega-
tive Laplacean, —A, at E = k2 + 4o,

In the application of Fredholm methods to the solution
of this integral equation a quantity of prime interest
is the modified Fredholm determinant

F(E, y) = dety[1 — yG(E)V], (2)

which is known to exist as an absolutely convergent
power series in v for all values of E and v if the po-
tential function V(r) satisfies suitable conditions.?

If the potential is spherically symmetric, V(r) = V(7),
r = [r|, then the integral equation (1) is usually con-
veniently subjected to a spherical-wave analysis, that
is, Y(r) is expanded on the basis of the Legendre poly-
nomials

W(r) = (k)1 f’,j,o (@ + 1)ily, ()R (cosd),

where ¢ is the angle between r and k. The coefficients
¥, (7) then obey integral equations on R, :

U, = w (k) + [ dr'Gilky v, ¥ )V Wy (r),  (3)

where y, is a Riccati—Bessel function u,(z) = (37z)1/2
d}.1/2(2). The Green's function here is given by

(1)1l g (kYW (k7"), v > 7,
Giky7r,v") =

(1) e Ly, ey YWE) (7), v <7,
where W is a Riccati—Hankel function W®(z) =
i(—1)!(3m2)1/2H® 5(2). This Green's function is the
integral kernel of the boundary value of the resolvent
G,(E) = (E — H})"! of the self-adjoint extension H, to
L2(0,) of the differential operator H/,

2
2ty

Hy =—
! dar2 72

as E 2 kZ + do.
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In the context of solving the integral equation (3) one
is much interested in the Jost function,? which is the
(unmodified) Fredholm determinant

fi(k, y) = det[1 — 4G (E)V]. (4)

Under suitable conditions on the potential function
V(r), the Jost functions f, are known? to exist for all
values of E and y, and all nonnegative integers /, as an
absolutely convergent power series in y.

The purpose of this paper is to give the relation be-
tween the function F(E, y) of (2) and the functions
f,(E, y) of (4), in case the potential is spherically sym-
metric. It may be regarded as a somewhat belated
footnote to the paper by Jost and Pais.l

To start with, we shall take E < 0. Then the operator
— G(E) is positive and we form

g(E) = [- GE)}/2
as a positive operator. The operator

K =gVg
is self-adjoint, and -

F(E,y) = dety]1 + vK(E)]. (5)
Let the eigenvalues of K(E) be —1/5,(E), n=1,2,---.
Then F(E, v, (E) ) = 0, and the order of the zero (as a
function of 1) equals the degeneracy of the eigenvalue.
We shall include an eigenvalue as many times in the

set {'yn} as its degeneracy, that is, as there are linear-
ly independent solutions in L2(R3) of the equation*

[— A+, (E)V]dp = Ed.

The modified Fredholm determinant may then be ex-
pressed as the convergent infinite product®

- (YE)> /v (B (6)

The same argument applies to the modified Fredholm
determinant

F(E,y) = ﬁl <1 —

F(E,y) = dety[1 + y K/(E)]
= dety[1 — G, (E)V] Q)

of Eq.(3), where K, = (— G,)/2V(— G,)1/2 for E < 0.

We have the convergent product representation

)> ev/v,, (B (8)

=4 Y
E(E7 7) = 111 (1 -
n= Yn(

880
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in terms of the eigenvalues y,,(E) of K, (£) in L2(0,).
In this case it is well known that there is no degen-
eracy, i.e., each zero y,, of F,(E, y) is necessarily
simple® as a function of .

I y,,(E) is an eigenvalue of K, (E), then E is an eigen-
value? of H, +y,,(E)V on L2(0,©), with the unique
eigenvector ¢,,,

[Hl + yln(E)V](plﬂ = Ed)ln‘

Hence each of the 2! + 1 linearly independent func-
tions®

yo(r) = rte, (r) ¥ (6,9)

is an eigenvector in L2(R3) of H + y,,(E)V with the
eigenvalue E, and hence of K(E) with the eigenvalue
v, (E). Unless y,, (E) is also an eigenvalue of K;/(E),
with [’ # [, the multiplicity of y,,(E) as an eigenvalue
of K(E) is therefore exactly 2/ + 1. On the other
hand, if » eigenvalues belonging to m different /
values {4, ...,/ , coincide at E, then the multiplicity
of the corresponding eigenvalue of K(E) is ;":1

(2£; + 1). In the first instance, ¥ (£, y) must have y,,
as an (2! + 1)-fold zero, and in the second instance
the zero is [ 27 (2/, + 1)]-fold. In either case it fol-
lows that

o0
F(E,y) = I [F(E,y)Pt (9
and the product converges.

Since the unmodified Fredholm determinant f,(E, v)
also exists, it is related to the function F,(E, y) by

fl = Fl exp <— -yZnD(l/‘ym)> = er"TTrKl' (10)
We therefore have
F(E, ) = zﬁo [fl (E, y)eYTrE(E)]2i1
T C * + T Y
— lpo{ljl(E’V)]m 1p(2! 1)7HKl(,5)J\ (11)

as the relation between the modified Fredholm deter-
minant F and the Jost functions f;. The terms

exp[(2/ + 1)yTrK,| cannot be taken out of the product.
They are needed for convergence.®

The relation (9) or (11) has been demonstrated so far
only as F < 0. Let us now allow E to become com-
plex. The operators K,(E) and K(E) are analytic func-
tions of E, and so are their eigenvaluesl0 4, (E), with
the negative real axis in the domain of regularity.
The same is known for the modified Fredholm deter-
minants!l F and F,. Moreover, the products in (6) and
(8) converge for all complex values of E (and all 4),
since K(E) and K,(E) are Hilbert~Schmidt operators?!
for all complex E. Thus the convergence of the pro-
ducts is uniform in any compact domain of the E
plane that does not contain any points of the nonnega-
tive real axis. Therefore, the products are regular
analytic in any such region, and (9) holds for all com-
plex E as well. In addition, f,(E, ) is an analytic func-
tion12 of E regular in the cut E plane, and hence (10)
holds there, and thus (11).

Finally, we let E approach the nonnegative real axis.
Then K (E)and K,(E) are still Hilbert-Schmidt opera~
tors,! the products (6) and (8) still converge, and
hence (9) still holds. Similarly, the unmodified deter-
minant f, exists there and is the boundary value of

f,(E) in the complex plane.l? Hence (10) and (11) hold
on the nonnegative real axis.

Since the result (11) is based on the zeros of the func-
tions f, and F, let us discuss these briefly. For nega-
tive E, the zeros y,,(E),n = 1, 2, ..., are simple and
have no finite accumulation point.13 They are analy-
tic functions of E. Hence as E is taken into the com-
plex plane and to the nonnegative real axis, y,,(E) re-
mains a simple zero of f,(E, y), unless two or more
such zeros coincide. As E describes a path in the E
plane, each vy, (E) describes a trajectory in the com-
plex plane, and each y,,(E) remains a simple zero of
£, unless two (or more) such trajectories cross at
some value of E. Consequently the resolvent

[1 — 4K, (E)]'1 has a simple pole at y = y,,(E), and the
eigenvalue 1/y,,(E) of K, (E) is nondegenerate.

Suppose now that for E = E,, p eigenvalues y,,(E), i =
13

1,...,p, coincide, so that f,(E,, v), and hence F,(E, y),
has a p-fold zero at y = y,,(E,) = I .Then the resol-
vent [1 — 4K, (Eo)}? has a pole at y = T, whose order
M may have any value between 1 and p, 1 = M < p, and
the asceni15 of [1 — T'K,(E,)] equals M. We shall prove
in the Appendix that the facts that F,(E,, v) has a p-
fold zero at y = I' and that the ascent of |1 — T'K,(E,)]
equals M, imply that the dimensionality of the null-
space of [1 — I'K, (E,)|" equals p. Hencel® the dimen-
sionality of the nullspace of [1 - I'K, (E,)], i.e., the de-
generacy equals a/ mosi p — M + 1 (and at least one,
of course). In the special case of the coincidence of
two eigenvalues, this means that either the resolvent
has a simple pole, the ascent is 1, and the degeneracy
is 2, or the resolvent has a double pole, the ascent is
2, and there is no degeneracy.

Assuming that at E = E, no eigenvalues of K, coincide
with any eigenvalues of K, , for all [ # L, then the coin-
cidence of p zeros of F, at I implies, according to (9),
that F has a (p2‘1)-fold zero at T'. The fact that the
resolvent [1 — K, (E,)['! has a pole of order M at

y = I' implies that [1 — (K(E,)]'! also has a pole of
order M there.l7 Thus the ascent of [1 — TK(Ey)] is
M, and the theorem of the Appendix tells us that the
dimensionality of the nullspace of [1 -~ T'K(E,)}¥ equals
p21*1.

Then there is the possibility of two or more eigen-
values for different values of [ to coincide at a given
energy £ = E,. Because of the angle functions, any
two eigenfunctions in L2(0,®) of K, and K, respective-
ly, with I = I’, lead to eigenfunctions of K, in L2(R3),
that are mutually orthogonal. Hence a coincidence of
p eigenvalues of K, , with p different ! values, [,
i=1,...,p,1eads to a null space of K of dimension-
ality D = 2,? (2, + 1), that is, to a D-fold degene-
racy. The zero of F at y = I', according to (9), is D-
fold. Hence it follows from the corollary of the
Appendix that the ascent of [1 — 'K (E)] equals 1, and
therefore the resolvent {1 — K (E,)]"! has a simple
pole at =T,

The discussion of the effects of a coincidence, both of
more then one zero of K,(E), and of zeros of K, (E)
and of K,(Ey), I = L, at one and the same E,, will be
left as an exercise for the reader.
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APPENDIX

Theovem18: Let K be a Hilbert-Schmidt operator;
let o be an eigenvalue of K, with the ascent5 of
(K — a) equal to M; and let f(y) = dety(1 — 3K) be the
modified Fredholm determinant. Then the order p of
the zero of f(y) at y = 1/@ equals the dimensionality
m of the null space of (K — a)X,

Pyroof: We expand the resolvent

(2 —K)y1= gAn(z — ). (A1)

Application of (¢ — K) to both sides implies that
Tz —a)fA, ., — (K—a4,] =
2 (z—a)A,; —AK—a)=1,

and therefore

A ,=4AK—-—a)=(K—a)4,, n=0 (A2)

A, (K—a)=(K—a)A_, =0, (A3)

Al—1=AK —a)= K —-a)A, (A4)
Repeated use of (A2) leads to

A, 1=K —a)"A.{ = A (K —a)*, n>0,(AD)

Ag=(K —a)"A, = A (K —a)", n>0. (AB)
Equation (A5) together with (A3) implies that

(K—a)MA {=A{(K—a)¥=0 (A7)
and (A4) together with (A6),

Aq—1=A (K —a)¥=(K—a)MA, . (A8)
Equations (A7) and (A8) show that

(A, —1DA,;=0. (A9)

Thus A_, is a (not necessarily orthogonal) projection.
Equation (A7) shows that its range is included in the
nullspace of (K — o), Equation (A8) implies that the
nullspace of (K — a)¥ is included in its range. Hence
the range of A_; is equal to the nullspace of (K — a)¥,
Similarly, the nullspace of A_; equals the range of

({ — o). The operator A_; being a projection whose
range equals the dimensionality m of the nullspace of
(K — )M it follows that!®

TrA.; =m. (A10)
We now apply the well-known formula

d — Tra-1 () L

7y In detA(y) = TrA™1 (y) ay Al (Al1)

to the modified Fredholm determinant and obtain2¢

3"; Inf(y) = — y TrK2(1 — K )1, (A12)

If f(y) has a zero at y = 1/a of order p, then the left-
hand side of (A12) has a simple pole there, with

. 1 d .
lim (y — E) &, nfty) = p. (A13)
Hence according to (A12), trK2(z — K)-! must have a

simple pole at z = a, with

12% (2 —a) TrK2(z — K)™* = a?p. {A14)
If the series
Trk2(z — K1 = 3 Tr(K?A,) (2 — o) (A15)
M

converges absolutely, then we may conclude from
(A14) that for alln < — 1,

Tr(K2A ) =0, (Alse)
and that for n = — 1,
Tr(K 2A_;)= a?p. (A17)

The absolute convergence of (A15) is easy to demon-
strate, Since (A1) converges absolutely (i.e., in oper-
ator norm) in some neighborhood of ¢, there exist two
positive numbers R and C such that 1A | =CR™* for
alln» = — M. Hence,

ITrK2A4,| = |A, (TrK2K?2)1/2< C'R+
and (A15) converges absolutely in some neighborhood
of a.
According to (A3), Eq. (A16) implies

TrA_, = TrKA_, = 0. (A18)

Now it follows from (A2) that if Tr4 _; = TrKA _, =
0, then (A16) implies that also Tr4, = TrKA, = 0.
Hence (A18) implies by induction that for all n < — 1,

TrA, = TrKA, = 0. (A19)
Therefore by (A2) for n = — 1,

TrK?A_; = 02 TrA_; = a?m,

because of (A10). Comparison of (A17) and (A20)
proves that m = p, and hence the theorem,

Remark: Since the nullspace of (K — a)” is a
strictly increasing function?! of » for 1 = n = M, we
may conclude the following as a corollary of the theo-
rem;

The dimensionality of the nullspace of (K — o), i.e.,
the degeneracy of the eigenvalue «, is less than or
equaltop — M + 1,

It would be nice to have a more exact statement about
the degeneracy, but there does not appear to be one,

If p = 2,1i.e., the zero of f is double, then there are
only two possibilities, though: Either the resolvent has
a double pole and the degeneracy is one, or the re-
solvent has a simple pole and the degeneracy is two.
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positive definite.
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6 See Ref. 3, p. 345 and p. 375 for the proof that the zero is simple
as a function of E. Equation (9. 10) on p. 236 of Ref. 3 shows that
it is simple as a function of 4.

7 The same remark as Ref, 4 applies here.

8 ¥m(6,0) is a spherical harmonic as a function of the polar angles
g and .

9 It should be noted that whereas TrK never exists, no matter how
well behaved the potential, TrK, on R, exists if the first absolute
moment of V is finite.

10 See, for example, Sec. 9. 1 of Ref. 3.

11 See Refs. 1 and 3.

12 See Chap. 12 of Ref. 3.

13 Because f; is an analytic function of y.

14 That the pole of the resolvent is simple at a simple zero of the
Fredholm determinant follows immediately from the Fredholm
construction, That there is no degeneracy if the determinant has
a simple zero follows from the theorem of the Appendix.
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the nullspaces of Asand As*1 are equal. Since K, is compact, the
ascent of 1 —T'K, is finite; see, for example, A. E. Taylor, Intro-
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For a demonstration that the ascent of 1 — I'K, equals the order
of the pole of the resolvent at y = T, see, for example, Ref. 3, p.
208.

16 See the corollary stated in the Appendix.

17 The resolvent [1 — yK]'t may be decomposed according to the de-
composition of L2(R3) into a direct sum of the eigenspaces of the
angular part of the Laplacean. Thus

@x
fL— k1t = £ R[1 =K},
where P, are projections whose kernels are
L
B8, ¢;6", 0 = 2 Y 6,9)5@ 9",
m=-1

18 This theorem is well known for finite-dimensional matrices; for
Hilbert-Schmidt operators it does not seem to appear in the
literature.

“Tr” denotes the trace of the operator. A projection (not neces-
sarily orthogonal) of finite-dimensional range is in the trace
class and its trace equals the dimensionality of its range.

The proof of (A12) from (All1) follows from the fact that if K is in
the trace class, then det,y(1 — 4K) = det(1 — yK) exp(TryK).
Equation (A12) therefore holds for K in the trace class, with both
sides defined as absolutely convergent power series in y. Since
neither side contains TrK and (A12) is an identity of the two
power series whose convergence is assured if X is a Hilbert~
Schmidt operator, it must hold also if TrK does not exist.

The intersection of the range of L™ with the nullspace of L equals
the image under L™ of the complement of the nullspace of L™
relative to the nullspace of L™*1. Since the range of L™is a non-
increasing function of m, the nullspace of L™ must be strictly in-
creasing until the nullspaces of L= and of Lm*1 are equal. From
then on they must remain equal as m increases.
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I. INTRODUCTION

Group contractionl—3 and expansion4—12 has been
the subject of great recent interest. This interest
is of both a mathematical4~12 and a physicall3—18
nature:

(i) Unitary irreducible representations of compact
semisimple groups can be contracted to UIR for
associated inhomogeneous groups.8~10 Similarly,
UIR for noncompact semisimple groups can be con-
structed from the UIR of an associated inhomogene-
ous form by the expansion process, 910

(ii) Physically interesting groups can be construct-
ed by contracting semisimple groups.1—3 Thus, the
Poincaré group ISO(3, 1) is the “noncosmological”
limit (R, peree — ©) of the de Sitter groups SO(3,2)
and SO(4, 1), while the Galilean group G(3) is the
nonrelativistic limit (¢ — ©) of ISO(3, 1). A recently!3
proposed relativistic invariance group G(3, 1) can

be regarded as the analogously contracted limit of
the conformal group SO(4, 2) under (my, ., — 0,

R iverse — ©). Conversely, the expansion procedure
has been used to construct14—16 semisimple dynami-
cal groups from inhomogeneous relativistic symmetry
groups, and to construct17?.18 relativistic position
operators.

Although the contraction procedure has been thorough-

ly studied, 3 only relatively few>~12 expansions have
been successfully carried out. Moreover, each
successful expansion has involved a rank 1 coset.
Below we show that the simple expansion procedure
in common use is valid for all Riemannian sym-
metric spacesl® of rank 1.

. DEFINITION OF EXPANSION

Let M be a(pseudo)-Euclidean space on which a
metric-preserving stability group K acts. The
group of isometries of M is G’ =M A K (semidirect
product), and M = G’/K. We ask: under what con-
ditions can a semisimple group G be found which,
contracted with respect to K, gives the group G’ ?
Under this contraction the limit of the (pseudo)-
Riemannian symmetric space P = G/K is M;
contraction

P =G/K > G/K=M.

(IL. 1)

Nonsingular linear transformations do not change the
structure of a Lie algebra, since the structure con-
stants are components of a tensor. Singular linear
transformations which leave the structure constants
well defined also lead to contractions. Therefore,

to perform an expansion we must go outside the
framework of linear transformations on the genera-
tors of a Lie algebra.
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4 It is easy to see that for E < 0, this equation is equivalent to the
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11 See Refs. 1 and 3.
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the nullspaces of Asand As*1 are equal. Since K, is compact, the
ascent of 1 —T'K, is finite; see, for example, A. E. Taylor, Intro-
duction to Functional Analysis (Wiley, New York, 1958), p. 279.
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I. INTRODUCTION

Group contractionl—3 and expansion4—12 has been
the subject of great recent interest. This interest
is of both a mathematical4~12 and a physicall3—18
nature:

(i) Unitary irreducible representations of compact
semisimple groups can be contracted to UIR for
associated inhomogeneous groups.8~10 Similarly,
UIR for noncompact semisimple groups can be con-
structed from the UIR of an associated inhomogene-
ous form by the expansion process, 910

(ii) Physically interesting groups can be construct-
ed by contracting semisimple groups.1—3 Thus, the
Poincaré group ISO(3, 1) is the “noncosmological”
limit (R, peree — ©) of the de Sitter groups SO(3,2)
and SO(4, 1), while the Galilean group G(3) is the
nonrelativistic limit (¢ — ©) of ISO(3, 1). A recently!3
proposed relativistic invariance group G(3, 1) can

be regarded as the analogously contracted limit of
the conformal group SO(4, 2) under (my, ., — 0,

R iverse — ©). Conversely, the expansion procedure
has been used to construct14—16 semisimple dynami-
cal groups from inhomogeneous relativistic symmetry
groups, and to construct17?.18 relativistic position
operators.

Although the contraction procedure has been thorough-

ly studied, 3 only relatively few>~12 expansions have
been successfully carried out. Moreover, each
successful expansion has involved a rank 1 coset.
Below we show that the simple expansion procedure
in common use is valid for all Riemannian sym-
metric spacesl® of rank 1.

. DEFINITION OF EXPANSION

Let M be a(pseudo)-Euclidean space on which a
metric-preserving stability group K acts. The
group of isometries of M is G’ =M A K (semidirect
product), and M = G’/K. We ask: under what con-
ditions can a semisimple group G be found which,
contracted with respect to K, gives the group G’ ?
Under this contraction the limit of the (pseudo)-
Riemannian symmetric space P = G/K is M;
contraction

P =G/K > G/K=M.

(IL. 1)

Nonsingular linear transformations do not change the
structure of a Lie algebra, since the structure con-
stants are components of a tensor. Singular linear
transformations which leave the structure constants
well defined also lead to contractions. Therefore,

to perform an expansion we must go outside the
framework of linear transformations on the genera-
tors of a Lie algebra.
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Definition: An expansion of a (nonsemisimple) Lie

algebra g’ is a nonlinear mapping of its generators
X .
"
X, = f,X), (IL. 2)
which closes under commutation
[£,00, £,0] = ¢, £, (¥), (IL 3)

When c) are structure constants for a (semisimple)
algebra g we call this a (semisimple) expansion of
g’ tog.

We shall be specifically interested in the case where
g’ has a semidirect-product structure m A ¥,and g

is semisimple,

1. CARTAN DECOMPOSITION

Let f be a maximal subalgebra of semisimple g in
the sense (III. 1)

£ p:
[f,t]c ¥, (IIL 1a)
(f,p] =», (IIL 1b)
[p,p] =¥, (IIL 1c)
g(t,p) =0, (IIL. 1d)

Here the Riemannian spaces G, K, P are related to
the vector spaces g, f, p by the exponential map.19
In particular, a Cartan decomposition possesses
this property and in addition the properties

&(p,p) > 0.

Therefore, the algebra g5 = f+ px (px = ip) is com-
pact. The coset spaces P and Py are dual.

g(£t) <o, (I11. 2)

Let bases forg,¥, p be given byg: Xy,Xy, ..+ late
Greek letters;f 1 X, X35+ .« yearly Greek letters;
p: X;,X;, ..., Latin letters.

The structure constants for g are

(X Xg] = cJaXy + 0, (IIL 3a)
[Xa,X] =0+ct X (II1. 3b)
[Xl,X]] = cthX7 + 0. (I1L 3c)
The components of the metric tensor g, are
Eup = CopyChy = ci‘y cly +clyck,, (IIL. 4a)
8o = CaySy =0, (II1. 4b)
8, = cwc]‘ﬁ, =cl, c]k7 + c cjyk (IIL, 4c)
Since g is semisimple,
— det/€a80 \ =
0= llg,l = det<0aa gi]-> = lg,ll gl =0.  (L5)

Thus, the metric tensors g;. defined on p, P are non-
smgular The block diagonal structure of 8w implies
also the block diagonal structure of its mverse
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g = (fg ° giJ). (1L, 6)
IV. SOME USEFUL RELATIONS
The Casimir invariant € ,(g) is given by
gwX X, =gotX X, + giJ'Xl.X]._ (Iv.1)

The commutation properties of this invariant with
the subspace f can be written

[Xa,gﬂ%XyXB] =0=—[X, 89X, X]. (Iv.2)
The left-hand side (lhs) is a homogeneous second-
order polynomial in the generators of K, the right-
hand side (rhs), in the bases of p. By separation of
variables arguments, both sides vanish independently.
This argument is not valid for the subspace p, since
both sides are then homogeneous second-order poly-
nomials, linear in both f and p. Instead, we find the
well-known identity

(X;, 87X, X, ] = — [X;, g8, X)),

l J
&¥8ch, = —gtlcf. (IV.3)
The Jacobi identity is
CZS 8 = cr"scfB
(thv s cé‘ﬁ c;rr)
(cmctS + csﬁ ") (IV.4)

V. RANK 1 COSETS
The curvature of a Riemannian space can be defined
in a coordinate-free and a coordinate-dependent way:
R(Xp, X )X,
19 || INzo

- [[Xp!Xv]! ] Rpu )\X (V. 1)

For the Riemannian symmetric spaces P, = expp
with metric g;, (V.1) becomes

C cock _RZ]k (V' 2)

Coset spaces of rank 1 have constant sectional curva-
ture p when the decomposition (III. 1) is also a

Cartan decomposition [obeys (IIL. 2)]. Such spaces
have the additional property19—21

R(X,V)Z = plg(Z,Y)X — g(Z,X)Y}. (v.3)
The sectional curvature is given by21
p = g(R(X;, X)X, X))
k
= =68y
(@ = j fixed). (V. 4)

— Yok
= _%ZE) liC 8y
So for spaces of rank 1 we have the following identity:

4
Rij;k

I f

ct: ak p{gk] gkiéjl-}- (V.5)
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VI. A SIMPLE CONTRACTION

We now contract ¢ — g’ with respect to the sub-
algebrat:

tot, X, Y =X, VL)
p—m =£1_1)r‘13€p, Xi—>1/;=£1_r)r6€Xi.

The commutation relations of g’ are

(Yo, Ys] = dds¥,,  ddp = s (V1. 2a)
[Y,, Y] =dg Y, dy=ch, (VL 2b)
[Y,Y]=0, d)=c’) 0. (VL. 2¢)

The only information lost in the contraction g— g’

is contained in the structure constants ¢/. The
metric tensor g, of g can be reconstruc%ed from the
structure constants d using (III, 4a), but the metric
&;; cannot be reconstructed using (III. 4c) because

al; =o.

The second-order Casimir invariant (IV.1) on g can
be contracted to the second-order Casimir invariant
ong’, which is uniquely defined up to a constant
numerical factor [# in (VL 4)]:

C5(y") = lime2C,(q)
= Lim g% (eX,)(eX;) + limg ¥(eX))(€X)
=guY,Y, (VL. 3)

The uniqueness of €, (gq’) guarantees that any second-
order homogeneous polynomial invariant operator
ec2(y, Y].) which commutes with all generators ¥, Y,
of 5/, must be proportional to €5(g")

C2(Y,, Y) = hgif'Yilg . (VL 4)
Without loss of generality, we can choose h = + 1.
The choice 2 = — 1 is equivalent to a discussion of
the dual algebra g .

Construction of an invariant (VL 4) uniquely defines
the metric tensor g% and its inverse. Thus, by
(IV. 3) the information about the structure constants
¢} is not really lost at all by contraction, since

Ci? = g”ﬂdﬂkigk].. (VL 5)

Therefore, it should be possible to construct the
original algebras g, g « from the contracted algebras
0 =gk

V. SOME COMMUTATION RELATIONS

The kernal of the contraction (VI. 3) is the invariant
(IV.2) of t. Ing’ we have

8
[Ya’gy Y7 YB] = 0’

5 - (VIL. 1)
[%,87°Y,Y,] = g"%a] 1Y, Y,t.
We define now a third set of generators by
Z, =Y, (=X) (VIL 2)

Z; =|Y;, 87°Y, Y.l

The commutation properties (VIIL, 3) of these genera-
tors are easily obtained:

[Za, ZB] — CZLBZY’ (VII. 33.)
[Zou Zj] = [Ya’ [Ig’[”

= 0, (T K~ (50 3,

_ Cszk 0. (VIL 3b)

We have indicated explicitly in the computation above
that the result is valid for any invariant  of .

Finally, we compute the commutator of Z; with Z,,
The terms arising from

{y, %hix, 1,1 (VIL 4)
are of four types:
(1) [%,%,LY,] - A5 1LY,
litg
@) (LY, Y, Y] -4 °YLY, (VIL 5)

) [BY,, LY,] > A/*L Y, Y,
14
@) [BY,, LY]-A4Y5Y,.
A moment's consideration will reveal that for fixed
Latin (7, ') and Greek ( g) indices
12/ L1y 1%/ i,
Alg:Azg:A3g=A4g.

The first and fourth terms together form a sym-
metrized combination, as do the second and third,
Moreover,

LYY, =YY, Y] + YY) = XYY, + Yy, Y, (VIL 6)

g
t
LYY = LYY, + Yo Y,

(VIL 7)

Therefore, it is sufficient to compute only the first
type of term in the commutator,

We must study
B £ .
gldi g iV, Y, VY]
t, ts,B A
= P, NY, £ QY VY, + RPPEYY,

‘ (VIL 8)

We compute these tensors, term by term:

P =g Py g dsd
=g"d;d] (cl,&"") [by (IV.3)]
= g"d; {p(g;; 0] — g0k e" by (v.5)]
=—p(g"de)e" + pgirdyo);  (VIL 9a)
similarly,

Q" = pE"%d], g,)8" — pg?%d;, 6! (VIL 9b)

Finally, we come to the most involved calculation:

rs,A B En g5 gA
_ SYBg7 ]
Rij =8"d;,8 djédﬁn

_ r'r, B s’ A
- (g Tcyli) (g SCST]’J_)(___ cﬂﬁ)

[by (IV.3)2]

'r _s’s B

=g" g cr'i(cﬁtsfct}} + C:jtﬂct};') [by (IV.4)]

2 ’ £
- pg'r rgs S{Ct)j"(gs’r’éi _gs'iéj')
t
— (g, 0; — 8;:0,1)} [by (V.5)2]

J. Math. Phys., Vol. 13, No. 6, June 1972



886 ROBERT GILMORE

TABLE 1. Examples of rank 1 expansions
g =mot o =megt
System G =expg K =expt K =expt G =expyg Comments and references
G =MAK G'=M~AnK
SO — 1, q) ISO(p — 1, q) SO0(p +1,4q) Metric preserving groups
B, D, SO(p, q) ISO(p, q) SO, q) groups in real linear
SO, g — 1) ISO(p,q — 1) SO(p, g + 1) vector spaces {Refs. 5-10)
Upp —1,q) p—1,q) SUp +1,9) Metric preserving groups
A, SU(p, q) v, q) Up, q) in complex linear vector
Ulp,g —1) IU(p, q — 1) SUp,q +1) spaces {Refs. 5-10)
Sp(p — 1, q) ISp(p —1,9) Spp +1,4q) Metric preserving groups
C, Spip, 9) ISp(p, q) Sp(p, q) in quaternion linear
Spp,q — 1) ISp(p, g — 1) Splp, g +1) vector spaces (Refs, 11
and 12)
Fy 20 Fyea0
F, SO(9) M A SO(9) M A SO(9) SO(9) )
£y 59 Fie59)
A TS rt Ag S rt XS c - o s -
=pc;& —Pg c;0; — pg cyb; ciative algebra. We have used the Jacobi identity,
Ty _sts A not i i r in i i i
+ 08" e C i - (VIL 9c¢) ot in the Lie algebra, but in its universal enveloping

Summing Eqgs.(VIL.9) gives

(Pi;S)‘ + QL + RUIY, VY, =— pcji(g” T, Y)Y,

(V1L 10)
Thus we have
12;, 2] = cji— 208™Y, Y, 1, | (VIL 3c¢)
VIII. EXPANSION
The infinitesimal generators
Zo=Zas (VIIL 1)

z! = Z,/{~ 4pgmsY, Y }1/2

close under commutation to give the algebra g.
Similarly, the generators

Z, =2,
Z} =2, /i+ 4pgmY, Y 172

(VIIL 2)

give the algebra g .

IX. EXAMPLES
Examples of rank 1 expansions are given in Table L.

X. COMMENTS

(i) Strictly speaking, the Jacobi identity used in
(VIL 3b) is valid only in a Lie algebra or in an asso-

algebra. Since the enveloping algebra is associa-
tive,19 the Jacobi identity can be proved by expand-
ing the Lie brackets and rearranging terms.

(ii) The expansion procedure presented here is valid
for Cartan decompositions {(III. 1) and (IIL. 2)] only,
since it depends on constant sectional curvature.

But it actually depends on the properties of the struc-
ture constants rather than the explicit real form
chosen. Thus, the construction is valid for the com-
plex extension §¢ of g and any real form of g¢ with
some real form of t° as a maximal [(III. 1)] sub-
algebra. This is why we are able to give as examples
in Table I algebras with f noncompact. All reductive
coset decompositions (IIL, 1) have been given by
Berger.22

(iii) Contractions with respect to a maximal sub-
algebra f (III, 1) are information preserving in the
sense of (VI 2)-(VL 5). Since no information is lost
in the contraction g ,,— g¢’, it should be possible to
construct rank » expansions g’ — g, It has not yet
been possible to construct rank » expansions for

r > 1.

XI. CONCLUSION

A unified approach has been given to the expansion
problem for algebras with rank 1 cosets. It is seen
why the expansion algorithm characteristic of all

the recent literature is valid only for those cases
studied: specifically, expansions involving Riemannian
symmetric spaces with constant sectional curvature
(rank 1),
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The calculation of the free energy for the two-dimensional lattice models which obey the “ice” condition is
reviewed and summarized. The analytic properties of this function relevant to thermodynamics are obtained
for the set of those models corresponding to the absence of external fields. Detailed complex temperature
Reimann structures are presented for the KDP and F models.

1. INTRODUCTION

The purpose of this paper is to analyze the thermo-
dynamic properties of the planar “ice rule” ferro-
electric models, which are isomorphic to a lattice
statistical problem defined by the following rules:

1. On every edge of an N X M square lattice an
arrow is placed, pointing in one of two possible
directions;

2. The canonical partition sum is restricted to
those configurations in which there are two, and only
two, arrows pointing towards each and every vertex.
Thus each vertex must be one of the six types shown
in Fig.1.

3. The partition sum of the associated ferroelectric
is given by
z2= 2, Myws
allowed
con fig.

where #n; is the number of times vertex j occurs in a
given configuration; this configuration has energy e;
and the associated canonical weight

u{i = e‘Bej’

where 8 = 1/RT, in the customary notation. The e;are
shown in Fig. 1,

This paper reports the investigation of the dependence
of the ordered state and associated phase transition,
where it exists, on the two parameters €, and €, de-
fined below. The exponents are the same throughout
each region and there is no nonphysical dependence of
an accidental nature on (€, /€,).

We also discuss the Riemann surfaces for the energy
in the complex temperature plane. The free energy
is evaluated in terms of elementary functions in two
special cases.

2. REVIEW OF THE BASIC THEORY

To complete the description of the model, adumbrated
in the introduction, we shall impose periodic boundary
conditions both vertically and horizontally, although
the former is not essential. We shall refer to a row
of vertical arrows simply as a row, which then has the

EREI
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possibility of being in 2¥ states ¢. Rather than speci-
fying the states of the horizontal arrows between the
rows, it is sufficient to define a transfer matrix T(¢,
¢') = Y e BE(8=1/kT), where the sum is over all
allowed configurations of horizontal arrows consis-
tent with the lower row being in state ¢’ and the next
higher row being in state ¢; E is the sum of the vertex
energies formed by the two states ¢, ¢’ together with
the horizontal arrows. From the definition of the par-
tition function we have simply

zZ@) =2

b

e ? T((I)l’ d)M) T(¢M,¢M—1) Tt T(¢2’ qbl)

= Tr{T¥] = Z}A]M, (2.1)
where X, are the eigenvalues of T. Since the elements
of T are nonnegative, the Perron—-Frdbenius theorem?!
guarantees that there is a positive maximum eigen-
value A which corresponds to an eigenvector having
nonnegative components. We have simply

lim (1/M) InZ = InA.

M-

(2.2)

We must thus formulate and solve the equation
TV = AV,

It has been demonstrated? that horizontal periodicity
and the ice rule are sufficient to ensure that T(¢,¢')
= 0 unless ¢ and ¢’ have the same number z of down
arrows, so that T decomposes into blocks of dimen-
sion (¥),n =0,1,...,N. It is convenient to define an
average polarization

y=1—-2n/N, —1=y=1, (2.3)
Since we need only solve the eigenvalue equation in
each block separately, it is convenient to denote the
corresponding eigenvector by f(xy, ..., ¥, ), where
1=x =x,=---=x, = N denote the positions of the
down arrows. We shall also denote the n-tuple simp-
ly by X. In a given matrix element, the first down
arrow can occur in either the lower or the upper row,
and so accordingly we can write

T=Tg +7T,,

where

(2. 4)

FIG. 1. The six allowed
vertex configurations,

s
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0, ifx,, =y =x, =1
ToX,Y) = | =% P
0, otherwise,
{£0, ifx, <y, =x,
T, (X,Y) = ’ i i i+l 2.5
1 ) '0, otherwise. (2.9)

(The subscripts R, L refer to the direction of the
horizontal arrows at the extremities.)

Because the zero of energy may be chosen freely and
n-conservation implies that the number of type 5 ver-
tices must be the same as the number of type 6 ver-
tices on every row, there can be only four independent
vertex energies. We take as these a linear combina-
tion of the vertex energies for the KDP3 and F¢
models together with energies corresponding to the
presence of direct (horizontal and vertical) fields:

e, =€ —h—v, e

g =€y th+u,

e, =€ +te, —h+0, (2.6)

e, =€ te, th—v, e;=e;=¢€.
Now, because the configuration energies are linear in

the vertex energies, for each element of the transfer
matrix, we have T = TKDPTFTHTV,

For convenience we define the quantities

K, =pe, H=ph, V=540 (2.7)
Then, by inspection, we find
TY = eNVs = T,
(2.8)

TH = oNH g2HEy;-x) = @2NH TH (X, Y).

The transfer matrices for the F and KDP models
are3,4

F(X,Y) = TF (X,Y)
= expl:—K2<N —2n +2 ? %) b(x; —%ﬂ
TKDPP (X, Y) (2.9)
n n-1
= eXPK1<_ + ? O — %) +2 ? 00ing _xi))
TFoP(X,Y)

n
= epr1<—N —n+ 2y, —x; + 280, ——xi)]> .
1
We must now solve the eigenvalue equation

Af(X) = ;) T(X, Y)f(Y) + ZL) T,(X,Y)f(Y),

where the sums denoted R and L are over all

1=y, =--- =y, = N consistent with the first or
second condition in (2. 5), respectively. The solu-
tion of (2.10) follows precisely the treatment of the
ice model2 to which we refer for details. We find that

(2.10)

A=Ap+ 7L,
_ — pitk+2
AR = eN(Vy-K,+H) ﬁ 24 ¢h e
=1 1—exp(ik; — K, — 2H)’
2A — ¢ K, — p-ik;-2H
AL = eN (WK, ~Ky~H) ﬁ i ’ + (2.11)

j=1 1 —exp(—ik; —K, —2H)

J. Math. Phys., Vol. 13, No. 6, June 1972

where

2A = ey + oK, — 2Ky Ky (2.12)

The numbers k]. are obtained by solving the n-equa-
tions

e’kN—l'IB(k k), i=1,...,n, (2.13)
i=1
1«"]
where
B(q,py't = B(p,q) = €100
48+i(prq) 2H+4
:1+e t{pq 2Ae2H P 2. 14)

1 + edHE i) — 2A62H+iq‘

When H is nonzero, the function 6 is not real so that
the numbers k; are complex. What happens in this
ctase has been explored briefly by Sutherland, Yang,
and Yang, 5 but the details of their calculation are not
available. In the remainder of this paper we shall
assume that H = 0.

The important properties of the solution to (2.13),
(2. 14) which maximizes A for any » are:
(i) For A <1 the k; are real.
(ii) For » even, if k; is a root, then — k; is also
a root.

(iii) It is assumed that for large even N the roots
become densely distributed on some (finite or
infinite) interval (@, — @) with density Np(k)dk,
where p(k) is a smooth function.

(iv) For A =1, all the k; vanish; ie.,f(X)=1.

Henceforth we shall adopt the notation

z(v) = imN-1 In[max(Ag, A;)] — Vy (2.15)
so the free energy per vertex is given by
—pF = m)gx[z(v) + Vyl. (2.16)

The discussions of the cases A = 1 and A <1 are
quite different, since in the former case the solution
for z(y) may be obtained by guile, avoiding the solu-
tion of (2.14). In general the k; are complex but for
A = 1,from (iv) above, we have

(2.17)

z(y) = — K, + max(0, — K)

independent of y. Now Eq. (2. 17) implies: (i) 2(y) is
convex and nonincreasing in K; and K,, and thus is
also convex and nonincreasing in the limit N — o; (ii)
by subtraction of € from the e;, 2(y)— z (y) =

z(y) + Kl,where z'(y)is convex in Ky and K,, non-
increasing in K, and nondecreasing 1n K. In the
thermodynamic limit, the right-hand 51de of (2.17)
is a lower bound on z(y) for all A, because it can be
achieved for K; > 0 by a single conf1gurat1on which
is a spiral band of type 1 vertices and a spiral band
of type 2 vertices in the relative proportion (1 + V)
(1 —v). These bands are separated by a ladder of
alternating 5 and 6 vertices, but these make no con-
tribution in the thermodynamic limit. The above
argument is the same for K; < 0, with vertices 1 and
2 replaced by vertices 3 and 4. Using these results
and the previous paragraph, we have the result:

Equation (2.17) is true for all v and all A= 1.

It is clear that the system is completely frozen into
homogeneous regions of vertex 1 and 4 when A = 1,
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the interfaces being composed of vertices 5 and 6.
This complete ordering should be contrasted with the
results for the Ising model.6 Nagle? has given a
rigorous proof of the freezing when K, = 0, using an
argument due to Takahashi8; he also obtained a latent
heat at A = 1. The argument may be extended to
cases with K, = 0, for which A =1 can be realized.

For A <1, (2.13) reduces, in the limit N— ©,to an
integral equation for the density function p(k}, which
we write in the form

20(p, q)
8p

where Q(v) must be determined self-consistently by
the condition

1=2mp(p) — [ p(a)dy, (2.18)

11 —y) = [$ p(p)ap. (2.19)
Once these equations have been solved for p(p) and Q,
the free energy may be determined. The calculation
is simplified somewhat by noting that for A <1
either Ag or A, vanishes in the thermodynamic limit,
for
; 2A — ek — gik
| 1 -— etk*K ]2 < k
' l1 — exp(ik + K,)
2A — e K — etk 2
1 —exp(— ik —K,) }

2

— le"Kl

= 4(coshK; — 2A + cosk) sinhK,, (2. 20a)
whence it follows readily that
|Apl> 1Al for K, >0,
A 1< 1Al for K, <O,
|Al =1A)  for kK, =0. (2. 20b)

Consequently, in the thermodynamic limit z(y) is
given by

179
z(y) = —K, + max(0, —K;) + Ef_Qp(q)

2A —7)2 +1 —(2A —7) cos
X log(( n) ( n) q>dq, {2.21)
1 +n2 —2n cosq

where 7 = elkil, This is equivalent to the result ob-
tained by Sutherland.®

Equation (2. 18) occurs in the theory of the Heisen-
berg-Ising chainl9;this is not surprising since T has
been shown to commute with the Hamiltonianl1

n
() = ”Z)l("f"j?l +0707; +280504;) (2.22)
E

provided A is given,as before, by Eq.(2.12). It was
first shown by Hulthénl2 and Walkerl3 that there
exist transformations which reduce the kernel of the
integral equation (2. 18) to difference form. This work
was unified and completed by Yang and Yang,10 whose
notation we follow. The transformations k — a(k)
needed differ for the three regions A< —1, —1< A
<1l,and A = 1.

For | Al < 1 the wavenumbers k; are restricted to
lie in the interval |k].| < (7 — u), where

cosp =—4A, 0<u<m, (2.23)
The transformation which reduces the equation to
difference type is

etk = (et — e®)/(evei —1), (2.24)
Even under this transformation we still have two
coupled complicated integral equations to solve, In
the case y = 0, which is applicable in the absence of a
vertical external field, the quantity @ becomes infinite
and the equation can be solved by Fourier analysis.
Therefore, from now on we shall restrict ourselves
to the cases H = 0,V = 0, where the free energy is
given by z(0). The important features of the behaviour
in a vertical field can be determined by the means
used for the F and KDP models. For y = 0 the
density is

p(k) (dk/da) = (1) sech(ra/2p), lal<1.  (2.25)
For A < —1 the appropriate transformation is

etk = (er — e i%)/(eric — 1), (2. 286)
where

coshh =— A, 0<)x <o, (2.27)

In the case y = 0 we have | a| < 7 and the equation can
be solved by Fourier series, leading to

de 1 & (‘n(a + 21m)>
k) — =— sech| —————=*],
Pt )doz 4 2 2)

In this case the density is closely related to the
Jacobian elliptic functionl4 cn, and, as we shall point
out again later, there seems to be an ill-defined but
pervasive connection between the ferroelectric prob-
lems and the theory of elliptic functions which may
well have been finally established by Baxter.15

The free energy is given by (2, 16), where z(y) is
given by (2. 22) for A <.1. Yang and Yangl0 have
proven that,for 1 =y > 0, p(q) considered as a func-
tion of A and y is real analytic in A and y, which gives
the following result:

(2.28)

z(y) is real analytic in the temperature and in y
provided

0<y=1land A<1,

The case y = 0, which is pertinent if V = 0, is excep-
tional in this respect. For A < 1 the kernel of the
integral is not analytic in A at A = — 1. In the re-
mainder of this paper we shall discuss this case.
Our first conclusion is that singular behavior is only
to be expected at A =+ 1. It is important, therefore,
to decide what values of A can be realized on the
real positive temperature axis for a given assign-
ment of vertex energies., This is summarized in the
following easily proven theorem:

Theovem: If the temperature T is real and posi-
tive, then 7 = 1 and:

(1) For no values of €; and €, can both A = + 1 and
A = —1 be realized as T is varied,

(2) I e, > max(0,€q),then —0 < A < 3§ for real T,
whereas if €, < max(0,€;), 3 <A< ©. Ife, =
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max(0, €;),then 0 = A < 3; there is no singular be-
havior in this case.

3. PROPERTIES OF THE FREE ENERGY

Since both p(k) and the argument of the logarithm in
Eq. (2. 21) are analytic with respect to A and 7 in the
regions |A[ < 1 and A < —1, critical behavior in the
free energy can be expected only for A =+ 1. From
an examination of the A = + 1 contours in the (K,,K 2)
plane shown in Fig. 2, we can divide the plane into two
broad regions, which we label I and II. Region I, in
which, as will be seen, the model is antiferroelectric
in character, contains the F model, and region II, in
which the model is ferroelectric, we have the KDP
model, both of which have been studied in detail by
Lieb.3:4 In Addition, there are two singular cases:
the IKDP model discussed by Glasserl6 and the IF
model, which we shall consider below. In addition to

K

FIG. 2. Classification of models in the scaled (e, €,) plane (K, = 8¢;).

I and II are the regions 7/2 > 6 > —7/4 and — 37/2 < 8 < —1/4,
respectively.

these models, which correspond to rays in the K; —
K, plane, there are the ice model (K; = K, = 0) and
a limiting case studied by Wu,17 where A = 0, which
we shall not consider further.

The behavior of A as a function of inverse tempera-
ture is shown in Fig. 3 (for the IF model A attaing

1 at 8 = ©). We define a transition temperature 7T,
by the condition A = £ 1;the behavior of T, as a
function of the angle 6 shown in Fig. 2 is given
schematically in Fig. 4.

It is convenient to introduce the parameters

eito = (1 +mel)/(ei +1), 0=g¢,=up, al<1,
(3.1)

ef% = (1 +neN)/(er +1), 0=6,=xr, A<~—1. .

3.

Then in the “high temperature” regime the free 3.2

energy of our model may be expressed, by inserting

(2. 25) into (2.21),as

da

§ =¢, + max(0,€,) — 1 kT [
= , :
2 1 ~% coshra

cosh(2ua) — cos(2n —
xn( (Bue) — cos(2y ‘”°)>, T> T, (3.3)

cosh(2pa) — cose,

FIG. 3. Behavior of the parameter A as a function
of inverse temperature for the models of Fig. 2.

KDP F
FIG. 4. Behavior of the tran-
13 IKDP 1 sition temperature as a func~
- 37 - ™ R L 3 - tion of the angle 6 of Fig.2.
4 2 ! 3 2 4
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which is applicable to both regions I and II, which we
discuss separately.

For region IT we have that A = 1 corresponds to

p =7. At o =7 the argument of the logarithm in

(3. 3) becomes unity, so that the integral vanishes
and the high temperature free energy joins continu-
ously to the “low temperature” value given by (2. 17).
Therefore, we evidently have a first-order phase
transition to a ferroelectrically ordered low-tem-
perature phase. Since § depends analytically on 7
about 7, any singular behavior must be due to the
dependence of the high temperature free energy on u,
since

du

— = CSC

dA s
which is infinite at p = 7. Indeed, a simple calcula-
tion gives

(3.4)

(m—w? (r—p)
F = — )4 )
10— 3o n +O0[(m—uwil, T>T,

(3.5)

The singular part of the specific heat at vanishing
vertical polarization is

c = k (251 sinhK, — (2K, —-Kl)e(ZKz—Kl))s/z
O 4m—1)m kT,

c

x(Tl - 1>'1/2. (3.6)

c

The first-order phase transition in this case is un-
usual in that the low and high temperature-free
energy functions cross where the latter has a verti-
cal tangent as a function of temperature. For the
special case of the KDP model, (3. 6) reduces to give
the behavior obtained previously.3 This case will be
treated in more detail in Sec. 4. This concludes the
study of the free energy in the ferroelectric region II.

In the case of the IF model, for whichn =1, ¢2K, < 1,
which represents a singular case in region II, we
have T, = 0 and find for the expansion of the free
energy about p =1

¥ — 3 RT(m — Wl +3(m—p +---]. (3.7)

From this we find for the internal energy

U=13leyl e2y(esep)[l +(m—p)+---].  (3.8)
Since, in this case

ey =1 — A, (3.9)
we have

U=3lelm—u +0lr— 2], (3.10)
and

C, = 271/2]¢, 12/(RT)2. (3.11)

In this case the evident vanishing of the latent heat
means that there is a second-order phase transition
at T = 0.

In region I, which includes the antiferroelectric F
model, (3. 3) again describes the high-temperature

OF THE FREE ENERGY 891

region T > T, but T = T0 now corresponds to u = 0.
This gives rise to an interesting phenomenon. Con-
sider the function H(u) defined by the integral
H(u) = f_woo da sech(ra)f (o, u). (3.12)
The singularities of the integrand are simple poles
due to sech(mc) evenly spaced along the imaginary
axis in the a plane together with the singularities of
f(a, ) for positive real y, which we represent as the
blobs in Fig. 5. The location of these singularities
depends on u, (We assume f is real analytic, and so
by the Schwartz reflection principle the singularity
set of f is invariant under complex conjugation,) Let
us now suppose that the singularities of f are rational
in p. As we allow u to circle the origin in the p plane,
the blobs, which may also change shape, will circle
the origin in the « plane. To avoid integrating through
a singularity, we must deform the contour of integra-
tion more and more, until it gets pushed up against
the imaginary axis. If the singularity set of f is

0
:

FIG. 5. Singularity structure for the hypothetical function f(a, u).

J. Math. Phys., Vol. 13, No. 6, June 1972
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wider than the spacing of the poles along the imaginary
axis, the contour will certainly become pinched, there-
by forcing us to integrate through a singularity and
causing there to be a singularity in H(u) in the y plane.
In the case of the integral in (3. 3) for small positive
u, the singularities of the logarithm form several
lines of branch points. As we circle the origin in the
i plane these lines move in a complicated way deter-
mined in part by the dependence of ¢, on p. By the
implicit function theorem, however, this dependence
can be shown to be analytic in a neighborhood of g = 0,
where ¢, = 0, Thus for small u we can ignore the
presence of ¢,. Therefore, these lines of singularities
simply rotate synchronously with u, and, when p
approaches any small negative rational multiple of 7,
a pinch will occur. This shows that, at least in a small
neighborhood of u = 0, the negative real axis forms a
natural boundary (line segment having a dense set of
singularities) with end point at p = 0, Since for larger
u the dependence of ¢, on y becomes more complex, it
may happen that the natural boundary may disappear
or take on some complicated form away from the
origin in the u plane. In Appendix A, however, we

show that this does not happen and that the entire
negative real axis is a natural boundary for the high
temperature-free energy in region I. It may also
happen, of course, that the function f in the integrand
of H(u) has zeros which coincide with the poles of
sech(ma) in which case the contour will not be pinched.
In Appendix B we show that this actually happens in
the case of the KDP and IKDP models, but for no
others.

We may formally expand (3. 3) in even powers of p,
where we take into account the fact that ¢, is odd and
analytic in py; it is shown in Appendix D that the coef-
ficients are all finite. However, as we have just
demonstrated, p = 0 is a nonisolated singularity so
that this series must have vanishing radius of con-
vergence. We next note that A is analytic with re-
spect to T about T = T, and, as can be proven from
the implicit function theorem, y2 = [arccos(— A)J2 is
an analytic function of A about A = — 1. { This sur-
prising fact also follows from the identity arccos z =
(2(1 —22)1/2/(1 + 2)] ,F4(%, 1335 (2 — 1)/(z + 1))}
The free energy in region I is therefore infinitely
differentiable, but nonanalytic as T — T7,.

To characterize the thermodynamic behavior of the
system completely, we must examine the behavior of
the free energy as T — T;. From (2.28) and (2. 21) we
have in the low temperature region, where A < —1

F = ¢, + max(0, &) —3 kT(A —8,)

% e ™ ginhn(A —6,)

n=1 n coshni

— kT

(3.13)

We note that this expression is nonsingular below
T,(X = 0) down to T = O(x = ). Next we see that
(3.8) and (3.3) agree at T = T, (where A = 6, =0,

i = ¢, = 0). Finally,as is shown in Appendix A, (3. 8)
is the analytic continuation of (3. 3) onto the imaginary
I axis. The entire free energy is thus described in
terms of a single function, infinitely differentiable,
but nonanalytic at T = T, and nonsingular at every
other real temperature. We therefore conclude that
in region I the system undergoes an infinite order
phase transition. Since at low temperatures vertices
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5 and 6, of which there must be an equal number, are
favored, this transition is to an antiferroelectrically
ordered state and occurs without any thermodynamic
anomalies. To remove any doubt on these matters, we
present in Appendix A a detailed calculation of the
smooth matching of the high and low temperature-
free energies at T,,.

We come finally to the IKDP model which separates
region I from region II. In this case we have either
K, =K,K,=00rK, =K,=K=0and0=A = 3,
which corresponds to 37 < u = 27/3,and ¢, = 27 —
3p. Thus the system is essentially always in the
“high temperature” region and the iree energy is

1 © cosh(2pa) — cos(by)
F=€—13 ka_Qo da sech(ta) m(cosh(Zua) —c0s(31)

(3.14)

As shown in Appendix B, the integral in this case can
be evaluated in terms of elementary functions and we
have

§ = 2 max(0, €) + kT In[(n/2u) sinp tan(n2/2p)]. (3.15

It will be seen below that (3.15) is the analytic con-
tinuation in € of the free energy for KDP. These two
models merge continuously at 7 = ®©, It is seen that
(3.15) has no singularity for any real T. Because of
the behavior of the A = + 1 contours in Fig, 2, how-
ever, we define T, to be zero in this case.

This concludes our discussion of the thermodynamic
properties of the general model in the absence of ex-
ternal fields, except to point out that as T — © in any
special case we obtain the ice model for which

(3.16)

4. DETAILED ANALYTIC STRUCTURES FOR THE
KDP AND F MODELS

The analytic properties of the Onsager solution for
the free energy of the two dimensional Ising model
have been studied in detail by Majumdar.l8 For com-
parison with the results for the ferroelectric models
we have extended his results to obtain the behavior
of the free energy in the complex temperature plane.
This is shown in Fig. 6. The characteristic structure
of this and succeeding diagrams arises in the follow-
ing way. The partition function or free energy is
most conveniently expressed in terms of an activity
of the form z = exp(BJ) and in the complex z plane
will have a relatively simple analytic structure.
When the logarithm is taken to get the analytic struc-
ture in the B plane, each singularity z in the z plane
becomes a sequence of singularities 3, + 2kni, & = 0,
+1,--- which lie along a line parallel to the imag-
inary B axis. Finally, in taking the reciprocal to
obtain the behavior in the temperature plane, lines
which extend to infinity go into circles passing through
T = 0, and the analytic structure consequently has a
circular geometry. We note in Fig. 6 in the complex
temperature Riemann structure for the Ising model

a branch cut begins at T = T, and extends down to

T = 0. As Majumdar showed this is due to the fact
that the analytic continuation of the free energy from
the high- to the low-temperature region does not re-
main real valued, but one must average the results
taken above and below the branch cut in order to ob-
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tain the physical result. This is similar to the situa-
tion for the F-like models in region I and is due to the
fact that the free energy for real temperature depends
on |T — T, |, which is not an analytic relationship.

KDP Model
The free energy for the KDP model is given (up to

ImT
\
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an additive constant) by Eq. (B.12), If we let z = p /7,
we have A = — cosmz and A = 3 eB¢. Note that, for

T =, z =% and (B.12) gives 3 In(%), which is the
residual entropy of square ice.2

The analytic structure below T, is trivial, and so we
consider only the Riemann structure of the high-
temperature free energy. The singularities of ¥ in

FIG. 6. Riemann structure for the two-dimensional Ising model in the
complex temperature plane. The lines denote logarithmic branch cuts,

ImZ @
-1 - -1 I m
> - =ttt FIG.7. Riemann structure for the
5t iy % 2 ReZ KDP model in the complex z-plane.
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the z plane are logarithmlc branch points at z = 1/,
n,n== 2+ 3, -+, and we have branch cuts £ (1/2|r|,
1/2(|n | + 1|)) and cuts starting at z = # which we
take parallel to the imaginary z axis as shown in
Fig.7. z = 0 is an accumulation point of branch
points and is an essential singularity. Next we note
that each strip of unit width as indicated in the z
plane maps onto an entire Riemann sheet in the A
plane. We label the corresponding sheets A,
N=zL+II---. These sheets are connected along
branch lines (+ 1,+ ©) as shown schematically in
Fig. 8. The line z = n corresponds to the two edges
of the positive (negative) cut if # is odd (even). The
small branch cuts on strips + I of the z plane map
into similar cuts (— cos(n/2|nl), — cos[n/(21n| + 1)])
which occurs on A; and A_; only. The remaining
A-structure is free of additional singularities. A
small circle centered at 2 = n7 maps into a small
circle about A = + 1, and tracing the circle once in
the positive sense in the z plane is equivalent to
circling A = + 1 twice in the positive sense.

The sheets A, are each connected (along the small

X

X ~
> X
X

FIG,. 8. Connectivity of the A sheets in the
Riemann structures for the ice models.

branch cuts) to a countable number of additional A
planes which we denote A " On these planes the
values of § differ by nwi from its values on A,

. On AD), by circling A = 1 clockwise, we go ) to
AH = A(u) and again circling A = 1 return us to A\,
The same thing happens for A = — 1. However, if on
Ap; we go to — 1 and circle this point we do not re-
turn to A7, but sp1ra1 onto another countable set of
Riemann sheets A)n on which the values of § differ
from those on A by nwi. This same situation occurs
for all the remalmng sheets Ay = Ag-)). Thus, we
have a doubly countable infinite collection of Riemann
sheets A, N=+L+I,-+-, n=0,+1,£2, ---. For
N =1 I, the A{? are joined along the small branch
cuts,and for N # + I they are joined along the long
branch cuts.

Next we consider the Riemann structure for ¥ as a
function of 3. As indicated above, the analytic struc-
ture in the B-plane is periodic with period 27i/€, so
we need only look at the principal strip 0 = Img <
27/€. Each Rlemann sheet A(") corresponds to a
Riemann sheet g{”. Of these, 3(0) and ©) are typical
and are shown in Flg 9. BO is shown and B(O) differs
only in the absence of the cuts labeled (3) and (4). The
connectivity as regards the various sheets exactly
mirrors that for the Ag,"‘) except going from A =1 to
A = — 1 means leaving 8 = In(2/¢) along the negative
real axis and returning to In(2/€) + ni/e parallel to
the positive real axis. Finally, the behavior in the
complex T plane is shown in Fig. 10,

F Model

For clarity we repeat here for the F model the
general considerations applied to region I.

The solution for the free energy of the F model can
be written (for T > T,)

ImB
|
025/, 098/ in2/e
2mi/e
(4) ife 2 0
(2)
0 In2/e

Ref3

FIG. 9. Riemann structure for the KDP model in the complex S plane.
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Y S 1 (o X where y = 2(p —n7) and n7 < Repy < ( + 1)7. Equa-
=y =—fet Em fuo dx sech <—) tion (4.2) can be rewritten

2u
X 1n <coshx — cos2u>,

. . . + 1) —
coshx — 1 dx sinh( —nm)x sinh{(n + )7 — plx

1=4p [~
=) % coshpx sinh7x )

A=—cosu=1—%ezse. (4.1) nr<Rep < (n+ 1)1, (4.3)
or
Following the procedure in Ref. 16, Eq. (12), we find
© dx sinh(m — p)x
o0 . X coshx — cos2p 4u fo x tanhp.x sinhmx ’
I=f dxbechi—‘ lnTl—
0 M cos 0=Rep <7, (4.4a)
=2p fow % sechux[cothmx(l — coshxy) + sinhxy], I= 4 foo dx (tanhpx 1) sinhi(2 )
(4.2) HJy % \fanhmx sinh{(27 — p)x],
7 < Rep < 27, 4, 4b)
ImT (

The first integral in (4. 4) converges for all p in the
strip 0 = Rep < 7 and, therefore, defines an analytic
function ®,(u). The singularities of the integrand are
poles at the points x,(k) = ik, x,(k) = (2k + 1) 7i/2y,
B=0,+1,+2 --- (excluding x = 0). The correspond-
ing residues are

&3 .1 sin2kp
T R %) : g cosky ’
L 2(—1)k1 72
xl(k) : m) cot{(2F + 1) o) (4.5)

As 1 moves counterclockwise along a semicircle from
the right half-plane to — u in the left half-plane, the
pair of poles x; (k) = — x,[—(k + 1)] also exchange
positions along semicircular paths. In doing this, the
poles x}(k) break through the positive real axis (in the

FIG. 10. Riemann structure for the KDP x plane), which we can deform into the positive real
model in the complex temperature plane. axis together with small counterclockwise circles
Imu

@ (a)

T=0

FIG. 11, Riemann Structure

o -1 OIF=T. T-o = o o for the F model in the com-
¢ Rep, plex u plane,
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about the point ¥, (k). By noting that the pole structure closely related to the elliptic functionl4 dn. Thus,
remains completely unchanged, we have we can continue &, (y) from the strip 0 = Rep < 7 to
. . ki the strip — 7 < Reu = 0. Next we note that &,(p) is
@, (— ) =&,(W) + 277 2 Residue at P a uniformly convergent series everywhere off the
o 1)+ 1)/2 B2 real u axis. However, for u real &,(u) has a pole at
=d(w+4 T (____)_k_!_____ cot <2i) every rational multiple of 7, m7/n, where = is odd.
k=1,0dd ® These points are dense on the real line so that any
- ‘1’1(“) + 44,2(“)_ (4. 6) expansion of &,(u) in a power series about any real
point will have zero radius of convergence, i.e.,
It is interesting to note that the series in (4. 6) is &,(u) has a natural boundary along the real axis.
Imf3

J

Ti/e

m/pe

e J

in2/e Ref3

In2/e EeB

FIG. 12, Riemann Structure for the F model in the complex g-plane.

ImT

FIG. 13. Riemann structure for the F model in the complex temperature plane,
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Since the same argument applied to each of the repre-
sentations (4, 3) leads to the same conclusion, we see
that ®(p) is analytic everywhere in the p plane ex-
cept for a natural boundary along the negative p axis
as shown in Fig, 11(a). Again, since A = — cosp, each
strip of the u plane of width 7 parallel to the imagin-
ary axis maps into an entire Reimann sheet of the
A-Riemann structure. These are connected as indi-
cated in Fig. 8. Each Riemann sheet Ay has branch
cuts (—1,—©),(1,%). Thus, if one begins at A; =0
and circles A; = 1, one goes onto Ay;. By circling

A =1 again, one returns to A; or by then circling
Ay =—1 goes to Ay, etc. Other than these branch
cuts, the sheets Ay, N =1L 1I,-- -, are free of singu-
larities. However, if we begin at A; (physical sheet
above T,) and circle —1,we goto A_;. A_j has a
natural boundary along the interval [— 1, 1], which
cannot be crossed. By circling the entire interval, we
go to A_yy, A iy, etc., all of which have the same
structure as A_;. These two types of Riemann sheets
are shown in Fig. 11(b), (c). Once again, the 3-Rie-
mann surface has the same singularity structure as
the A-surface except that the behavior in the funda-
mental strip is repeated periodically throughout each
sheet. The cuts (+ 1, + ©) become (— © + 7i/2¢,

© + 7i/2¢) and In(2/€) < B < ©. The natural boundary
(— 1, 1) maps into (— ©, In(e/2)). The resulting struc-
tures are shown in Fig.12. Finally, the Riemann
structure in the temperature plane is shown in Fig.13.

Finally, we must consider the low temperature-free
energy for the F model. In the original work# this
was described by a different analytic expression than
(4.1). However,for T < T,,we have A< —1,and .
becomes pure imaginary, u = ix. Now if in (4. 4) we
set u = ix + € and take the limit as € = 0, we find
d=—pe++Im f‘: ‘% cothmx tan\x eir*, 4.7)
where the slash on the integral sign denotes that we
take the Cauchy principal part in integrating past the
singularities of the integrand. By closing the contour
of integration in the upper half-plane, we obtain, by
summing the residues at the singularities of cothmx,
ni , being careful to include only half the residue of
the singularity at x =0,
o0
Red = —Be + I + 7, ;11— tanhn enr (4. 8)
n=1

which is precisely the old expression. Therefore,
the imaginary axis in the p plane describes the low
temperature behavior as indicated in Fig.11(a). Once
again the series in (4. 8) is related to an elliptic
function.14
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APPENDIX A
The function ®(u) is defined by
syl [© _ax <cosh(2ux) —cos(2u — ¢0)>
() = 4 ‘- cosh(mx) cosh(2ux) — cos¢, ’
(A1)

where ¢,(u) is defined by

897

eiv) = (1 +neir)/(n + eir) (A2)
as a function of the complex variable 11 which we
write as

Bo=p, +iu2. (A3)
In the range — 1 < A < 1, which corresponds to
0<py; <7, Eq.(2.21) gives

2(0) = —K, + max(0,— K, ) + &(p). (A4)

Clearly there is a single independent variable in the
physical problem; obvious choices for this are y or T.
Thus 1 depends on T, or indirectly on p. Several re-
marks are relevant in this connection.

(1) For the F and IF cases, the problem is much
more simple since n = 1 for all T; thus ¢(1) = 0.
Theorem 1 below discusses the analytic properties
in the p plane for this case.

(2) For the KDP and IKDP cases, the function &(u)
can be evaluated in terms of elementary functions,16

(3) The physical properties of the model are evident-
ly all obtained by considering a small neighborhood of
the real positive temperature axis.

Theorem 1: Consider the case ¢, = 0:

(1) ®(u) can be analytically continued to the entire
¢ plane except the line p, =0, 4, < 0,whichis a
natural boundary.

(2) @(u*)=@wN*
(3) Forrealx> 0,

$[®(EA) + B(—in)] =32 +°§°3 nl e\ tanh(n)).
: (A6)

(A5)

This should be compared with Eq. (3. 13).
(4) For all i except points on the real axis,

_ =1y 72(2n + 1) )
<I>(u)—<1>(—u)—%) 57 1 t( ;u > —im (A7)

Proof: The integrand in (A1) with ¢, = 0 has
simple poles at

X)) = +3)i, n=0,x1,---, (A8)
and logarithmic branch points at

xfm) =% +nni/p, (A9a)

Xo(n) = mmifp, n=0,£1 .-, {A9b)

As 1 moves away from the real axis, the branch
points move in the x plane. Evidently ®(u) may be
analytically continued to the entire y plane, except
the negative real p axis;in that case, the contour of
integration is pinched by the branch points against
the singularities xo(n), for all rational values of p.

Since ®(y) is real analytic and real on the line seg-
ment (¢, = 0,0 < iy < 7), the Schwarz principle
gives (A5), the second part of Theorem 1.

In order to derive (A6) and (A7) and prove that (p, =
0,14 =< 0) is a natural boundary, (i) may be rewrit-
ten, using the Parseval formula, as
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dx sinhpx, sinh(m — p)x
X

1 [*
‘t'(U) =3 f_ coshpx, sinhmx

o0

(A10)

provided 0 < 4 < 7. (This result may be extended to
other strips, but this will not be needed here.)

In this case, the integrand has simple poles at

pr) =@+ 3)m/p, n=0+1, -, (A11)

poln) =mi, m=x1,£2 -, (A12)

As p rotates, the poles p, (n) rotate synchronously and
impinge upon the real axis when u = . An element-
ary, but tedious, calculation shows that
x oC
e(in) =5 + 25 nl e tanh(n))
1

(— 1) e~ "2 (n+1/2) /2

[oe]
+ 4 . (A13
Zc:; (n + 3) sinh[(72/A)(n + 3)] (A13)
Using (2) of Theorem 1, one readily obtains (A6) from
(Al13) and the result

Q(IN) — B(—iA) = —im + 4i 5‘;3 __(‘2; 1’"1)

—)\—+—2> (Al4)

According to the identity theorem for analytic func-
tions, the analytic continuation of &(p), whenever it
exists, must satisfy the equation

w (=1 2 1
0 2“

2n +1
(A15)

The series above represents an analytic function in
the finite |t plane except for the line g, = 0, upon
which there are simple poles at the points 1, given
by

Lo = T(2r +1)/2s, (A18)
where 7.and s are any integers. In order to prove
that the real axis is a natural boundary, we have to
consider the approach to ¢, = 0 along a line

p=m(2r + 1)/2s + ip,. (A1)
This gives
4p(—=1)" 2 (=1
—_—p(— )= — . A
(k) = om(2r + 1)2 #sp (20 + 1)2
+ G(ky, kg),  (A18)

where G(L.o, uo) can be bounded. The sum of the
series is the Catalan constant, which is nonzero. The
intercepts of the lines given by (A17) with the real
axis form a dense set of points in ®. Thus the line
{py =0,—© < p, =0} is a natural boundary. This
completes the proof of Theorem 1. The physical in-
terpretation will be described later.

When 7 > 1, the motion of the singularities in the
integration plane for &(i) is complicated by the ex-
plicit dependence of ¢, on . Nevertheless, we shall
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be able to prove an analog of Theorem 1, although we
shall be content with a more restricted domain of
analyticity for &(u).

There are | -dependent branch points in the integra-
tion plane at

xi(n) = £ i1 — ¢,/21) + nwi/p
and
xi(n) =+ i¢,/2u + nmi/u,

(A19a)

n=0,+1---,
(Al19Db)
as | varies the contour of integration pinches the
stationary poles at
xo(n):(n+%)i, n=0,£1,---, (A20)
It is clear that the motion of the branch points has
an epicyclic character which arises from the de-
pendence of ¢, on p. It should also be noted that
singular behavior of ®(t) is given by the branch
points of ¢,(u) at
p=ilKl +@n+1)m, nu=0,+1---. (A21)
For Ky > 0, @,(u) is analytic in a neighborhood of
the real positive p axis. Also qu/Zu is real for real
i, so that in that case the branch points xf (n) lie on
the imaginary axis. Clearly there exists an € > 0
(for K; > 0) such that ®(y) is analytic in the domain
D, ={u:p;>0,—e< p, <e}. (A22)
On the principal branch of ¢,(u), we have by Taylor's
theorem at p = 0 that

1n—1
2ol 1+
20 2 +1 3n +1

2 u2> +0(p). (A23)

Thus the eccentric motion of the epicycle may be
made arbitrarily small by confining ¢ to a small
enough disc about p = 0. Evidently there exists a
neighborhood D, of p =0 for which the motion of
x#(n) is essentially synchronous with ¢, In this case,
the analysis of Theorem 1 can be taken over directly
to prove that ®(u) is analytic for all ¢ in D, except
the set of points {u: n, =0, it; = 0} N D, which is a
natural boundary.

The function () will now be evaluated for p = ix,
X > 0. Using the Parseval transform, one obtains

w dy Sinh(m — Wx sinh(p — @)x

w0 X coshux sinhmx (A24)

(W) =3

for0 =, 0<m, p, 0. By employing the same
argument as for Theorem 1 (only the residues of the
poles are changed), one may find

X —0 0o _un sinh(A — 0, )n
. 0 e 0
] = + Z;
®(ix) 3 7 n cosh(nn)
1y + 3
+ 2 oo’ ( 1) COS[(TTQO/K)(W 2)] e_(,ng/)\) (n+1/2)’

o 2n+1 sin[(n2/x)(n + 3)]

(A25)
where 6, is given by (A2) with ¢ = ix. By using the
analyticity of ¢,(p) in a neighborhood of p = ix,it is
clear that there exists a > 0 and a 4(5) =~ 0 such
that ¢ (u) is analytic in the domain D; defined by
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D, ={p: —v() < py <y(6), Iyl > 6} (A26)
The number § in the above definition may be chosen
so that D, N D, # ¢. Thus &(u) is analytic every-
where in the domain T =D; U D, U D, except for the
set {u: p, = 0,1, = 0} N D, which is a natural
boundary Since ®(u) is real analytic for p, =0,

1y > 0,it follows that

&(p) = (2(p*)*

for p € T, by the Schwartz reflection principle. Thus
we have established the following theorem:

(A27)

Theorem 2: If the variable n satisfies 1 > 1, then
for all such values we have the following.

(1) #(u) may be analytically continued to a sector S of
the p plane given by
— (37 +8)=< argu= (37 +06), 6>0.

There are singularities at the branch points of ¢O(u)
given by

p,=+i|K |l + @+ 1)1, n=0,x1,---.
(2) 21" = (e(W)*.
(3) Fora>0,

e-7* sinh(A — 04)7
coshni

0+E

3[@ER) + @(—iN)] =
For fixedn = 1, in order to investigate the nature of
the singularity of ®(y) at p = 0 and its thermodynamic
consequences, we have to find an asymptotic expan-
sion for &(p) valid near p = 0. This may be done

along the lines laid down by Yang and Yang.10 Equa-
tion (A24) may be rewritten as

oW =} [ riy O, (A28)
where
smh T — Wx sinh{p — ¢ )
Gy, x ( . (A29)

coshux

We define the set S of points in the p plane by the
prescription

lul =7, —b,=argu=0, (A30a)
where

by =7—¢€, €>0. (A30D)
Let the straight line P be given by

x = tetme)/2 g t< w0, (A31)

For u € S, P is always free of poles of G(u, x); con-
sequently the integration path may be deformed to P.
Along P, however, all the derivatives with respect to
1 of G(u, x) are bounded for u € S and so we have the
following.
(1) G(u,x)

= Z;) c;(x) pi + g, (x) pmi, (A32)

where g, (x) = M, for all x € P.

(2) The functions g,(x) and c,;(x) and even, with

&,0) = ¢;(0) = 0. (A33)
It follows that
n
W =27 dp +0(ul), (A34a)
0
where
o €;(x)dx
_ 1 i
@5 =z f.—oo x sinhmrx ° (A34b)

The d must grow sufficiently fast to make the radius
of convergence of (A34a) zero. The differential coef-
ficients of ®(y) with respect to ¢ and 7 at the point

(4 = 0,n = n,) are evidently obtained by termwise
dlfferentlatlon of (A34a). The coefficients d may be
obtained by rewriting

(p) (A352)

where

LW=%)"

= Jl(U) + Iy (),

%X sech(px) (e 0¥ — ¢ @ 90¥)

T(1 + s/4) T'(3 — s/4
= 10g< ( ) (f / )> (A35b)
T(1 —s/4) T(3 + s/4)
with
s=1—¢,/u. (A35¢)
The other integral J,(u) is given by
[oe] dx e"ﬁx
(W) = f x cosh(px) sinhmx
x sinhg,x sinh(p — ¢, )x  (A35d)
which may be rewritten as
Ty )—fwﬂ[ (2&>—1j|_1
2=y Ty [P\
cosh(l — s}y — cosh(1 + s)y
% coshy - (A35e)
The generating function
e(2>\—1)x _ (2x)
“coshx EE ) » | %] <7T/2, (A36)
for the Euler polynomials, and the formula
E,(1—x)= (-1 E,(x) (A37)
give the formula
-1 2
2 [enlt2) " £ 15
ATEN N TR AGANT 2
s —
[eul) el v

By using the standard integral

%0 dy 27y -1 227 (— 1)n+1
PR SPS

(A39)
one readily finds that

5 &5 [ (7) —2)] 2 S
(A40)

Thus (i) has the asymptotic expansion

Jo() =
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S =1 T(1 + s/4) T3 — s/4)
(W) = log T(1 —s/4) T(X + s/4)

+o.? (%;_r)z_' I:Ezn(:2_> —E,, (2)] Bon (il;)j;:‘ll)

valid for p € S, defined by (A30).

The crucial point is that only even powers of
appears in (A41), and &(u) belongs to the class C
under differentiation with respect to p2 atp =0
along any radial line in S. By the implicit function
theorem, p12 is an analytic function of A in a neigh-
borhood of A = — 1. Thus one concludes that, even
though ®(p) is not analytic at p = 0, nevertheless all
temperature derivatives of z(0) ex1st at T =T, (cor-
responding to A = — 1) and are continuous there We
see that the F model results are prototypical for any
A =— 1 transition point; such transition points are
of infinite order in the Ehrenfest scheme.

APPENDIX B

Consider the function

[-e]
I(a,B,7) = fo sech(ax) ln(—zg—z}ﬁ—;c_———&)%> dx. (B1)

Let the function F(B,y) be defined by the integral

f eixy

——— B2
© coshx — cosf (B2)
Then, for 0 < Ref = 7, we have by contour integration

7 sinhf{(m —B)y]
sinB sinh(my) -

F(B,y) = (B3)
These results may be extended to other strips in the
B plane by use of the relation

F(g,y)
although F(8,y) is not defined for Rep = 2nm.

The Fourier cosine transform of In[(coshx — cosp)/
(coshx — cosy )] is readily obtained from this function.
Since sinfF(B,y) is continuous for 0 = B < 27, we may
integrate it with respect to 8. Furthermore, the in-
finite integrand in (B2) is uniformly convergent with
respect to g in 0 < B8 < 27 so that the order of inte-
gration may be reversed in that interval giving

cosﬁ>

cosy

= F(2km + B,y) (B4)

f dx cosxy 1n coshy —
coshx —

f}" csch(my) sinh[(r5(y + B8))y] sinh[2(8 — )]

=;—{e‘73’— e B + 2 csch(my) sinh(3(y + B)y)

x sinh($(y — By} . (BS)

The Fourier cosine transform of sech(ax) is

fow cos(xy) sech(ax) dx = (1/20) sech(my/2a).  (B6)
Application of the Parseval theorem to (Bl1) gives
I(o,B,7) = > fw L sech( >{2e "y csch(my)

a Jo oy

X sinh[3(y + B)y]sinh[z(y — B)y]

+er — o) (51)

for 0 < Re(B,y) < 27. The extension of this to other
ranges of 8 and ¥ is achieved by using the relation

I(@,B8,v)=I o + 2kni,+ B + 2Iln,+y + 2mm). (B8)
The evaluation of the free energy for KDP and IKDP
will now be considered. By using the Laplace trans-

form

o (1 secht> 2r(3p + %)
pt (2 di=21In —————~— | B9
e ( t "paTGph
it follows that
IOOO % sech<gl> &7y — e®)
n T(Ba/27 + IT(ya/21 + %) (B10)
1"(801/217 + 4)1"(')/01/211' + 4)
I. KDP
From (3. 3)
— Bpp = (1/4p) I(n/2p, 1, 3p —2m), (B11)

where 27/3 =p = 7, The remaining integral in (BT)
may be evaluated by appealing to the table of Laplace
transforms in Ref. 16. Thus

— BFypp = In|(21/7) cot(n2/2p) cscpl. (B12)
o IKDP
In this case we have
—BFkpp = — K + (1/4w)[I (7/2p, 5p — 27, )
+I(n/2u,1,31)] (B13)
with 7/2 = p < 21/3. This gives
— BFxpp = In|(21/7) cot(n2/2u) csepnl.  (Bl4)

This same formula therefore holds for KDP and
IKDP, the values of y lying in different ranges.
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In a previous paper a discussion was given of linear canonical transformations and their unitary representa-
tion. We wish to extend this analysis to nonlinear canonical transformations, particularly those that are rele-
vant to physically interesting many-body problems. As a first step in this direction we discuss the nonlinear
canonical transformations associated with the radial oscillator and Coulomb problems in which the correspond-
ing Hamiltonian has a centrifugal force of arbitrary strength. By embedding the radial oscillator problem in a
higher dimensional configuration space, we obtain its dynamical group of canonical transformations as well as
its unitary representation, from the Sp(2) group of linear transformations and its representation in the higher-
dimensional space. The results of the Coulomb problem can be derived from those of the oscillator with the
help of the well-known canonical transformation that maps the first problem on the second in two-dimensional
configuration space. Finally, we make use of these nonlinear canonical transformations, to derive the matrix
elements of powers of 7 in the oscillator and Coulomb problems from a group theoretical standpoint.

1. INTRODUCTION

In previous publications,1=3 we discussed the role of
canonical transformations in quantum mechanics, and
when the transformations were linear we obtained
their unitary representations in appropriate spaces.
These representations have also been derived by
other authors from a more abstract standpoint. ¢

As our eventual aim is to obtain relevant canonical
transformations and their unitary representations
for physically significant many-body problems,3 we
must first deal with problems of one particle in one
dimension that go beyond the harmonic oscillator
case,! which was the starting point of our discussion.
Thus in this paper we derive explicitly the dynamical
Lie group (and not only the Lie algebra as is custo-
mary in the literature) of canonical transformations
of the radial oscillator and Coulomb problems in
which we have a centrifugal force of arbitrary
strength. We then proceed to obtain the unitary re-
presentation of this group in configuration space and
in the basis in which the Hamiltonian H is diagonal,
and finally determine, as a group theoretical problem,
the matrix elements of powers of the radial coordi-
nate with respect to eigenstates of H,

By embedding our one~dimensional radial oscillator
in a two-dimensional configuration space, we easily
derive its dynamical group and the corresponding
unitary representation from particular linear canoni-
cal transformations in the four~dimensional phase
space of the latter problem. The well-known map-
pings3.5 between the two-dimensional oscillator and
Coulomb problems, allows us then to translate our
results to the radial Coulomb case in a straightfor-
ward fashion.

2, THE RADIAL OSCILLATOR PROBLEM

We wish to consider a single particle one-dimen-
sional problem whose Hamiltonian (in units in which
the mass, frequency of the oscillator and 7 are 1) is
H = 3(p2 + X272 + r2) (2.1)
The coordinate 7 varies in the interval 0 = v < «, P,
is its canonically conjugate momentum, and X is an
arbitrary real constant. For reasons that will appear
later we shall denote by u a real positive constant
related to A through
p=0Z+ Y2 or A2=(u— -1 +1] @2
As the Poisson bracket {1’, p,,} is 1, we conclude that
in the quantum mechanical picture p, = — i9/87 and
thus the eigenstates f(r) of (2. 1) satisfy the equation

901

2)s) = B0 (2.3)

It is well known that the eigenstates of (2. 3) charac-
terized by u and an integer » have the form

fer) = [20D)]V2[T + p + 1) 1/2e 772 yu1/2Lur2),
(2. 42)

where® Li is an associated Laguerre polynomial, and
x and p are related as in (2. 2). The states (2. 4a)
are orthonormal in the sense

[ o =s,,,

and the eigenvalues of (2. 3) are given by

(2. 4b)

E, =(2n + p+ 1), n nonnegative integer. (2.5)
A. The Dynamical Group of Canonical Transfor-
mations

We wish now to obtain explicitly the dynamical Lie
group associated with the Hamiltonian (2. 1), and its
unitary representation both in configuration space
and in the basis where H is diagonal. For this pur-
pose let us first replace A in (2. 1) by a momentum
P, associated with an angle 6; we have then the two-
dimensional Hamiltonian for an oscillator problem
which in polar and cartesian coordinates takes the
form

H = 3(p7 +772p3 + 72) = 2(p% + 12)

= 3(p? +x3 +p3 +x3). (2.6)
We first recalll-2 that the dynamical group of canoni-
cal transformations of H is the symplectic group in
four dimensions Sp(4). This group has a subgroup

Sp(4) > Sp(2) X 0(2), @.m
where O(2) is the rotation group in the two-dimen-
sional space, while Sp(2) is the symplectic group of
linear canonical transformations

r=ar+bp, p=cr+dp, ad—bc=1, (2.8)

in which the constants a,b, c,d are real.

We now note that under the transformation (2. 8) the
angular momentum

b = x1Pg — X0y 2.9)

remains invariant. As, furthermore, we have that

rep=7p,, Pp?=p2+r2p2, (2.10)
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We see that the transformation (2. 8) implies that the
new radial coordinate and momentum 7, p, are given
in terms of the old ones 7, p, by

v = [a2v2 + b2(p2 + A2r~2) + 2abrp |12, (2. 11a)

acr2 + bd(p2 + A2v°2) + (ad +bc)rp,
" [a2r2 + b2(p2 + A2r2) + 2abrp JL/2°

(2. 11b)

where we replaced p, = P, by a constant value X.

We have thus obtained the dynamical Lie group asso-
ciated with the Hamiltonian (2. 1) which is a represen-
tation of the group of unimodular real matrices

(a b), ad —be = 1. 2. 12)

c d

The subgroup 0(2) of (2. 12) (not to be confused with
the rotation group in two dimensions) for which
a=d = cosia, =— ¢ = sinje, (2.13)
is the symmetry group of the Hamiltonian (2. 1) as
can be checked directly. We wish to determine the

unitary representation of the canonical transforma-
tions (2. 11) in a basis in which 7 is diagonal.

B. The Unitary Representation of the Dynamical
Group in Configuration Space

We shall limit our discussion to the transformations
(2.11) in which b > 0, The case 0 < 0 follows imme-
diately®.2 from it as well as the limit b — 0. The
analysis in Ref. 2 then indicates that for the group of
linear canonical transformations (2, 8) of the two-
dimensional oscillator (2. 6}, the unitary representa-
tion is
{r'|UIr") = (2wb) L exp[(— i/2b)

X (ar'2 — 2r’*r” + dr"2)]

= (216 )1 exp[(— ¢/2b)(ar'2 + dr”2)]
X 23 i, (b7lyr'y")eim@om),
m=-00

where in the last term we have expanded the two-
dimensional plane wave in polar coordinates.?

(2. 14)

The eigenstates of the two-dimensional oscillator
(2. 6) in polar coordinates are characterized by the
integer quantum numbers 7, m and have the explicit
form

(rlnm) = r-1/2 fIm\(y)(2n)1/2¢ im0, (2.15)

where the radial function is given by (2. 4a) with y =
(A2 + $)1/2 peing replaced by |m|. The unitary repre-
sentation (2. 14) with respect to these states is clear-
ly diagonal in the m index as (2. 14) is invariant under
rotations and, thus, we can write
(n’ml UIn”m) — ff <7l'7’ll' r/>drl<rll UI r”)dr”(r”ln”m)
i p-1
— m ’ Rimph—
= l{) L Fimrdrdi
X (rr )20, (b-1r'r") exp[(— i/2b)
X {ar'2 + dr"2)[}dr"flm(r"). (2. 16)
This equation immediately suggests that for p = [l
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or X = (m2 — §)1/2 the unitary representation be-
tween the radial variables (»'|U |7") of the canonical
transformation (2. 11) [which explicitly depends on pu
through (2. 2)] is given by the expression inside the
curly bracket of (2.16). Thus we may expect that for
an arbitrary g we have for the unitary representa-
tion of (2.11)

@\ I77) = 0 Lr'r )2 (b 1 'v )

X exp[(— i/2b)ar’2 + dr"2)]. (2.17)
We suppressed the ¢# in (2. 17) as,in any case, our
representations will be ray representations.1.2.8

While (2. 17) is rigorously true for yu = |m, it is only
a surmise for other values of u. We proceed to jus-
tify it by obtaining explicitly the unitary representa-
tion for arbitrary u in the basis in which the Hamil-
tonian (2. 1) is diagonal.

C. Unitary Representations of Canonical Transfor-
mations in the Basis in Which H Is Diagonal

If we want to have the unitary representation (2. 17) in
a basis in which H is diagonal, we must calculate the
integral

O .00
Uy = [ [ £ 10,1 dar fi )
# (I I b n

(2.18)
This integral can be evaluated by exactly the same
procedure that was followed in the determination of
the matrix element (4. 34) in Ref. 2. In fact, we just
need to replace [ by p — 4 and suppress the factor i!
to get the value of the double integral (2. 18).

To justify now the value (2. 17) for (»’| Uuir”> for
arbitrary u, we notice first that the most general
matrix (2. 12) of the symplectic group can be written
asl

<a b) <cos%a sinéoz)(el/28 O>
¢ d/  \— sinta cosie 0 e1/23

cos3y
x Y 1
— singy cosiy

s 1
sinzy

>. 2. 19)

The transformations associated with the angles o and
v leave the Hamiltonian (2. 1) invariant and thus from
a classical standpoint we could identify these angles
with time, Therefore when the elements of the matrix
(2. 19) are given by

(a b) <cost sint>
¢ d/  \—sint cost/’
the transformation (2, 11) gives us the coordinate and
momentum at time ¢ from the coordinate and momen-
tum at time 0. The corresponding unitary represen-

tation in the basis in which the Hamiltonian is diago-
nal must then be

(2. 20)

@ NU R 0y goyeg = O, exp[i@r’ + u + 1)],
] o=2t,B8=y=0 n'n [ ] (2.21)
as the energy is given by (2. 5). From (4. 37) in Ref.
2 we note that we get exactly this value when we re-
place I by u — (1/2) except for a constant phase
which is irrelevant because we deal with ray repre-
sentations. Thus the integral (2. 18) gives the correct
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unitary representation for any canonical transforma-
tion (2.11) in which the symplectic matrix has the
form (2. 20).

It remains then to check only if the integral (2.18)
gives the unitary representation for a dilatation in
which

a=d1 268/2, b=c=0. (2.22)

Using the formulaé

Lg(eﬁxz)zéo[k!r‘(n —k+p+ DIATH + p 4+ 1)
x eln-BB(1 — eB)ELE _, (x2), (2. 23)

we can immediately find out the expansion of the
states

e B/afp(eB/2y), (2. 24)
in terms of the states fI(r) of (2. 4). The result turns
out to be

@ U <0890 = i P L 10" IT@ + u + 1)
x T@” + p + 1)]1/2(coshzp) w1
X (1 — eﬁ)n""n'/(l + eB)—nl—n//

><§{[1>!(n' — )" —p)IT(p + p + DL
X (— 1)7~?(sinh}p)-22}, (2. 25)

and up to a phase it is identical? to the one that
comes out from the integral (2. 18).

We have thus proved that (2. 17) is the unitary repre-
sentation in configuration space of the group of canon-
ical transformations (2. 11) for arbitrary X =

(2 — §)1/2, The unitary representation in a basis in
which the Hamiltonian is diagonal is given by pro-
ducts of the matrices (2. 21) and (2. 25) using the de-
composition (2. 19).

3. THE RADIAL COULOMB PROBLEM

We now wish to consider a Hamiltonian which in
atomic units has the form

B = 5(p3 + A2r2) — 71, (3.1)
with 7,p, having the same meaning as in Sec.2 and A
being an arbitrary real constant. As in (2. 2) we in-
troduce a positive constant M related to A through
M= (A2 + 3)1/2  or

A =M—3[M—3) + 1]

3.2)

We shall denote the eigenvalue of the Hamiltonian
(3.1) by

E = — (2v2)1, (3.3a)
Introducing then the variable
p=r/v), (3.3b)

we see that the eigenstates of (3. 1) satisfy the equa-
tion

p[(_fz_+/;_j>+ l:lF(p) = 2uF(p). (3. 4)

dp2

The analysis of this equation indicates that the solu-

tions will be regular at © only when

v=n+M+ 4, (3.5)
with the radial quantum number » being a nonnegative
integer. The eigenstates have then the explicit form

F¥(p) = A, pM1/2e L 24(2p), (3.6)

where® L2M are associated Laguerre polynomials in
which M and # are related to A and v through (3. 2)
and (3. 5).

The coefficient A,y can be determined by normaliza-
tions which can be achieved in two ways. If we consi-
der FM as a function of 7, the requirement

00
[ Fer/v)FY, /vy = 6, (3. 72)
gives )
2M+1(p ! 1/2
AnMEA;Mz[ 2 e —1)! ] . (3.7
(+M+ HTEM +n + 1)

On the other hand, if we consider F¥ as a function of
p, the operator on the left-hand side of (3. 4) will be
Hermitian (and thus give rise to orthonormalization),
only for integrals of the form
o0

[ Fu(o)FY (p)o2dp = 5, (3. 82)
which implies that the normalization coefficient be-
comes

An= ALy =242 1)/Tw + 2M + 1)]1/2, (3. 8b)
The upper indices ¢ and p distinguish between the two
cases when necessary. When referring to the function

F¥(p) without qualifications, we shall understand that
it is given by (3. 6) with the normalization (3. 8b).

We wish now to obtain explicitly the dynamical Lie
group associated with the problem (3. 4) as well as its
unitary representation. We can achieve both objec-
tives through the mappings between the two-dimen-
sional oscillator and Coulomb problems.

A. Mappings between the Two-Dimensional Oscillator
and Coulomb Problems

From the two-dimensional coordinate and momentum
vectors r, p we can build the following independent
quadratic expressionsl:2

02 —r2), 1, =3(rp+per),
(P2 + r2) = 3H.

Iif

1y

I 3.9

1
4
1
q

il

The Poisson brackets between the I;, either when they
are considered as classical observables or quantum
mechanical operators, are given by

{11’12} =—1Is, {13:11} =1I,, {12,13} =1. (3.10)

Thus they correspond to the generators? of a Lie
algebra of the group SU(1, 1), which is isomorphic13
to the Sp(2) group of linear canonical transformations
2. 8).

Turning now our attention to the two-dimensional
Coulomb problem, we describe it in terms of the
radial coordinate p and an angle ¢. The correspond-
ing Cartesian coordinates we designate by
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£, =pcosy, &, =psing (3.11)

and their canonically conjugate momenta by 7, 7,.

In terms of the two-dimensional vectors &, 7 we can
now construct the expressionsl®

Kl = %P(ﬂz - 1)’
K, =3p@2 + 1),

K, =31 + 47
2 et (3.12)

The Poisson brackets between the K;, both classically
and quantum mechanically, are given by
{K1, Kyl = — K,

Ky, K1l =Ky, {Ky, Kgh =K.

(3.13)

Thus they correspond to the generators® of the Lie
algebra of SU(1, 1). The operators K; are Hermitian
under the measure used in (3. 8a).

Before proceeding with the explicit construction of the
group whose generators are the K; of (3. 13), we first
indicate why we are interested in it. When we write
K3 as a quantum mechanical operator in polar coordi-
nates, we immediately notice that its eigenstates are
given by the wavefunction

V(p, @) = p1/2F (pleiMe,

in which F(p) satisfies Eq. (3. 4) with M = (A2 + 3)1/2
being an integer. Thus the relation of the problem

(3. 4) with the Lie algebra (3. 13) is exactly of the
same type as the one that exists between the radial
equation (2. 3) for the harmonic oscillator and the

Lie algebra whose generators are the I; given by
(3.9). As the latter relation allowed us to deter-
mine,1=3 the group of canonical transformations and
its unitary representation for the harmonic oscillator
problem, we expect that the former relation will
achieve the same objectives for the Coulomb problem.

(3.14)

We now consider a canonical transformation that con-
verts the I, of (3.9) into K; of (3. 12) assuming them
to be classical observables. The mapping appears in
its simplest form in polar coordinates if we consider
the relations3.5

r2 = 2p, (3. 15a)
0 = 3¢ (3.15b)
This implies that in Cartesian coordinates we have

£1 = %(x% - x%);

£y = x%,.

(3. 16a)
(3. 16b)

To determine the corresponding relation for momenta
we recall that in classical mechanics the generalized
velocities and momenta are connected by Hamilfon's
equation

G, = H/3p,.

For the two-dimensional oscillator and Coulomb pro-
blems the H are, respectively, 27; and 2K; and thus

(3.17)

p, =%, 7w, =£/2, i=1,2, (3.18)
From (3. 16a) and (3. 16b) we obtain then that
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Ty =7"2(x1p1 — x,b,), (3. 16¢c)

Mg =7"2(x1py + x,01). (3. 164)

We easily check that the transformation (3. 16) is
canonical and besides it maps the generators I, of
(3. 9) of the Lie Algebra of the harmonic oscillator
into the K; of (3. 12) of the Coulomb problem. From
(3. 16) we note also that

T, =&y — E571 = 5(¥105 —%,01) = 504,(3. 192)

pr, = & = 31°p = 37p,, (3. 19D)

72 = p2/7r2, (3.19¢)
In particular the transformation (3. 15) maps I; on K
even when we interpret them as quantum mechanical
operators, ‘

With the help of the canonical transformations (3. 15)
and (3. 19), we are now in position to obtain the dyna-
mical group of canonical transformations associated
with problem (3. 4).

B. The Dynamical Group of the Coulomb Problem
and Its Unitary Representation

The dynamical group of canonical transformations
associated with the harmonic oscillator problem is
given by (2.11). In the Coulomb problem our radial
variable is p and its corresponding momentum 7,.
From the relations (3. 15) and (3. 19) connecting p, 7,
and 7, p, we conclude that (2. 11) gives rise to the
following nonlinear canonical transformations for the
Coulomb problem

p =372 = (a2r2 + b2p2 + 2abrep)
= p[(a + bm,)? + b2A2p-2], (3.20a)
(a+bm)(c +dn,) + bdA2p~2
(@ +bm,)2 + b2A2p2 ’
where we have replaced 7, = 7, by the value 4; it
takes in the classical picture. Thus we have obtained
the dynamical Lie group of canonical transformations

associated with the Coulomb system in the formula-
tion (3. 4).

To discuss the unitary representation of the canonical
transformation (3. 20), we first notice that from

(3. 15a) and (3. 19b) we can map the classical oscilla-
tor problem (2. 1) with A = 2A, onto the Hamiltonian

7, =T =

(3. 20b)

p(ﬂ% + A2p72 + 1), (3.21)
with the help of the canonical transformations

p =32, (3. 22a)

T, = r-1p,. (3. 22b)

Thus if we obtain the unitary representation V asso-
ciated with (3. 22), we can determine the correspond- -
ing one for (3. 20) through the similarity transfor-
mation

Wy = Vi, (3. 23)

where the matrix elements of U, are given by (2. 17).
In this expression we have to use the relation u = 2M,
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which is the quantum mechanical equivalent of A = 2A,
as in quantum mechanics p and M are, respectively,
the eigenvalues of p, and T, related by p, = 21r¢ as in-
dicated in the previous subsection.

To get V, we proceed as in Refs. 1 and 2. Using the
Dirac notation in which we indicate by {»'|,|{7") and
(p’1,|p") bras and kets in which  and p are, respec-
tively, diagonal, we look for the transformatmn
bracket (v’ |p’) that satisfies the equationl.2

plr'|p’) = p'(r'lp"). (3.24)
From (3. 22a) this equation implies that the transfor-
mation bracket is proportional to &6(p’ — 37'2). If we
further require that the bracket should be orthonor-
mal in the sense

o0
L (pr |r’)dr’(r’ lp") - 5(/3' _ p”), (3. 25)
we obtain that
(r'|p’) = (20")1/46(p" — 37"2). (3. 26)

We can multiply the expression (3. 26) by any phase
factor which is a function of p’; but this proves un-
necessary as the transformation bracket (3. 26) al-
ready guarantees that

(o' lplp"y = [ (p' 17y br (e | pydr' = p'6(p" — p”),

(3. 27a)
@lnlon =1 (p |w>[(——a— + =L |p”)]dr'
P "arr 2v'2
~J = 2 ar
7 op
=—.—1—a7 5(p’ — p") (3. 2b)
i op

where we made use of the fact that the Hermitian

form of the quantum mechanical operator M, of
(3. 22b) is

I
Lt

Lolp +p )=t
20710, + 8,7 rar 2r2

(3.27¢)

The unitary representation of the canonical transfor-
mation (3. 22) is thus given by the bracket (3. 26) and
therefore the matrix element of V-1U/,,V in the repre-
sentation in which p is diagonal takes the form

(p’|WM'P”) = (p’ | V‘1U2M V| p”)
= [ (o' l7"yar | Uyl r"ydr(r | p").

Substituting the values (2.17) for (+'|U,y|7") and
(3. 26) for (r'|p’), we obtain

(3.28)

(p'1Wy1p") = b1 52672 (p'p")1/2]

x exp[(— i/b)(ap’ + dp”)].  (3.29)

The unitary representation when the Hamiltonian
(3.21) is diagonal, rather than the observable p, is
given by

(n’!WMIH”)— fw£wpf-1/2FM( /)

x dp’(p'| Wy | p")dp” p"-V/2EH(p"), (3. 30)

905

where FM(p) is given by (3. 6) and the extra factors
p-l/2 p” -1/2 come from the normalization (3. 8). A
from (2. 4a) and (3. 6) we have that

F¥(p) = (p/2)t/4f2M[(2p)1/2], (3.31)
we immediately obtain that
' | Wyln") = ' |[Ugyln", (3.32)

with the latter expression being given by (2. 21) when
the transformation is of the type (2. 20) and has the
form (2. 25) for a dilatation.

It is important to keep in mind that our canonical
transformations and their representations are not so
much connected with the Coulomb problem (3. 1) as
with the one whose Hamiltonian is (3. 21). The latter
is directly related, when A2 = I(l + 1), with the stereo-
graphic projection of a four-dimensional point rotor
on a three-dimensional momentum space as was
first pointed out by Fock.11l Thus we shall refer to
the problem whose Hamiltonian is (3. 21) as the
pseudo-Coulomb problem and our analysis, so far,
has been restricted to it.

4, RADIAL MATRIX ELEMENTS

The matrix elements of powers of the radial coordi-
nate with respect to oscillator or Coulomb wavefunc-
tions are easily evaluated using properties of the
Laguerre polynomials or their generating functions.®
We wish though to obtain their values through the use
of the dynamical group of canonical transformations
s0 as to develop a procedure susceptible to generali-
zation to more complex problems.

For the oscillator case the radial integrals were al-
ready determined through the use of the dynamical
group of canonical transformations12 as well as by
other group theoretical approaches.13 We have thus
to concentrate on the Coulomb problem, on which
group theoretical methods have been developed,14 but
they do not use canonical transformations. Rather
than enter into this problem directly it will prove
more effective to discuss first the matrix elements
of 2% P integer, in the oscillator problem, from an
angle different from the one used in Ref. 12, Once we
determine these matrix elements the extension to the
pseudo-Coulomb problem will be achieved through the
mappings (3.22a) and (3. 31), while the actual Coulomb
integrals of »#can be obtained from those of the
pseudo-Coulomb problem and the expression (2, 25)
for dilatations.

A. Matrix Elements of »2* for Oscillator States

We start our discussion by noticing that if in the
generators (3. 9) of the dynamical group of the two-
dimensional oscillator, we replace

P2 =p3+772F,  py=1,

we get the observables

(4.1)

(P2 + A2r-2 — 52),
(P2 + A2r-2 + 72),

I, = 1(vp, + p,7),
(4.2)

1
4

1

1

The Poisson brackets of the I;, both classically and
quantum mechanically, have the value (3, 10) and thus
these observables are the generators of Lie Algebra
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of a group 5p(2) as well as groups isomorphic to it1
such as SU(1, 1).

From I; and I, we can construct the operators

I,=1; + i, (4.3)
and we easily check that for the fi (r) of (2. 4a) we
have

Lfsry={n+p+ 5 3)n+ 32 HP2FL,0). (4.4)

Thus I, are raising and lowering operators for the
index n and the set of f£(r),n =0,1,2,...,belong to
a single unitary irreducible representation of the
SU(1,1) group. The lowest weight element of the set
corresponds to n = 0 and, thus, is an eigenstate of I,
with eigenvalues #(u + 1). We can use this number or
more compactly u itself to label the irreducible
representation. If u is 0 or a positive integer, the
representations are part of the discrete series dis-
cussed by Bargmann®: They are single valued on the
SU(1, 1) group manifold and are characterized by the
integer or semi-integer numbers

Hp+1)=451,3,23,---. (4.5)

When p is an arbitrary nonnegative real number the
representations are multiple valued on the SU(1, 1)
group manifold and are not discussed in Bargmann's
paper; but they are as straightforward to obtain as
those when p is integer. In fact, a basis for multi-
valued-irreducible representations for arbitrary p
is precisely given by the functions fE(r),n =
0,1,2,...,with u specifying the irreducible repre-
sentation and » indicating its row.

We wish now to characterize 2% as a linear combina-
tion of irreducible tensors of SU(1,1). When we
achieve this purpose we can make use of the Wigner—
Eckart theorem to express the matrix elements of
¥2F in terms of the Wigner coefficients of SU(1, 1)
determined by Ui.15 To reach our objective we notice
from (4. 2) that

(4.6)

1

jli=T+ il
SU(2)

Thus 72* can be expressed as a polynomial in the
generators I, of the dynamical group. To develop
this polynomial in terms of irreducible tensors of
Su(1, 1), we first introduce the auxiliary generators
=i, I;=il,,

I = I, (4.7)

The SU(1, 1) Casimir operator can then be written as

B-B—-B =1+ + 1, 4. 8)
so we can deal formally with the I} as generators of a
rotation group, In order to express 72 as a lowering
operator in SU(2) we rotate the generators by 7/2

around the axis 1,i.e.

(=1, Iy=1I, I§j=—1, (4.9)
and thus
72 =14 + il = (I — i), (4.10)
As the rank 1 irreducible tensors in SU(2) are
I, =% (2)‘1/2(1f +il3), Iy=1%, (4.11)

we can build the rank % and projection — % irreducible
tensor in the 77 as

(3720 = GR(IY — iI)e = {RARI2(1 e = jR2RI2TE(T"),
(4.12)
We can now express ¥2% in terms of I’ undoing (4. 9)
through the rotation matrices f,,,,(@py),i.e.,16
(Er2)e= j220/2 3 THIDE W7/2,7/2,—1/2)
- ,
= T ( 2wz (2k) ]2
T

x [k + 1) (B — T)]/2T E(I'). (4.13)
Now in order to pass from the SU(2) irreducible ten-
sors T#(I') of (4. 13),to the SU(1, 1) irreducible ten-
sors TF#(I), we notice that the former are defined by

UL, TRUN] = [k F Dk £ 7+ DJ2TE, (1)

Uy =13, 1, THE] = TR, (4. 14)
while the latter are characterized by!2:15
I, =1 ily, [, TEHD] =% [(kF T)k £ 7+ 1)JY2TE (D
st(1, 1){ |
Iy = I, [Io,Tf(I)]: TTE(T). (4.15)
T
From these relations and (4. 7) we see that w
AYEYSAY)
TEI') = iTTH(D). (4. 16) X [, T @2 yridr . (4.17)

Carrying the corresponding substitution in (4. 13), we
finally obtain, using the Wigner—Eckart theorem,

[ oy r2yriear

T (R 1)z )1/2 (o, oy Th M0, }
B Z#L((k’ + T)‘(k— T)' <ll, 0: k’ O\.U'! 0>n.c.

Ik

nn

il
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The brackets (1), ., stand for the Wigner coefficients
of the noncompact group SU(1,1). These coefficients
were given by Uil® for integer u;but this formula is
still valid for arbitrary u. As the last integral is

trivial to determine, we get from the explicit expres-

sion of {!), ., and the selection rule!Sn + 7 =n’,
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y DT RITR+ p 4 1) (n!n'!l"(n’ +u+1)>1/2
T gk (B +n' —n)! Tn+p+1)
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minn, k+n-n')
X Y, (p -
p=max(On-w\PIk + n —n' — Pl =Pl (n' —n + P)IT(W —n + p +p+ 1)

The relation — 2 = 7 = k implies the selection rule
|n—n'l<k.

B. Matrix Elements of p* for the Pseudo-Coulomb
Problem

For the pseudo-Coulomb problem we need to calculate
the matrix elements
00 .

J. F¥(p)p Fl (p)p™Adp, (4.19)
as we are using the normalization condition (3. 8).
Taking then (3. 22a) and (3. 31) into account, we imme-
diately see that the integral is identical to (4. 17) and
thus is given by the [%2M of (4, 18).

n'n

C. Matrix Elements of v * for the Coulomb Problem

For the Coulomb problem the states are normalized
according to (3. 7) and thus we are interested in the
integral

00

TS = (Agy /AR AG o /ALy) [ FHGr /vy Flir/v)dr,

(4. 20)
where AZ,, A?, are given by (3. Tb) and (3. 8b), respec-
tively,and v, v’ and n,n’ are related by (3.5). As be-
fore the functions F¥(p) are normalized in the sense
(3. 8). Introducing then the variable p = (#/v), we can
write
JEM = [’ (n + M+ N+ M+ /2

X vt Jo F(p)ptLFY (vo/v o dp.  (4.21)

(F+n —n+p) > (4.18)

—
From (2.17) we easily see that

lim <7"|LL|’V”> = {#1g 125 — g 17, (4.22)
>0

d=a’l

and thus using (3. 32) we obtain
Flwp/v') =27 (v/v')1/2FY (p)ir+

x {n"| U2M|nl>oc=0,8= 1n(w/vn), ¥ =02 (4.23)
where the matrix element is given by (2. 25). Combin-
ing the previous results, we obtain

J kM

nn'

= (n + M+ 5 +M + )] 1/2(w/v)1/ 21

% ;/) {[ﬁ%ﬁl(n" | UZM. n,>oc=0,6= InCw/ y').7=0}’ (4' 24)
where, because |n —n”|< k,the summation is a finite
one.

We have thus achieved by group theoretical means the
determination of the radial integrals in the pseudo-
Coulomb and Coulomb problems. We note though that
we have the same M in both radial wavefunctions.
This is unavoidable if we consider the radial problem
as one~-dimensional, forgetting its relations with other
coordinates in a higher-dimensional space in which it
can be embedded. If we think in terms of the groups
of canonical transformations in these higher-dimen-
sional spaces, we can obtain matrix elements for dif-
ferent irreducible representations of SU(1, 1) in bra
and ket as was shown for the oscillator case in Ref.12.
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The' results of an earlietj paper on finite and infinite sequences of measurements are here extended to include
decision procedures. It is shown that with each decision procedure @ there is uniquely associated a probability
operator measure 0%, which gives the statistical properties of . None, some, or all of the paths of @ can be

infinitely long. A result of this association is that there

are two methods of measuring the probability that

car?ying out.Q on a system in state p gives an outcome sequence in some set F. A remarkable aspect of this
equivalence is that the purely physical operation of one method is equivalent to, or can replace, the physical
operation and mathematical decision procedure of the other method.

I. INTRODUCTION

In a previous paper,! hereafter called I, processes
which consisted of finite or infinite sequences of
measurements of observables were considered. The
processes were restricted to be such that each ob-
servable was discrete, von Neumann's projection
axiom? was applicable, and the process was “passive.”
That is, the sequence of observables and transforma-
tions was fixed at the outset and was independent of
outcomes of prior measurements.

The main result of I was that, to each finite or infinite
process which satisfied these requirements, there
corresponds a unique probability operator measure
which contains or encodes all the statistical proper-
ties of the process. It was also shown that, as a re-
sult of this correspondence, there are two ways to
measure the probability that carrying out a process
on a system in state p gives an outcome sequence in
some set F. One method consists of an infinite repe-
tition of carrying out the process on p, which gene-
rates an infinite sequence of outcome sequences. This
sequence is then used to generate, by mathematical
decision procedures, an infinite sequence of 0's and
1's whose limit mean is the desired probability. The
other method consists in repeated measurements on p
of the observable whose corresponding operator is
the one the probability operator measure assigns to F.
Again the limit mean of the resultant infinite sequence
is the desired probability. (In this paper, as in I, in-
finite repetition of a procedure or observable mea-
surement on a system in state p will always mean an
infinite repetition of the following: Prepare a system
in state p, carry out the procedure or observable
measurement which gives an outcome (sequence), then
discard the system.)

In this paper we extend these results to cover pro-
cesses which are not necessarily passive; that is,
processes consisting of discrete bounded observables
and transformations and which use von Neumann's
projection axiom are considered. However, the opera-
tion used for the (j + 1)th step of any path can depend
on the outcomes of the measurements (if any) made in
the first j steps. Since such processes require a
choice of operations to be made at one or more steps
they are referred to as “active” processes or decision
procedures.

Section II begins with a description of finite and in-
finite decision procedures in terms of trees. After
giving an example and some elementary properties of
trees, the main result is obtained: that with each deci-
sion procedure consisting of infinite paths only, there
is associated in a unique manner a probability opera-
tor measure which contains the statistical properties
of the process. This result is then extended to deci-
sion procedures containing one or more finite paths,
including those with finite paths only.
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In Sec. III some consequences of this association are
discussed. The two possible methods of measuring
the probability that carrying out a decision procedure
¢ on a system in state p gives an outcome sequence
in a set F are discussed. A brief sketch of the proof
that these two methods are equivalent and do give the
probability in question, is given. It is noted that the
proof (like that given in I) requires the concept of a
probability measure being “correct” for an outcome
sequence. This concept, which forms the central part
of a definition of agreement between theory and ex-
periment, given elsewhere,3 is based on the idea of a
set being definable by a formula in the language of a
formal theory.

Again as in I, it is noted that a remarkable aspect of
this equivalence is that the purely physical operation
of one of the methods is equivalent to the physical
operation and mathematical decision procedures of the
other method. It is pointed out that, for decision pro-
cedures, this equivalence appears to be more remark-
able than for passive procedures.

The question may arise regarding why one should ex-
tend the results of I to include decision procedures.
Besides the general importance of such procedures,4
abasicreasonfor such an extension is that it becomes
possible to discuss realizations of mathematical com-
putation procedures in quantum mechanics. Clearly,
any computer program is a decision procedure and,
when broken down into elementary steps, would appear
to be describable in terms of isometries {(operations
on the memory elements) and observables (reading the
memory elements).

In particular, the possible relevance of this work to
studies in the foundations of mathematics arises from
the point that Turing machines appear to be describ-
able by a decision procedure as defined here. The
basic observation step of reading a square can be des-
cribed by an observable and the basic transformations
of right shift, left shift, change a 1 to a 0 and change a
0 to a 1, can be described by isometries. One aspect
of the potential importance of this lies in the fact that
Turing computability is equivalent to effective com-
putability, and thus the theorems of any formal axiom
system are Turing enumerable (relative to a decision
procedure for whether or not any formula is an axiom).

I. DECISION PROCEDURES AND PROBABILITY
OPERATOR MEASURES

A, Tree Structure

Here adecision procedure is defined to be any process
where for each j the choice of the operation for the

(j + 1)h step in any path can depend on the outcomes
(if any) of the measurements made in the prior j steps.
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The operations can be either transformations or dis-
crete bounded observables. The detailedform of adeci-
sion procedure is irrelevant here. It may be written
out in English or given in some language understand-
able by a computer. It must be meaningful, though, to
who or whatever reads it.

With each decision procedure @, one can associate a
tree 74 consisting of all possible paths one could fol-
low in carrying out @. Each vertex of 7y, in our case,
corresponds to carrying out either a transformation
or measuring an observable. In the former case, only
one line leads out of the vertex and in the latter case
there is exactly one line for each possible outcome of
measuring the observable. The fact that only one line
leads out of a transformation vertex does not mean
that in actually carrying out the procedure, one has
looked to see if the transformation really is the one
given in the procedure. Such a looking would be a
measurement by some observable and would have to
be included in the procedure @, as an observation step.

A simple example of a decision procedure  is the
process “wait for a time ¢ after the initial state pre-
paration (which is not part of @) and then measure
observable A =7 . a, P, 1 If the outcome is q,, translate

T a;
and rotate state by (x,,1,,9;) and measure observable

Z)J bJ sz Stop unless outcome bl is observed. In

th1s case, measure observable C = E C; Pc and stop.”

The tree 74 describing this process is given by Fig.1,
where the small circles denote vertices and the first
step (wait ) is step 0. The dotted lines denote other
paths leading out of the vertices. The vertices denote
operations and the line segments coming out of obser-
vation vertices denote outcomes.

Some definitions are useful in what follows. A path is
a maximal, well-ordered set of vertices (operations),
where the well ordering is defined in the usual way
(step 0 is the initial step of all paths). Thus, in Fig.1,
(), A, a,(x,,t,,9,),B2,b%(S) with S denoting “stop” is
a path, a,(xg,1,,9Q,) and b%(S) denote the transforma-
tion vertex (xo,%,,82,) and the stop vertex immediately
following outcomes a, and b%, respectively. The stop
vertex is a dummy vertex present at the end of finite
paths only and does not correspond to an operation.

An initial segment of a path p is the set of all vertices
occurring before some vertex v in p. Thus (¢) and (¢),
A,a,(x,,1,,,) are two of the four initial segments of
the above path, The length L(p) of a path or initial
segment equals the number of vertices in the path or
initial segment. Thus the above example of a path has
length 5.

A tree is a finite path tree if each path has a finite
length. There may or may not be an upper bound to
the path lengths of a finite path tree. An initial sub-
tree of a tree 7 is a tree resulting from the removal
of one or more terminal segments from one or more
paths of 7. 7, denotes the initial subtree of T in which
all paths have length n {provided L(p) > » for each
path p in 7).

Another useful property is that to each path there
corresponds exactly one outcome sequence. Thus
each path p of a tree 7 is uniquely described by an
outcome sequence ¢,, and sums over paths are equi-
valent to sums over outcome sequences. Other pro-
perties of trees are given elsewhere.4,5
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Finally, one notes that the decision procedures con-
sidered here are restricted to be such that every
initial segment of each path in the procedure has
finite length, Thus paths containing finite or countably
infinite sequences of operations are allowed, but paths
containing countably infinite sequences of operations
followed by one or more operations are excluded.
Decision procedures satisfying this restriction will
be referred to as being of order type < w

For each path p of a decision procedure @, let [2(1),
1p(2), ..., l?(k) * * * denote the step number in p corres-
ponding to the first, second, ..., kth *** measurements
in p. (If p is finite or there are only a finite number
of measurements in p, these sequences terminate with
some value k? of k.) Clearly,l2(k + 1) > l2(k) for
k=1,2---. All other steps in p correspond to trans-
formations (or the terminal stop if p is finite). With
each initial segment of length n of a path p, denoted

by p, (= step 0, step 1, ..., stepn — 1 of p), there is
uniquely associated an outcome sequence ¢, whose
length is given by the largest value of # for which
Ip(k) + 1 <n. I p is finite or there are only a finite
number of measurements in p, then the outcome se-
quence ¢, associated uniquely with p has a length k¢,

Let S denote the set of all finite outcome sequences
associated with all finite paths and all initial segments
of all paths of @. That is, for each initial segment of
each path in @ and for each finite path in @, the cor-
responding outcome sequence is in S€, and each se-
quence in S? corresponds to either a common initial
segment of some paths or a finite path in @.

S¢ is generated as follows: Let S, denote the set of all
outcomes associated with the initial measurement
[step I(1) = 12(1) for all paths p] of . For each finite
outcome sequence ¢, (the subscript » gives the length
of ¢,), which corresponds to a common initial seg-
ment of some paths in @, let Sg, be the set of outcomes
of the measurement which @ aSsigns to step [?(n + 1)
of any path p in @ with associated initial sequence ¢,.
If p is finite or contains only » measurements and

¢, = rpp, then S¢n is empty.

Define S§; and S, ., by
S, =S, (1)
S L(J_s ¢n*s¢n’ (2)

n

n+l =

(%14t Q1) ¢,
|
4
LJ)
(1) A 0, (x2:12,02)
!
/
/
»
STEP O | 2 3 4 5

FIG.1. The tree corresponding to the simple example of a decision
procedure. The vertices correspond either to transformations

E(t) (X1, 11, 2), (X2, iy, 2,)], measurements [A4, BL, B2, C] or the
dummy) stop operation [S]. The step numbers of the operations are
given below the tree and the dashed arrows indicate other paths
emanating from the preceding vertex.
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wheren = 1,2 ---and q;n*S% denotes the set of se-

guences ¢, .4 such that ¢,.1()) =¢, () forj=0,1,...,
n—1and¢,,  mES, s, Since each measurement
operation in @ is descrete, each S, 1is at most count-
ably infinite. Finally define S¢ by (w is the first limit
ordinal)

se— U s (3)

n=1 "

The basic correspondence assumption is that, for each
decision procedure @ considered here, there is a Hil-
bert space ¥ such that each transformation and each
measurement procedure in @ are uniquely represent-
able by a respective isometry (it is painless to gene-
ralize from unitary operators, so why not!) and dis-
crete bounded self-adjoint operator on 1.

Under this assumption, it is clear that to each @ con-
sidered here there corresponds a unique tree of self-
adjoint observables and isometries where for each
step m of each path p,if m = I#{(k) for some k&, then
the operator associated with vertex m of path p in the
tree is self-adjoint, discrete, and given by

x B@Pm, (4)

where ¢, is the outcome sequence associated with the
first m steps of p, and S¢k is the spectrum of Apfn .

If m = 12(k) for all k(< k? if p is finite or contains
only a finite number of measurements), then vertex m
of p has the isometry ng associated with it. If vertex
m is the terminal stop vertex of a finite path, it has
no operator associated with it. As before p,, denotes
the first m steps of p and is used as an index to show
that the choice of any operation in @ can depend on the
steps and outcomes (if any) occurring up to but not
including the step under consideration.

Also, under the correspondence assumption, SQk be-

comes a subset of the set of real numbers, and S9 is
a subset of U5¥ R* the set of all finite sequences of
real numbers.

B. Probability Operator Measures

It is appropriate at this point to define and give some
properties of probability operator measures. Other
properties are given elsewhere.1:6:7

Let © be a o-ring of subsets of some set £ and B(3C)
the set of all bounded linear operators on a Hilbert
space ¥. A mapping O: Z— B(X) is an operator valued
measure if

0(®) =0, (5)

where @ is the empty set and 0 the zero operator in
B(3) and where O is strongly countably additive, That

is, if E4, E,, * -+ is an infinite sequence of pairwise
disjoint sets in £ with E = UJE], then
O(E) = TO(E), (6)
7

where the implied limit is the strong limit.

An operator valued measure O is called self-adjoint
(positive) if, for each E in £, 0(E) is a self-adjoint
{positive) operator in B(X). ¥ O is positive, T is a
o-field, and
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o) =1, (M

where 1 is the identity operator, then O is a probab-
ility operator measure. If O is a probability operator
measure, then for each state p, the function P Z—R
defined for each E in T by

F,(E) = Tr(pO(E)) (8)

is a scalar probability measure.

An operator valued measure O has the following easy
properties: O is finitely additive. If £ C F, then

O(F) = O(E) + O(F — E). (9)
I further O is positive, then

O(F) = O(E). (10)
If O is finitely additive, positive, and strongly contin-
uous from above at ® or from below, then O is strongly
countably additive. Weak and strong countable addi-
tivity are equivalent to one another but not to uniform
countable additivity.7 Note that the operators in the
range set of a probability operator measure O do not
have either to be projection operators or to commute
with one another.

C. A Restricted Class of @'s

The association of probability operator measures to
decision procedures will be carried out by first giving
a direct construction and proof for a restricted class.
By means of a natural correspondence between the
restricted class and the class of all decision proce-
dures (subject only to the restrictions of the corres-
pondence assumption and that all paths must be of
order type < w), a probability operator measure can
be associated to any decision procedure in the larger
class,

The restricted class of decision procedures con-
sidered here consists of only those for which (1) each
path of the corresponding tree is infinite (and of order
type < w), and (2) each path contains an infinite num-
ber of measurements or observations., The number of
transformations in each path clearly is at most, count-
ably infinite.

The reason for proceeding in this manner is primar-
ily mathematical. It is easy to show that, to each
decision procedure @, all of whose paths are finite
and of bounded length, a probability operator measure
O¢ can be uniquely assigned. Also, as will be seen,
with each procedure containing infinite paths only, a
probability operator measure can be uniquely asso-
ciated. However, there appear to be mathematical
difficulties in carrying out the association directly
for procedures whose paths either are partly finite
and partly infinite or are all finite; but there is no
upper bound on the number of measurements which
can occur in a finite path. It is suspected that these
difficulties, which consist of proving that Eq. (7)
holds for the appropriate construction, are techni-
cal and will be overcome in the future.

The association of probability operator measures
with decision procedures @ of the restricted type
proceeds essentially as in I. For each path p in the
tree 74 and each n > 0, the operator 6Q is defined
from Eq. (4) by
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g¢ = v ve  plury?
[ Pieyn P (D Py
Q.p Q Q9
x PYPi)y V'V 11
@ ) P10)1 py ¢ ’ ( )

where % is the largest integer such that I(k) + 1 <n,
Note that in writing Eq. (11) for any initial path seg-
ment p,, we do not regard step » — 1 as having been
carried out. If » = I(k) + 2, then the far left-hand
sequence of isometries is absent from Eq. (11), and if
1(1) = 0, the far right-hand sequence is absent. Von
Neumann's projection axiom? has been used to give
the form of the right-hand side of Eq.(11) as a pro-
duct of the operators taken in the same order as the
operations to which they correspond and, appear in
path p of 74.

Consider a sequence ¢, €S,. As noted before this
defines uniquely a set G of paths having a common
initial segment of length I(z + 1) + 1 (¢ = 1,2 --- and
length = 1+ step number). However, ¢, gives the out-
comes of the measurements done at steps I(1) - I(n)
only. [I(j) is independent of any path p in the set so
the index p is suppressed.] It does not give the out-
come of the (# + 1)th measurement but only defines,
in @, what observable is to be measured. Thus one
can use Eq. (11) to define BQn by

Q Q
B, =8

n pl(n) +2

Q.p e Q. D0,
=P l(n)V N 74 y2 n-1) ...
Pp-D) prmy-y Pin-yn Pn72)

x Py ? VeV, (12)
2,000 Py p @
where p is any path in G. K desired the path index can
be entirely suppressed on the right-hand side as ¢,
determines uniquely, through @, the operators and

their ordering.
Define 0% ({¢,}) by

o%({e,}) = 8% 8¢ (13)
and for each subset E of S, define O%/(E) by
0% (E E 0%({9,)), (14)

where the convergence is in the strong operator topo-
logy. Finally, set 0% (®) = 0, the zero operator.

The proof that O®, is a probability operator measure
on S, follows that given in I. For each ¢,, 0% ({¢,})
is a positive operator and thus so is O%(E) for all E
for which O9(F) exists. To show that 0% (E) exists
for each E one first proves that Eq. (7) holds. One
has

0%(S)= 2 BIBY = %

¢,€8, " M oES, 9,ES5,
“’2,1:‘/’1
+
x BSBE , (15)
@, €S, rn
) ¥l

where ¢,,; denotes the first j elements of ¢,, i.e

Pp,i = ©,(0)* " ¢,(j — 1). Here the second equality
follows from the fact that the sequence of sums is
just a rearrangement of the sum over all outcome
sequences in §,. A sum restricted to all ¢; € 5; with

®;5,5-1 = ¢;-1 15 a sum over all sequences in S; for

which the first j — 1 elements of ¢, are fixed and
given by ¢;-,, and only the last element, ¢,(j — 1), is
free to vary.

Carrying out the far right-hand sum and using Eq. (12)

i .. Ve
along with the facts that the Vp . Vpl(n—l) are all

= P, and the eigenprojectors of A2

isometries, P2
’ Pitn)

span all of 3 gives one the result that
Qthe _ s Q
¢n§€35n Bq)n'B ¢n - B(Dn-lB <Z)n—l
Ppn-1"Pn -1
But clearly this yields O9(S,) = 09-1(S,_;). Again
carrying out the right-hand sum and repeatmg this
over and over gives

- Q
0%(8) = 0%, y) = -+ = 0%(S,) = 0%(8y)
-5 v v? pohmy?  y9oy,
$€S8, Py HO@  pam ¢

(16)
The existence of O 9(E) for each subset E of S, fol-
lows from this as O%(E) is the limit of a nondecreas-
ing sequence of finite partial sums bounded from
above by 1.6 In this case, strong and weak conver-
gence are equivalent.$

To see that OQn is strongly countably additive [Eq. (6)],
let {E,lm =1, -} be a sequence of pairwise disjoint
subsets of S, w1th E=U_E, . Thenl

2 0%{e,) =2 T 0%de,D
$,EE ®,EE,,
:EOQ"(Em)y

where the middle equality follows ultimately from the
fact that if an infinite sum of nonnegative numbers
exist, the value is independent of how the numbers are
arranged in the sum. [This is also used to write the
second equality of Eq. (15).]

O%(E) =

Thus, for each #n, Egs. (5)-(7) are satisfied, and one
has that Egs. (12)~(14) define a unique probability
operator measure 0%: Z# - B(X). =" is the set of
all subsets of S,. Furthermore, by construction, 09,
is the unique probability operator measure assigned
to the initial subtree Tq, of 74 where Tq, is obtained
from 74 by cutting each "path p between steps [?(n) and
L2(n) + 1, adding terminal stop vertices, and discard-
ing the infinite terminal segments. 7, corresponds
to an “initial subdecision procedure” 6f @ which con-
tains the first [#(n) + 1 steps of each path of @. The
uniqueness follows from the fact that, by construction,
the assignment of 0% to Tq, is unique and the assign-

ment of isometries and self-adjoint operators to the
transformation and measurement procedures of  is
unique under the correspondence assumption.

The assignment of a probability operator measure O¢
to the whole procedure @ proceeds as follows: First
consider the sequence {O%]|n = 1,2...} of probability
operator measures defined on the sequence {Z#|n =
1,2} of o-fields where Z7 is the set of all subsets
of S,. We show that this sequence of operator mea-
sures is consistent. To this end, let m > » and E be a
subset of S, [Eq. (2)], such that for some F C S,

E= U U g, (1
b, EF émesm
(pm,n"@n
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This is the appropriate generalization for decision
procedures of the definition of cylinder sets which
are appropriate to passive procedures and for which
§,, reduces to the Cartesian product of m sets.

To see that the 0% are consistent, one expands the
definition of E in Eq. (17) and repeats the inductive
procedures used to obtain Eq. (16). This gives

0%E)= 27 2 0m({p,D
¢, EF 9,8,
P, n"%n
= z i
b, EF $,,,€5,,, mESy, Bg’” g’"
¢n+1 n=Pn ¢m,m1:¢m-1

L B988 =0%F), (18)
o,cF H %

which is the desired result.

Now let R¥ and B(R¥) be the respective sets of all
infinite sequences of real numbers and all Borel sub-
sets of R¥. Let & be the field of all Borel cylinder
subsets of R«. B(R¥) is the minimal o-field over &.
For each n, define Q, by

Q, =S, XRXR X (19)
and Q¢ by
W=NnQ,. (20)
n

Q¢ is the set of all possible real number outcome
sequences of Q. Clearly, Q2 e B(Rv) as S, €B(R”) and
thus Q, € & and B(R«) is closed under countable inter-
sectlons

For each 7, define 0% : B(R") — B(1) by

0% (B) =0%(BnS,) (21)
for each B € B(R"). 0% is well defined on B(R")
since if B = B’'modS,, then B N S, =B’'NS, and

0% (B) = 09 (B"). Also 0@, (R") = 1, and the count-
able additivity of 0% follows from that of 0%. Fin-
ally letm > n and E = F X Rm ™ with F € B(R”). Then

ENS,= U U Aot
$,EFNS, ¢ €S,
mn ¢n

and by Eqgs. (7), (8)

09 (E)=0%m(EN S,) =0%(F NS,) = 0% (F).
Thus the sequence {O%|n = 1,2, -} is a consistent
sequence of probab111ty operator measures defined on
{BR")|ln =1, 2, -}, where each 0%, is the extension
of 09 onto EB(R ), and 09 is the restriction of 0% to
T C BR”).

By the operator valued equivalentl of the Kolmogorov
extension theorem.8 there exists a unique probability
operator measure 09 on B(R«) such that for each

E € & with base F € B(R"),

09(E) = O%(F). (22)
Define =9 and & ? to be the respective o-ring and ring
of all subsets of R« of the form B N Q9 with B € B(R¥)
and B € ¥, respectively. That is, 8¢ is the set of all
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subsets E of 29 such that for some » and base F C S,

=F XRXR X )NQe (23)
and =9 is the minimal o-ring over & 9. Since

QR eB(Rv), Z9is a sub o-ring of BRW).

Define 09 to be the restriction of 09" to £9. Since =€
is a sub o-ring of B(R ),
OE) = 09(E) (24)
for each E € £9, Since 09’ is continuous from abovel
on B(Rw) and 09(®,) = 1 for each n, 09N = 0%'(Q9)
= lim,, o9 (2,) = 1 and thus O is a probability opera-
tor measure on =9, Also, for each E e &9 with base
F C S, for some n,Eqgs. (21)-(24) give
O9E) = O%(F). (25)
Thus we have shown that with each infinite decision
procedure @ of the type considered here there is asso-
ciated a unique probability operator measure O? which
satisfies Eq. (25) on the field 39 of subsets of Q¢,

Furthermore O¢ contains all the statistical properties
of the decision procedure . That is, for each E « §¢
with base F C S, and for each state p, Eq. (25) gives
that
Tr[pO¥E)] = Tr[p0 % (F)] = (EF Tr(p;ggn*;; )

n

is the probability that carrying out steps of @, until »
measurements have been done (this is equivalent to
carrying out @,), on a system in state p yields an out-
come sequence in F'. More generally for each E € €,
Tr[pO9(E)] is the probability that carrying out @ on a
system in state p yields an (infinite) outcome sequence
in E.

D. Extension to All @'s

As stated, this result applied only to decision proce-
dures in which each path is infinite and contains an
infinite number of measurements.However, by making
inessential changes, any decision procedure which con-
tains one or more finite paths can be put in the form
considered here. Thus this result holds for all deci-
sion procedures (which are made up of discrete obser-
vables and which satisfy Von Neumann's projection
axiom and all of whose paths have order type < w).

To see this in more detail, let @’ be a decision proce-
dure with one or more finite paths and let @ be the
procedure obtained from @’ by adjoining to the end of
each finite path of @' an infinite sequence of measure-
ments of the identity observable. For each 7, let S
and S9' be defined by Eq.(2)for @ and @’, respectwely.

Note that if a particular ¢, in S9 equals ¢, (the out-
come sequence associated with path p) for some finite
path which contains » measurements, then S¥

empty. So for any 2 > n, there is no sequence in SQ
which has ¢, as an 1n1t1a1 segment. From this, the
construction of Q@ from @', and Eq. (2), it is clear that,
for each n, S9'C S9.

Under the correspondence assumption, S and SQ' are
subsets of R” and are elements of B(R"). Thus one
defines Q2 and QQ as before by Eq. (19) and Q9 and
< by Eq (20). Both Q@ and 9’ are in B(R). Let 59
and 9 be defined as before from Eq. (23).
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From the above it is clear that Q9 contains the out-
come sequences corresponding to all and only the in-
finite paths of @’. Thus if ¢, is the outcome sequence
corresponding to some finite path of @ which con-
tains » measurements, there is no sequence in Q<
which contains ¢, as an initial segment. By the con-
struction of @, this is clearly not true for Q9 and one
has that Q9 C 09, where € — Q9 contains all and only
those outcome sequences which correspond to the
extensions of the finite paths of @’.

The o-field =€ of events for the procedure @’ is de-
fined as follows. Let BY denote the o-field of sub-
sets of R¥ of the form B N 2 for some B in B[R Y).
Clearly BY C 9. Let Z9¢ = Q¢ U F¢ be the set of
all poss1b1e outcome sequences of the process @',
where F¥ is the set of all outcome sequences asso-
ciated with the finite paths of @’. Then =@ is defined
to be the set of all sets of the form E; U E,, where

E, € B¥ and E, < F9, ¢ is clearly a o-field be-
cause (1) z¢ C ¢ (2) tE, ¢ BY and E, C F¥,then
the complement of E U E, is (note that E1 n E, = &)
Q9 — E 1)U (FQ — Ez) wh1ch is clearly in ¢/, (3)

let {E1 U IJ2 lj =1,2,---} be an infinite sequence of
sets in £9 with E, e BQ' and E,, C F¥ for eachj.
Then U (E{; U E2]) = (U, Elj) (U EZk),whlch is
clearly in éQ

Let m be a mapping from Z9 to 99 such that, for
each ¢ € O, m(¢) = ¢ and, for each p € F 9, m(¢) is
the sequence obtained by adding an infinite sequence
of 1's to the end of ¢. By construction,m is a one-to-
one mapping onto Q€.

The association of a unique probability operator
measure to the decision procedure @' proceeds as
follows: By the result of this section, under the cor-
respondence assumption there is a unique probability
operator measure O® associated with @ which satis-
fies Egs. (13), (14), and (25) for Q. Define a mapping
09 =9 - B(j) as follows: For each E in =9 set

09(E) = O¥E,) + O¥YmE,), (26)

where E=E,; U E, with E € B¢ and E, c F9 and
mE, = [m(@ ¢ € E,] C ze.

Since O%is a probablhty operator measure, it is
clear that 09 is also, and we have thus shown that
09, given by Eq. (26), is a probability operator mea-
sure associated with @’. It remains to be shown that
it satisfies Eqgs. (13), (14), and (25) for @’.

First, let E be any set of the form FF X R XR X~

N Q¢ with F C S9 for some n. Clearly E is a subset

of € and also Fc S8 as SQ C S¢ From Eqgs. (13),

(14), and (25) we have
OYE) = 0%(F) = E Bq?:ﬁﬁl .

By the construction of Q from @', B¢ = Bf for any

such ¢, as the relevant parts of @ and @’ dre identi-
cal. Thus one has from Eq.(26) (E, = ®and E, = E)

09E)= ¥ pEBE. 27
b,eF 7 n

Next let E be any subset of F¥' (E; = ¢ and E = Ej).
Since FQ is at most countably infinite and for each
E, C Fe& , 09mE,) exists, one has

OYmE,) = ¢§E o%{¢}h, (28)

913

where the countable additivity of 09 and the facts that
m is one-to-one onto and T ¢ contains the singleton
sets have been used.

For each sequence ¢ in Q9, let E; , be the set of all
sequences a in Q9 such that o (j) = ¢j) forj =0, 1,
., 7 — 1. One has that

0{¢}) = s-1im,09E, ) = s-1im,68 A .

The first equality follows from the facts that {Es,|n =
1,2,---} is a nonincreasing sequence of sets with

lim, E,, = {¢} and that 09 is strongly continuous from
above.l The second follows from Egs. (13), (14), and
(25) and the fact that E,, has the form of Eq. (23) with
Q9 replacing Q2 and F = {¢,}.

(29)

By construction, each ¢ in mE, is the extension, by an
infinite sequence of 1's, of a finite sequence ¢ in E,
[with m(8) = ¢] which labels a finite path of @’ con-
taining, say, /, measurements. Since the projection
operator for eigenvalue 1 of the identity observable
is the 1dent1ty operator, Eq. (12) gives, for eachn > I,

ﬁQ =B&. Use of this in Eq. (29) gives, along with Egs.
(26) and (28),
09(E Z) 882, (30)

which is the des1red result.

So one sees from Egs. (27) and (3) that 09 does sat-
isfy Eqgs. (13), (14), and (25) for ’, and, by the theorem
on the extension of positive operator measures from
fields to o-fields,b is unique. [The field 89' is the

set of all sets, of the form E, U E, with E,
(FxR¥)Nn Q€ and F C s¢ andE CFYN
some 7.]

SQ for

Thus the result is obtained that under the correspon-
dence assumption, the unique association of prob-
ability operator measures to decision procedures
extends to those containing one or more finite paths.
Obviously this includes procedures with finite paths
only.

III. Discussion

One consequence of this association of probability
operator measures to decision procedures is that the
other results of I can be extended to include these
procedures. Thus let @ be any decision procedure of
the type discussed here and F any set in a certain
subset (to be defined later) of £9. From the results
of I there are two ways to measure the probability,
that carrying out @ on a system in state p will yield
an outcome sequence in F, One way (method 1) is to
carry out @ on a system in state p an infinite number
of times. This yields an infinite sequence a such that,
for eachj =0,1,..., a(j) € Q9 is an outcome se-
quence for @. One then generates an infinite 0-1
sequence 6z from a by the prescription for eachj,
(6,0} (7) = 1[0].if @(4) is in F [is not in F] and com-
putes the limit mean M0z,

The other method (method 2) is to carry out an in-
finite sequence of repetitions of measurements of the
observable whose self-adjoint operator is O9F) on a
system in state p. (Here O is the probability opera-
tor measure associated with @ by the methods of the
last section). The result of this infinite sequence of
measurements is a sequence 8 € Rv.
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It is clear that these two methods are equivalent if
one can prove that

Mo,a = Tr[pO¥F)] = M8B. (31)
In brief, the proof using probability theoretic methods
goes as follows: For the first method, one constructs
the sample probability space ((29), (Z9«, P, o), where
(9w is the set of all infinite sequences of elements
of Q9, (29w is the standard o-field of subsets of (Q9)«,
and PP,Q is a product probability measure on (Z9)w
defined by

P, o(Ep) = Tr[pO Y]

for each/ and F in 9, where Ep, = [a|a(l) € F]. By
means of an ergodic theorem? and the indecompos-
ability theorem?® applied to the one-sided shift opera-
tor on (29w, one proves that

(32)

M8,(=) = Tr[p0O%F)], (33)

P, o almost everywhere.

Similarly for method 2, one constructs the sample
probability space (R¥, B(Rv), PP’Q.F), where P, , ris
the product probability measure on B(Rv) given by

P, o.r(Eg) = fB d[Tr(p@QQ(F))]

for each ! and Borel subset B of R. Here Ep =
[818() € B] and 09 is the spectral measure for
the operator O9(F) and @QQ(F) = Go¥)((— w,7]) with
(— 00,1/] the set of all real numbers < v. Again by
means of ergodic and indecomposability theorems?
applied to the one-sided shift operator on R¥, one
proves that

M(=) = Tr[p0 %F)],

(34)

(35)

P, o 5 almost everywhere.

Now, as was stressed in I, in order to complete proofs
of this type, one must assume that the scalar prob-
ability measure P assigned to a process is “correct”
for the process. That is, all properties of outcome
sequences which are t-definable from P and which
are true, P almost everywhere, must be true for the
sequence obtained by actually carrying out the pro-
cess. (This definition of correctness is discussed in
detail elsewhere,3 where it is the central part of a
definition of agreement between a physical theory and
experiment.)

A property of sequences is T-definable from P if and
only if it is expressible by some formula in L(7)
which contains a free sequence variable and may con-
tain a name for P where L(7) is the language of a
formal theory 7. Also one requires 7 to be strong
enough to inciude formulas which relate limit means
to expectation values. This brief description of
“correct” measures is sufficient for our purposes.

In order to derive Egs. (31) from Egs. (33) and (35),
one must assume that P ; is “correct” for the in-
finite repetition of ¢ onp and that P, , , is “correct”
for the infinite repetition of measuring O9F) on p. I
I is T-definaple irom the measure Tr{pO9—)], which
implies in this case that F is 7-definable from P, o
{(this characterizes the “certain subset” of £9 men-
ticned eariicr), then by the definition of correctness
Eq. (33) gives the left-hand equality of Eq.(31), and
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Eq. (35) givesthe right-hand equality. Thus the two
methods of measuring Tr[pO F)] are equivalent.

As we noted in I, a remarkable aspect of this equiva-
lence is that the mathematical decision procedures
used in method 1 to decide whether or not a(j) € F for
eachj “disappear” into the physical operation of re-
peated measurements of O%F) on p in method 2. To
see this in more detail, consider method 1. It consists
of the physical operation of first repeatedly carrying
out @ on p to give @. Then one generates 6,0 by
carrying out for each j, a mathematical decision pro-
cedure which gives the truth or falseness of g[a(j),
Tr[pO ¥-)]], where g[a(j), Tr[pO%—)]] is a formula of
T which defines F. Finally one generates Mo, a by
means of a mathematical limit mean procedure.
Method 2 consists of the physical operation of re-
peated measurements of O%F) on p togive asequencef
followed by the mathematical generation of M8 by the
equivalence MB = Moya.

The point is that a mathematical procedure corres-
ponding to the generation of 6, in method 1 is miss-
ing in method 2. The physical operation of repeatedly
measuring O%F) on p is equivalent to the physical
operation of repeatedly carrying out @ on p followed
by the mathematical operation of generating 6,0, as
the limit mean operation is common to both methods.
It should be noted that other than having the same
limit means, 6,0 and 8 are quite different sequences:
fpa is an infinite sequence cf 0's and 1's and 8 is an
infinite sequence of real numbers all lying in the
interval [0, 1].

There is an interesting aspect of the fact that these
results hold also for decision procedures. It is that
if @ is a decision procedure, the physical operation

in method 1 requires the intervention of an intelligent
being or machine to make the decisions each time @
is carried out. No such decision making apparatus is
required in method 2. There the physical operation of
repeatedly carrying out the measurement of O9F) on
p is a“passive” operation which requires no decisions
to be made.

Thus one has the striking result that the infinite re-
petition of a decision procedure @ followed by an in-
finite sequence of mathematical decision procedures
for F is equivalent to the passive process consisting
of an infinite repetition of measurements of O%F) on
p. Furthermore, this equivalence holds if @ is a
decision procedure or if @ is a passive procedure
which requires no decisions to be made.

One might argue that this is really not so striking
because the procedure whereby one carries out a
single measurement of O9(F) is probably a decision
procedure also; and, thus, the decisions in Method 2
are hidden, but still present. Although this is probably
true, it is also just as true for each measurement
procedure within @. Furthermore, the argument that
the decision procedure involved in carrying out a
single measurement of O %F) is somehow of “higher
order” than those needed for the procedures in @
would appear to be taken care of by the possibility
that paths in @ can contain, as measurement steps, the
measurement of O%F)[provided that O9F) is dis-
crete].

Finally, it is to be briefly noted that many mathe-
matical computation and decision procedures can
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themselves be realized as decision procedures of the
type considered here. Under the association of prob-
ability operator measures with these procedures, it
becomes possible to talk about these realizations
within quantum mechanics, In particular, this sug-
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gests the possibility that realizations of theorem
proving procedures can be discussed within quantum
mechanics. However, the consequences of this pos-
sibility and in particular its implications for the foun-
dations of mathematics are left to future work.
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In the study of the irreducible unitary represeatations [#;,s] of the Poincaré group, we define an "helicity" spin
operator through a fundamental connection between canonical and helicity bases. This operator, in covariant
notation, is simply related to the well-known Bargmann—~Wigner operator and to the canonical spin operator.
Its spatial components generate an SU(2)-algebra and coincide with the elements of the Z-spin algebra recently
proposed on different grounds by Braathen-Foldy. The very simple arguments developed here establish in

a natural way the uniqueness of this algebra when helicity representations are studied.

1., INTRODUCTION

Since the fundamental paper of Wigner!.2 on the irre-
ducible unitary representations (IUR) of the ¥»incaré
group (P), there have been many intimately related
contributions which have appeared during the last
fifteen years. Among all the different results referr-
ing to important fields,3 let us simply mention that
several equivalent bases (for the representation
spaces associated with the IUR) have been proposed
for the case of physical particles of nonzero rest
mass and discrete spin (i.e., with timelike momenta).
More precisely, we think of the canonicall-24.5 and
helicity® bases and of two more recent ones, the Q-
and A-bases.78 So, the associated IUR have been
called, respectively, the canonical-, helicity-, Q-,

and A-representations of P and their generators have
been explicitly given.178 Let us note that such bases
and associated representations present different
advantages and disadvantages, and therefore the
choice of a particular one must be made according

to the nature of the problem. On the one hand, the
canonical basis which corresponds to the so-called
“Foldy~-Shirokov form” of the generators has the
great advantage of giving the angular momentum
operators as sums of two Kinematically independent
parts—the orbital and the spin angular momenta.®

On the other hand, the helicity basis is particularly
convenient for developing a general analysis® of
binary reactions involving particles with arbitrary
spin; it is also interesting in discussing9 the so-
called [#, s|-TUR with a view to connecting these
representations with the [0, s]—ones through the
limiting process m — 0. For example,we can see
how both aspectsé .10 have recently been applied to
discussions?! on vector meson dominance in photo-
production and the corresponding T matrix elements.

In this paper, we want to show through very simple
arguments how, from a fundamental connectionl®
between canonical and helicity bases, we can extract,
in a unique way, privileged directions in spin space

which lead to an interesting set of spin operators. In
covariant notation, these operators can be written

as the spatial components of an “helicity” spin 4-
vector $(p)which is directly related to the well-
known Bargmann-Wigner? operator w and to the can-
onical spin operators. Furthermore, the new ones
generate a structure isomorphic to the little group of
p and coincide with the generators recently proposed
on different grounds by Braathen and Foldy.7 In this
sense, the uniqueness of their developments is well
established here. Let us also remark as a character-
istic property of the so-used fundamental connection
and the so-deduced spin algebra, that the 2- and
A-bases and representations are both “helicity”

ones, particularly well adapted to the [m, s]— [0, s]
correspondence. In fact, those representations can be
easily found12 through Coester's developments.13

In Sec. II, the main formulas!® leading to the connec-
tion between canonical and helicity bases are collect-
ed, and privileged directions appear in a very simple
manner when significant rotations in spin space are
taken into account. In Sec. III, we explain briefly the
meaning of the three effective little group generators
and define the “canonical” spin 4-vector S(p) in terms
of the Bargmann—-Wigner operator w. This is done

in a slightly different but evidently equivalent way

to well-known developments (for example, those of
Hagedorn, 14 Moussa~-Storal® or Gasiorowicz16). In
Sec. IV, with the help of the “canonical” 4-vector and
the results of Sec. II, we construct the “helicity” spin
4-vector 8(p). Finally, in Sec. V, we compare the pre-
sent approach with that of Braathen—Foldy.?

In what follows, we essentially adopt Hagedorn's nota-
tions.14 Therefore, since there is no risk of confu-
sion, we do not distinguish here between the transla-
tion operators and their eigenvalues as is usually
done. Furthermore, we shall confine ourselves to the
nonzero rest mass case (the p+ are always timelike,
P9 > 0) and to orthochronous proper homogeneous
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notation, is simply related to the well-known Bargmann—~Wigner operator and to the canonical spin operator.
Its spatial components generate an SU(2)-algebra and coincide with the elements of the Z-spin algebra recently
proposed on different grounds by Braathen-Foldy. The very simple arguments developed here establish in

a natural way the uniqueness of this algebra when helicity representations are studied.

1., INTRODUCTION

Since the fundamental paper of Wigner!.2 on the irre-
ducible unitary representations (IUR) of the ¥»incaré
group (P), there have been many intimately related
contributions which have appeared during the last
fifteen years. Among all the different results referr-
ing to important fields,3 let us simply mention that
several equivalent bases (for the representation
spaces associated with the IUR) have been proposed
for the case of physical particles of nonzero rest
mass and discrete spin (i.e., with timelike momenta).
More precisely, we think of the canonicall-24.5 and
helicity® bases and of two more recent ones, the Q-
and A-bases.78 So, the associated IUR have been
called, respectively, the canonical-, helicity-, Q-,

and A-representations of P and their generators have
been explicitly given.178 Let us note that such bases
and associated representations present different
advantages and disadvantages, and therefore the
choice of a particular one must be made according

to the nature of the problem. On the one hand, the
canonical basis which corresponds to the so-called
“Foldy~-Shirokov form” of the generators has the
great advantage of giving the angular momentum
operators as sums of two Kinematically independent
parts—the orbital and the spin angular momenta.®

On the other hand, the helicity basis is particularly
convenient for developing a general analysis® of
binary reactions involving particles with arbitrary
spin; it is also interesting in discussing9 the so-
called [#, s|-TUR with a view to connecting these
representations with the [0, s]—ones through the
limiting process m — 0. For example,we can see
how both aspectsé .10 have recently been applied to
discussions?! on vector meson dominance in photo-
production and the corresponding T matrix elements.

In this paper, we want to show through very simple
arguments how, from a fundamental connectionl®
between canonical and helicity bases, we can extract,
in a unique way, privileged directions in spin space

which lead to an interesting set of spin operators. In
covariant notation, these operators can be written

as the spatial components of an “helicity” spin 4-
vector $(p)which is directly related to the well-
known Bargmann-Wigner? operator w and to the can-
onical spin operators. Furthermore, the new ones
generate a structure isomorphic to the little group of
p and coincide with the generators recently proposed
on different grounds by Braathen and Foldy.7 In this
sense, the uniqueness of their developments is well
established here. Let us also remark as a character-
istic property of the so-used fundamental connection
and the so-deduced spin algebra, that the 2- and
A-bases and representations are both “helicity”

ones, particularly well adapted to the [m, s]— [0, s]
correspondence. In fact, those representations can be
easily found12 through Coester's developments.13

In Sec. II, the main formulas!® leading to the connec-
tion between canonical and helicity bases are collect-
ed, and privileged directions appear in a very simple
manner when significant rotations in spin space are
taken into account. In Sec. III, we explain briefly the
meaning of the three effective little group generators
and define the “canonical” spin 4-vector S(p) in terms
of the Bargmann—-Wigner operator w. This is done

in a slightly different but evidently equivalent way

to well-known developments (for example, those of
Hagedorn, 14 Moussa~-Storal® or Gasiorowicz16). In
Sec. IV, with the help of the “canonical” 4-vector and
the results of Sec. II, we construct the “helicity” spin
4-vector 8(p). Finally, in Sec. V, we compare the pre-
sent approach with that of Braathen—Foldy.?

In what follows, we essentially adopt Hagedorn's nota-
tions.14 Therefore, since there is no risk of confu-
sion, we do not distinguish here between the transla-
tion operators and their eigenvalues as is usually
done. Furthermore, we shall confine ourselves to the
nonzero rest mass case (the p+ are always timelike,
P9 > 0) and to orthochronous proper homogeneous
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Lorentz transformations. The summation convention
on repeated indices is always understood hereafter.

2. CONNECTION BETWEEN CANONICAL AND
HELICITY BASES

In a recent discussionl0 of Coester's!3 and Chakra-
barti's17 transformations, we have singled out the
particular interest of the Chakrabarti one in studying
the transformation laws of state vectors in an helicity
basis when the cases of nonzero as well as zero rest
mass are considered. These developments gave us
simple equivalences between different important
contributions such as those of Foldy,4 Shirokov, 5
Lomont-Moses, 18 and Fronsdal.19.20 Here, let us
simply recall we had rewritten the Chakrabarti
transformation as a real rotation in spin space with
Euler angles (¢, — 8, — ¢):

U(p) = RSX¢, — 0,— ¢) = exp(— i$S3) exp(:6S2)
X exp(i¢S3), (1)

where (8, ¢) are the polar angles of p in an initial
reference frame (e,, e,, e;) and S = (S1,52,S3) are
the (2s + 1) X (2s + 1) matrices of arbitrary spin s
such that

[Si,87] = ielikSk,  i,5,k=1,2,3, (2)
the matrix S3 being chosen diagonal. Furthermore,
we had explicitly used20 the rotation (1) when it was
expressed in the form

U(p) = exp(i¢S+n), (3)

n=e; Ap/le; Apl, ¢ =arccos p3/p, (4
i.e., in a form which singles out the privileged direc-
tion n.

So, if we remember, on the one hand, the essential
role of U(p) = (3) in the connection between the can-
onical basis {|[m,s];p,0 >} and the helicity one
{|[m,s];p,x >=U) |[m,s];p, c >}and, on the other
hand, the fundamental property

Up)A U*(p) = Ulp){(S*p)/p]U*(p) = S3, (5)

we remark that the diagonalization of the helicity
operatar selects and encloses fwo privileged ortho-
gonal directions: First, the particle displacement
direction characterized by the unit vector p/|p| and,
secondly, the direction characterized by the unit vec-
tor n = (4), orthogonal to p and to the third axis.2!
Thus, from the initial reference frame (e, e,, e3)
used in typically “canonical” considerations, we get
another one: (n, = ny A ny,n, =p/p,ny =n) when
“helicity” considerations became essential.22 These
two systems of unitary spatial vectors are then re-
lated through a simple three-dimensional rotation R:

n,=Re,, (=123,
RR=FRR =1, R=R"1l, detR =1, (6)
with
— cos¢ cosf  cos¢ sinf — sing
R =| — sin¢g coséb sin¢ sind coso |, (7)
siné cosé 0

where (6, ¢) are the polar angles of p also.
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3. THE “CANONICAL” SPIN OPERATOR

If we write the unitary operators U(a, A) of P associ-
ated in the inhomogeneous Lorentz transformations
{a, A) as usually14

Ula, A) = Ula)U(A),
U(A) = exp(%iapny“)’

U(a) = exp(ipta,),
my =01,23,

where the p# and Jtvare the ten Hermitian generators
associated, respectively, to translations (¢) and homo-
geneous Lorentz transformations (A), we can resume
the characteristic commutation relations of the
Poincaré algebra (for infinitesimal transformations)
in the form

(o4, P =0, [Juv,pp] = i(gvrpr — gurpv),

[Juu’ JP 0] — Z'(gpc JUp + guR_]pa — gupJuo . gquup)’ (8)
with the metric tensor gt = 0(p = v), g0 =— git = 1,
(i=1,2,3).

Then, the well-known 4-vector of spin or Bargmann—
Wigner2 operator is defined by

wk :%GFUPOJUPPO, p=0,1,2,3, €3753 =1 9

and satisfies

wkp, = 0, (10a)
[we, p] =0, (10b)
[wh, VP |= i(ghvwe — ghew?), (10c)
fwe,w] = — dew wepe. (10d)

In particular, these relations show that, by (10a), w
is only characterized by three linearly independent
components and, by (10c), behaves like a 4-vector
under Lorentz transformations. Furthermore, as we
know that these three components generate the little
group of p (the rotation group here), we must show
they satisfy a structure isomorphic to Eq. (2) from
the commutation relations (10c¢). Let us consider
this important point now in a slightly different but
equivalent way to other developments.15.16

If, as usual, the translation operators are taken
diagonal with eigenvalue p[p2 = (p0)2 — (p)2 = m?2],
we can, after Moussa and Stora,15 define w(p) as the
restriction of the operator w to the eigenspace of the
pH(p = 0,1, 2, 3) corresponding to the eigenvalue p.
So, in the rest frame [p, = (m,0)], we have the cor-
responding restriction w(p,), such that

w(PR) 'PR = 0,
wi(p}z) Ip}zs' e > = mSz(pR) lpR, eee >,

It is straightforward to show that the three operators
defined by

Si(PR) = wi(p}l)/m)

verify the commutation relations (2),i.e., generate
an SU(2)~structure. Now, let us extend Eq. (11) in
covariant notation. For example, let us project
(1/m)w(pg) on the following basis vectors:

ml(p}i) = (O’ 19 O, 0),

mg(pg) = (0’ 0’ 01 1)

i=1,2,3, (11)

mo(pR) 57’%{ = (1; 0) O’ 0)7

mZ(pR) = (07 05 1) 0)7
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We have
S (pg)= (1/myme(py)
according to (11) and S,(p;) = 0.

w,(bg), @=0,1,23 (12

If we are interested in the restriction w(p) with arbi-
trary p, we only consider the pure Lorentz trans-
formation L , which takes the particle of mass m
from rest to a state of momentum p, i.e.,

(L)0 o =0%/m, pO=(lpl2+m2)1/2

(Lp)i():pi/m; (LP)Oi:_pi/m9

(L) = 8 — pipy/m(pO +m), (13)
such that

LPPR =p= (pO’ p). (14)
Then, the operators S (p) are given by

S (p) = (L/m)me(pyw, (p), (15)
where

m (p) = (L, m2 () (16)

or explicitly with A = m(p0 + m):
0] 1 2 3
mop) =L = (p L p? p)

m_ \m’m’ m’m

m,(p) = ( 1+ (pl)2 plpz p1p3>
2 plpty (pz )2 p2p3 v

m o(p) = (% g )

3 plp3 p2p3 3)2

() = <p RO >
Let us note that these 4-vectors m,(p) [as the m_(p)

ones|, @ = 0, 1, 2, 3, verify the relations
m (P) ma(p) Bap? (18)

det[m (), m 1 (p),my(p), m3(p)] = 1

In this way, we obtain, through (15) and (17), the only
three fundamental spin operators [generating an
SU(2)-algebral:

1 wob; .
%<wl P+ m)’ i=1,23, (19)

which, on the one hand, can be called “the spin opera-
tors relative to the m-basis” and, on the other hand,
correspond to the definition of the well-known
“canonical spin vector operators.” Let us recall
here that these operators have classical analogs, i.e.,
the Thomas vector.23

Si(P) =

Following these results, we shall call up to now S(p)
the “canonical” spin 4-vector relative to p.

4. THE “HELICITY” SPIN OPERATOR

In connection with the remarks of Sec. II, let us now
define a new spin operator by the projection of the
“canonical” one given by (15) on the set of basis
vectors characteristic of helicity developments, In
fact, this set {n,(»), B = 0,1, 2, 3} will be chosen as
follows:

no(p) =mo(pp) = (1,0,0,0), =n,(p) = (0,n)),

i=1,2,3 (20)

where the n, (i = 1, 2, 3) are given by (6) in such a way
that the relatmns (18) still remain valid. Then,if

we denote by M (p)the Lorentz transformation wh1ch
connects the n- and m-bases, we have

nﬁ(p) = Mg“(ﬁ)ma(i’), g=0,1, 2,3, (21)
where ,
po _p! _p? _pe
m m m m
0 _pips  p2p3 B
afp) = Blp Blp TeT
MEP)=1 jpl popt 2 O3
T m mz[pl mllpi m[p
b b
0 — = = 0
B B (22)
with B = [(p1)2+ (p2)2]1/2_

The new spin operators relative to the basis vectors
mg(p) are directly obtained:

$5(0) = & (P)S, (p) (23)
= (1/myng(PIma(pyw,(p)
= (/mMp(Pu,(p), B=0,1,23.  (24)

As expected, the last equation shows that 8 (p) could
have been directly obtained by applying M(p) to the
restriction of the Bargmann-operator itseif. Equa-
tions (22) and (24) give

So(p) =0 (25)
and

8,(p)=(1/mB}Iplw — p°[(J+p)/Iplip} * €,

32(?) =EA= J’P/'Ply

S5(p)= (1/mB)w* (ez A p). (26)

So, on these simple grounds, we obtain what we want
to call the “helicity” spin operator § (p) or “the spin
operators relative to the n-basis”. By using covari-
ance arguments or performing the explicit calcula-
tions, we evidently obtain

[Sz(p)’ 3](17)] = iei].ksk(p),

and maintain all the notions related to the little group
structure of p.

L k=123 (27)

5. CONNECTION WITH THE BRAATHEN-FOLDY
ALGEBRA AND DISCUSSION

The structure (27) and the three $,(p) = (26) are iden-
tical to the Z spin algebra recently proposed by
Braathen-Foldy? from a point of view which appears,
in a sense, as the inverse of ours. Starting from the
little group structure = (27), they requive three
explicit supplementary specifications on the §;, i.e.,

(1) one of these operators must be the helicity one:

= A,
(2) one of the remaining two commutes with K ,(J03):
[$3,K3]=0, (28)

(3) they all commute with J5(J12): [$S,,J5] =0,
i=1,2,3,

These specifications are essentially introduced from

physical and practical reasons. Furthermore, with

the results (26) as a solution, they “suspect it is uni-

que without being able to give a satisfactory proof.”7

Now, from our point of view, starting with the charac-
teristic triad (6) associated to the helicity character
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of the considered representations, we find these
operators in a unique way and the properties (28)
directly follow. Then we can state that all the repre-
sentations issued from the spin algebra [(26), (27)]
will be typically helicity representations. So,as we
know that a particular property of those representa-
tions is that they are well adapted for the transition to
the case of zero rest mass,it is straightforward to
show this propertyonthe Q- and A-representations,?8
Furthermore,the connection between the Q-basis vec-
tors and the Kotanski ones, 2¢ as shown by Braathen~
Foldy, finds here a very natural explanation from the
helicity character of Kotanski's developments.

Finally, let us note the already given7 geometrical
interpretation of the three 8,(p) (i = 1,2, 3) or as it
follows from our Eq. (23),

31(1’)) = nl(p)‘S(fJ), t =1,2,3, (29)

where S(p) is the canonical spin operator (19). More
significantly here, we can also write in connection
with the triad (e, { =1, 2, 3):

$,(p) = e;*S(p)=(Re)+ (RS (p)),
such that with Egs. (6) and (29), we have
$(p) = R718(p), (30)

when R is given by (7). This relation clearly shows
the specific example constructed by Braathen and
Foldy from the general little group structure relative
to time like p.
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Renormalization of the Hilbert Space in the Mass Shift Model

Lon Rosen
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The (¢2)s‘1 quantum field theory model can be solved exactly, where the number of space dimensions is s < 3.

Thus this model explicitly illustrates many properties of nontrivial models such as (¢2#), and Yukawa,. In
particular we study hyperbolicity, the energy spectrum, local Fockness, and the change of Hilbert space as the

spatial cut off is removed.

1. INTRODUCTION

In 1953, Friedrichs! derived an exact solution for the
$2 field theory with a spatial cutoff describing scalar
bosons. More recently, a number of authors,?~8

some of them apparently unaware of Friedrichs' solu-
tion, have studied this model from a variety of view-
points. The ¢2 Hamiltonian is

H(g)=H, + AH,(g)
= ;f mx)2 + [Vo(x)]2 + md olx)2: dx
+ L Jgx) i e(x)2:dx.
Here g(x) is a smooth function of compact support,
equal to 1 on a large set, and satisfying 0 < g(x) < 1;
m g > 0 is the bare mass; and A > — m 3 is the cou~

pling constant. The number of space dimension s —
1,2,0r 3.

Because of its simplicity, this model has proved

(1.1)
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amenable to practically every known method and is
consequently well understood. In the limit g — 1, the
theory approaches that of a free field with mass

m$ =m% + x,as can be seen formally from the
Hamiltonian (1.1), This limit necessitates a change
or renormalization of the Hilbert space from the
original Fock representation with mass m to that of
mass m,. The scattering theory that results is of
course trivial. When g(x) # 1, nontrivial scattering
does occur but this phenomenon may be regarded as
spurious since essentially particles are bouncing off
the “edges” of the cutoff function g. As a matter of
fact, as we shall see, the structure of the cut-off
theory is much like that of the quantum mechanical
theory associated with the single particle operator

p2=— A +mg + rgx). (1.2)

&

The field equations for this model are linear.
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amenable to practically every known method and is
consequently well understood. In the limit g — 1, the
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m$ =m% + x,as can be seen formally from the
Hamiltonian (1.1), This limit necessitates a change
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original Fock representation with mass m to that of
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p2=— A +mg + rgx). (1.2)

&

The field equations for this model are linear.
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The reason that the mass shift model can be solved
exactly is that the Hamiltonian H(g) is quadratic in
creation and annihilation operators; hence it is pos-
sible to exhibit a unitary equivalence between H(g) and
the free Hamiltonian corresponding to the single par-
ticle energy p,. The intertwining operator which
accomplishes this equivalence is also quadratic in
creation and annihilation operators. Some of the
recults in Secs. 2, 4, and 5 have already been obtained
by Eachus® in his comprehensive study of ¢2;but the
proofs that we present are more direct than his.

In spite of its “triviality,” the ¢2 model illuminates
many aspects of the constructive field theory pro-
gram initiated by Glimm and Jaffe (cf. Ref. 7 and the
articles cited there): For s <3, (¢2),, shares a num-
ber of properties with the much more difficult non-
linear theories provided by the (¢27), model®>? and
the Yukawa, model.19,11 In particular these theories
can all be realized in the standard Fock space re-
presentation for the bare masses, and when the spatial
cutoff is removed the renormalized Hilbert space is
obtained through a weak limit of vacuum states. The
final renormalized representation is inequivalent to
the original Fock one, but it is “locally Fock” in a
sense to be described in Sec. 6.

In this paper we utilize the exact solution of the ¢ 2
model to provide a concise and explicit example of
these phenomena. It is our hope that the ¢ 2 model
can thus serve as a guide to the genuinely nonlinear
theories. It remains to be seen whether the guide-
lines are too linear.

2. EXACT DRESSING TRANSFORMATION

Friedrichs! and Eachus® derive several forms of the
dressing transformation Tg. Since our formulation
differs somewhat from theirs, we outline the deriva-
tion of 7, in the Appendix.

Operators on the single-particle {momentum) space
¥ = L2(Rs) will be denoted by small letters, and
operators on Fock space J, by capital letters. We
take the standard representation of the free field with
mass ng on §o =2, .o D I,, where 3¢ is the n-fold
symmetric tensor product of 3¢. In terms of the anni-
hilation and creation operators a(k) and a*(k) {cf.
(AB)], the time zero field is given by

) = (2m)7s/2 [dsk(2p) V2 eikx[a(k) + a*(— k)], (2.1)
where we shall write p = py = (k2 + m3)/2and p, =
(k2 + m2)1/2,

From the conditions on g(x) and A, it follows readily!2
that p and p, are self-adjoint, and that u = m and

i, =m where m = min{my,m ) > 0; moreover, there
aTe constants « and b such that p2 < a2u§ < b2u~ on
the domain D(yp) X D(u). Thus D(p) = (p ), and by an
interpolation theorem of Lowner and Hemz 13 for any
0<6=x2,

po < adpd<bops. (2.2)

T, is a unitary operator on ¥, that intertwines the

free and total Hamiltonians

Hionlg) = T, Hol )T, (2.3;
Here Hy{g) is the biquantization of the single particle

operator L, :

= [a* (k) by, ko)alk )dk dk.,, (2.4)
where ug(kl,k ) is the kernel of p,. For a discussion
of such operators and the proof that the self-adjoint-
ness of the single particle operator implies that of
the biquantized operator, see either Ref. 5 or Ref. 8
(c). Formally H (&) is a renormalization of the
Hamiltonian (1. 1),

H (2.5)

renl8) =

Hy + MH,(g) + E(g),

)u1/2] 2 is a vacuum renor-
{5 1s the Hilbert-

where E(g) = 3li(x —
malization constant. Hﬁare [+
Schmidt norm.

It is not obvious that formula (2. 5) gives a well-
defined operator except when s = 1. Indeed a calcul-
ation shows that E(g) is infinite unless s < 2, and
even when s = 2 it is not clear that the sum H0 +

A H,(g) can be defined as an operator. Thus the
operator equality (2. 3) can be established directly
only when s = 1, and by a bilinear form argument
when s = 2. One resolution of the difficulty when s =
3 would be to introduce and then remove a momentum
cutoff ¢, in the manner of Glimm?'? (see also Ref. 6),
In the cut-off version of (2. 3),

}[O,o (g)y

all the terms would be well defined. One could then
show thatas o =%, Hy (g) 2 Holg) and T, , = T,.
This procedure Would exh1b1t H,.onlg) as the (graph)
limit of the sequence H .., () and explicitly demon-
strate the “infinite cancellations” in H_, (g). To ex-
pedite matters we shall simply take (2. 3) as the de-
finition of H,. (g). H..,(&) is thus a positive self-

adjoint operator with domain T, D(H ().

Hren,a(g)To,g = To,g

We now describe the form of 7, most useful for our
purposes. p~/2ul/2 can be decomposed in polar form

P_I/Z}il/g =pu, (2.6)
where p = (u- 1/2u p-1/2)172 From (2.2) we see that
0<al2<ps<aqa’ 1/2b1/2 so that p is a bounded in-
vertible self-adjoint operator and # is unitary.

At this point it is necessary to impose a further con-
dition on g(x), namely that 2(x) = g(— x). Then if we
regard g as a multiplication operator [i.e., convoiu-
tion with 2 (¥) on ¥}, we see that ¢ commutes with the
reflection operator 7,

where / ¢ 3. It follows that » commutes with nz,
hence with any function of y,;accordingly » commutes
with p2 and any function of p.

2.7

Now it is of critical importance for what follows that
the operator

{ =v Inp € HS, (2.8)
where HS is the class of ri 1bert Schmxdt operators
on ¥, (2.8} was oro
series tech nlquﬂ and
iemma 2.1 helow.
LJV nunnser
zﬂw» }mb 4

cive a meler pmc,x in

CO wiition has peen isclated
rg,for examyple Chadam.?

ral formuiation that

: ‘ ent conditios for the

¢? dynamies to be amhrx}" *mplementaole in ®

‘\: ’)} is
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In terms of [ we define

L = 5if[lky, kp)a*(ky)a*(ky)

— Uky, ky)alky)atky)]dkydky.  (2.9)

It can be shown by an analytic vector argument,> that
(2. 8) implies that L is self-adjoint. T, is written as
a product of two unitary operators U, U,, the first of
which is U; = eL. The second U, is the biquantiza-
tion of u in the following sense. By the Spectral
Theorem, we have u = e® where w is a bounded self -
adjoint operator on . The self-adjoint operator

W= [a*(ky)w(ky, ky)alky)dk dk,

then generates U, = e*W. In the notation of Ref, 15,
we can write U, = I'(x) and W = dI'(w). Finally,

I, =UU, = eileiW, (2.10)
The main tool in the next lemma and in this paper is
a representation for the fractional power of a positive
self-adjoint operator obtained from the theory of the
Dunford-Taylor integrall2: Let & = mI where m > 0.
Then for 0 < a< 1,

sinTa
i

ho = (2.11)

fgoyo“l(h + ) lhdy

on D(k). Note that the integral is convergent since

I(h + y) 1l < (m + )L, (2.12)

We collect here the conditions that we impose on g(x)
even though all of them are not immediately used:

gx) e C3;  glx) =gl—x); 0=<glx) <1, (2.13)

where we also require that A is not too negative in the
sense that m$ = m§g + A > 0. In the limit glx) = 1, we
shall need some uniformity in the limit, such as
lg"(x)] £ M < « and a bound on the ratio of the
volumes

|suppgl/lg1(1)| < R < w. (2.14)

This is most easily arranged by considering the
sequence

&,(x) = h(x/n), (2.15)
where h(x) is a function satisfying (2.13) and (2.14).
Lemma 2.1: {Eachus16) The operator

6, =p?—1= p-V2(p, — p)p~1/2 € HS. (2.16)

Proof: Using (2.11) with z = p2 we have on
D(p2)

1 _
pe = —Jo ¥ V22 +3) tpfdy.

Therefore on D(p2) N D(p2)

1 e ]
e —p=o Jo V22 + 9y g — (2 + ) p2ldy

1 =)
= ;fo y12(p2 +y)p2— p2l(n2 + y)ldy

A [ )
= ,,—fo y12(u2 + y)tg(p2 + y)tdy, (2.17)
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where g in the preceding integral represents the
operator of multiplication by g(x). By (2.12) this
last integral is norm convergent, so that (pg — ) ex-
tends to a bounded operator on JC.

To prove that 6, « HS we use the fact that if 7, s, and
t are bounded operators with s € HS, then rs¢t € HS
and

lrstlly < I7lilislighel. (2.18)
For 0 < € < ; we write by (2.17)

5, = 2 [ yLr (2.19

g =7 Jo ¥2s155(9)s38,55(9)dy, .19)

where sy = p-M2pl/2, s, = pl/4 e (u2 + )1, 55 =

“g‘3/4“€u 3/44 E’ 84 — “‘3/4‘68-” "3/4‘5’ 35 —

(“ 2 4 y)-lu 1/d+¢,

By (2.2) s; and s are bounded. Clearly s, and sg

are bounded; in fact a calculation of max,

[(y + x2)1x1/4+¢] shows that for large y,
so(H + lss(3)] < constyC7/8rE/2),
As for s, we compute in momentum space that

54113 < fdskldskzu(kl)‘(3/2)‘2€
|y — ko) | 2u(ly) B/D-2¢
< 2k dky |8 (k) = ko) |2 ully) 20
+ “(kz)-3—4€]

by the arithmetic-geometric-mean inequality. Since
by (2.13) g € L,, and since s < 3, we see that s,
HS. It follows from (2. 18) that the integrand in
(2.19) has finite HS norm which for large y is domin-
ated by O(y-5/4+¢), Hence the integral (2.19) con-
verges in HS norm.

Corollary 2.1: The operator [ € HS.

Proof: Note that Inp = sinh"1(k_) where h_ =
1p16,. By Lemma 2.1 and (2. 18), 2_ is in HS; since
|sinh™1(x)| < |x| so are sinh"1(%_) and .

3. HYPERBOLICITY
The time-dependent field is

olx, t) = e“Hre“(g)(p(x, o)e-itﬂl.eﬂ(g)’

where ¢(x, 0) is given by (2.1). Although ¢(x, t)
appears to be dependent on the space cutoff g, in fact
it is not provided that g > (x,¢). By this notation
we mean that g(y) = 1 in the ball B,(x) ={y ||y — x|
< |t|}. Similarly we write g >> (f,¢) provided
g(y) =1 in the region U, B,(x) where the union takes
place over x € supp/f.

When s = 1 this hyperbolicity, or independence of

¢ (x, £) on the values of g outside B,(x), is known for
the ¢ 22 model. The proof relies on a theorem of
Segal7>17 and the fact that # . (g) is essentially

self -adjoint on the domain DZHO) N D(H ,(£)).° In the
present case when s = 2 or 3, this method is not
available but it is easy enough to verify hyperbolicity
directly.
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Let f(x) be a real C3 function of compact support.
We define the averaged field f ¢(x, 0) f(x)dx as

¢(f,0) = 212[a(u-12F) + a*(rp-12f)].

An analytic vector argument shows that ¢(f,0) is
self-adjoint on a domain including D(N1/2) where N
is the number operator. By (2. 3) we have ¢(f, ) =
T, e itidO T (f, 0)T, e~ 48 T; on D(N), say. Using
(A14), its adjoint, and (A5), we find that

(3.1)

TSo(f, 0T, = ¢(pl2ut2f,0) (3.2)
on D(N). But by (All) withw = p,
eitho g H(Fle-ithl8) = at(evitng ) (3.3)

on D(N1/2), where a* stands for a or a*. A straight-
forward calculation based on (3.1)—(3. 3), (A. 9),
(A.7),and (A.5) yields

o(f, 1) = o(f(1),0) +a(fy(0),0), (3.4)

where the conjugate field
m(f,0) = — i271/2[a(ut/2f) — a*(ju1/2)],

F1(8) = (cosp,t)f,and fo(t) = (u'gl sinp,?)f. Similarly
we find that 7( f,¢) = ¢(f,¢);that is,

ﬂ(f, t) - ¢)(f3(t); 0) + n(f]_(t), 0)9

where f5(t) = f1(t) = — (u, sinp,t)f.

But we recognize f,(x, f) as the solution to the clas-
sical initial value problem

(3.9

Uy, —Aut+miu+rxgu=0,

(3.6)
u(x,0) = f(x), u,(x,0) =0

and similarly for f,(x, f) except that the initial con-

ditions are u(x, 0) = 0 and u,(x, 0) = f(x). Now Eq.

(3. 6) is hyperbolic with speed of propagation equal to

1. This can be seen explicitly, for example, from the

corresponding spherical mean integral equation.

Hence f, and similarly f, are independent of g if

£ > (f,t). We have proved:

Theorvem 3.1: Let f(x) be a real C3 function of
compact support. Then the sharp time fields ¢(f, ¢)
and 7(f, ) are self-adjoint operators whose domains
include D{N 1/2), and which are independent of g pro-
vided that g > (f, ?).

The algebra of local observables (essentially func-
tions of the fields) can thus be formulated indepen-
dently of g. If B is a bounded open region of space
B C Rs, we define ¥%4(B) to be the norm closure of the
linear span generated by the operators il (/.0+n(,0,
where f and # are real C™ functions with support in
B. We define the local (von Neumann) algebra %(B)
as the strong closure of %,(B). The (C*-algebra) of
quasilocal observables is the norm closure of the
union

A= [UzAB)], (3.7
where B ranges over all bounded open subsets of Rs.
Alternatively we could define %(B) for space-time B

in terms of time-averaged fields, but by (3. 4) and
(3.5) we see that the resulting algebra % would be the
same. It is apparent at this point that we do not have
genuinely interacting fields. The decision to take the
algebra of observables to be % rather than %, =
[U%o(B)] is for mathematical convenience; it is justi-
fied by the results of Sec. 6 which imply the equi-
valence of the strong closures of the local algebras
in the two representations of interest.

4. SPECTRUM OF H__ (g)

By the unitary equivalence (2.3),H . (g) and Hy(g)
have the same spectrum. But the spectrum of Ho( g)
is determined by that of p,: Suppose that p, has spec-
tral decomposition p, = fAde, , then we havel®
o0 n
Holg) =2 @ f(Z)Ai> dE, s .,
n=0 i=1 17z Tn

(4.1)

where E)\1 -y 1s the symmetric tensor product
n
e, ®e ®:-®e jand {EM'“M} gives an n-para-
n
meter resolution of the identity in C,.

Now the spectrum of p_, is well understood. Consider
the Schriédinger Hamilfonian hg) = p,g2 —m3 =

— AN + aglx). Its spectrum o(k(g)) is just what one
expects. The positive real line [0,©) forms the abso-
lutely continuous part of the spectrum. If A = 0, there
is nothing else. If A < 0 there are in addition a finite
number of eigenvalues in (A, 0];as g(x) — 1 the num-
ber of eigenvalues is of the order of |suppg|. This
behavior is consistent with the fact that as g — 1,
o(#( g)) approaches the spectrum of (— A +A) ina
lower semicontinuous fashionlZ; that is, the point
spectrum of 2(g) must fill in the interval [x, 0].

The above conclusions follow at once from theorems
of Kato,12 Tkebe,19 and Weidmann20 and the rather
strong conditions (2.13)—(2. 14) on the potential g (x).
For example, Ikebe has shown that %(g) has no sing-
ular spectrum by establishing the completeness of
the system of normalized eigenfunctions and “dis-
torted plane wave eigenfunctions” of h(g). The esti-
mate on the number of eigenvalues follows by com-
paring k(g) with spherical well Hamiltonians for
which the eigenvalues can be explicitly computed
[here we are using (2. 14)].

From the spectral theorem, we see that if A > 0,
then o(p,) = [m, ) is absolutely continuous. Thus
by (4.1), H, . (g) has an eigenvalue at 0 and abso-
lutely continuous spectrum on [m g, ). KA <0,
o(ug) consists of an absolutely continuous part on

[m g, %) together with a finite number of eigenvalues
Alyeve,A;in (my,m). Herej ~ |[suppg|. It follows
from (4.1) that H . (g) has eigenvaluesn A, +

Nghgy + =+ + m;X;, where ny, ..., n; are nonnegative
integers, and absolutely continuous spectrum on
[mgy,c). We note that in this case, H,.(g) has posi-
tive eigenvalues imbedded in the continuous spectrum.
In either case the Fock vacuum £ is a unique ground
state for H,(g), and hence

‘Qg = TgQO

(4.2)

is a unique vacuum for H_, (g) corresponding to the
eigenvalue 0.

A number of these features have already turned up in
the (¢ 27), theory: Glimm and Jaffe8 have shown that
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H(g) has compact spectrum in (— o, m ), and Hoegh-
Krohn2! has established that [z, ) forms the con-
tinuous spectrum.

In addition Glimm and Jaffe have verified the unique-
ness of the vacuum for H( g). On the basis of the
results of this section one can conjecture that in the
spatially cut-off (¢ 27, model, there is no singular
spectrum; that if 0 is the only eigenvalue in [0, )
(corresponding to ), then [m ,, ) is pure continuous
spectrum; if there are more eigenvalues, then some
point spectrum is imbedded in [m , ©); however, if
this is the case it should be possible to remove these
eigenvalues by a positive mass renormalization
(corresponding to A = 0 in the present model).

The above spectral information can be related to the
question of whether H,_ (g) is unitarily equivalent to
H,. As discussed by Eachus,® this question reduces
to that of the unitary equivalence of b, and po. For
suppose there is a unitary operator u 1ntertw1nmg g
and (g

MU = Ulg. (4. 3)
Then if we define U to be the unitary operator in &
which is the biquantization of # as in Sec. 2, we obtain
by (Al1)

Hy(g)U =UH, (4.4)

and from (2. 3)
Hren(g)W = WH,,

where W is the unitary operator 7,U.

The operator u of (4. 3) is of course the wave oper-

ator of quantum mechanics; it exists,12 and hence so
does W,for A = 0 and even for negative A as long as

h(g) has no point spectrum.

When A < 0 and k(g) does have eigenvalues then u is
only an isometry, mapping ¥ onto ¥, . = & © I}C
here ¥, is the finite-dimensional subspace of :}C
spanned by the corresponding eigenfunctions, and

&, .. 1is the “absolutely continuous” part of 3¢ with
respect to #(g). However, in this case, we still have
the relation (4. 4) where now U = I'(u) (see See.2) is
an isometry mapping F, onto the subspace EF(JCa_C.),
the Fock space constructed from the one—particle
space ¥, . ,i.e,F(X, . )=2e XK, . ©®

® X, .. fwe decompose Fo = &V(CFC )® 9( p) then
Ho(g) can be written as

Ho(g) = (UH,U*® I} + (I® H,),

where H, is the biguantization of Mg ) &,. This gives a
correspondmg decomposition for H,.,(£).

Note that this latter case [0 (h( £)) nonempty and W an
isometry]| does not argue agalnst the unitary equi-
valence of H, ., and H in general in quantum field
theory. This example indicates that it may simply be
necessary to adjust H,. ., by the addition of counter-
terms (in this case, a finite positive mass counter-
term).

5. REMOVAL OF THE SPACE CUTOFF

As explained in the introduction, when g — 1 the Hil-
bert space is renormalized by means of a weak limit

J. Math. Phys., Vol. 13, No. 6, June 1872

of vacuum states. More precisely for any A in the
algebra % of observables, we define

w,(A) = (2,,AQ,) (5.1)
in terms of the unique vacuum vector 2, of H . (&).
Clearly w, is positive linear functional on A of norm
1,i.e.,a state. As g — 1 we show that w, converges
in the w *-topology to a state wy; that is,for each A in
An,

w (A) = w, (A). (5.2)
Moreover, for A  A(B), where B is a fixed bounded
set in Rs, (5. 2) takes place in the sense of novim con-
vergence. The limiting state w, uniquely defines a
new representation of % in a “renormalized or phys-
ical Hilbert space” §; by means of the GNS construc-
tion.?2 In particular there is a cyclic vector 2, ¢ &,
such that

wi(Ad) = (92,,A94).

Finally, we can identify this representation as the
Fock representation for a free field of mass m, with
no-particle state 2.

Thus the arduous renormalization of P(¢), by Glimm
and Jaffe7:8 is simply illustrated by the above state-
ments [except for the last which would be a disaster
for P(¢) and the statement of local norm conver-
gence where we rely on the P(¢), proof]. Note, how-
ever, that no space averaging is requ1red in the de-
finition of Wey that the original sequence {wg} and not
just a subsequence converges, and that the limit v,
is unique. It has been conjectured that the same is
true for P(¢),.

Consider now a generator A of the local algebra A(B),
A = el ] where ¢(f) and 7(k) are time-zero
fields,and f,h € C3(B) are real. From (3.2) and its
analog for 7,we see that

wg(A) (QO, 1AT 24)
— (QO, ei[‘b(}i l/ZHg-1/2f)+1r(“‘I/ZHg}/Zh)]QO)- (5. 3)
It is a standard free field calculation that
wol4) = (Qo’ei[¢(f)+1r (h)]go)
= exp[__ %((f; N'lf> + <h: “h>)]’ (5'4)
where (-, is the Hermitian inner product on .
Hence from (5. 3),
w,(4) = exp[— 1((f, ugtf) + (B, g )] (5.5)

Formulas (5. 4) and (5. 5) provide the clearest de-
monstration of the statement that turning on the
interaction AH,(g) amounts to replacing the single
particle energy u by -

Formally it is obvious that in the limit g = 1,
{(fy pis) + By py)].

This knowledge of w; on the generators A is enough
for us to conclude that the representation of the
canonical commutation relations determined by the
state w, is that of Fock space with mass m,.23,24

Note that

w1 (A) = exp[— (5. 6)

We now prove the convergence of w, to wy.
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we are making some assumptions such as (2.15)
about the uniformity of the limit g{x) - 1. Let {(x)
be a C‘S’ function with support in the bonded open
region B € Rs, and let x j(x) be the characteristic
function for the interval [j,j + 1) CRs. Here j =
(Gyyeverdedy 14,3+ 1) =184 [4;, 4, + 1),and |j]=
(jg + -+ +j2)1/2. We shall generally regard { and
X ; as multiplication operators on X. To begin with
we prove the following estimate on the loss of local-~
ity produced by the operator p = (— A + m3)1/2 [cf.
Ref. 8(c}].

Lemma 5.1: For a < 0, there is a constant ¢ inde-
pendent of j such that

lixjpegll < o1 + |51y D72 moldl, (5.7

Proof: In coordinate space the operator u<is
given by convolution with the (distribution) kernel

ka(x) = (2g)-5je—ipx(p2 + mg)ajzdp.

For a < — s this integral converges and in terms of
the modified Bessel function K, we calculate that2®

ka(x) —_ (27;)-5/2201/2+1I‘(.” lza)"l

x (7730// Ix I)(a+8)/2K(a+s);2 (mo Ix1). (5.8

In fact (5.8) is valid for all real ¢ # 0,2, 4, ..., and
from it we can read off the relevant properties of % ;
namely, 2 (x) € C*(Rs) except at x = 0 (where it has
a singularity of order |x|-(*s) when o + s> 0), and
as |x| = o,

(%) = O[lm/ |x]) e s)/2 ol 1], (5.9)

The lemma follows at once from (5.9),

Remark: Note that even when o + s < 0 we have
lix ;uo€]l = Ofe~tmo~9)¥)) for any € > 0. Moreover,
when the closures of the supports of x, and ¢ are dis-
joint, [y ;pu€ll, < c e (mo-alil-cy) where ¢y, ¢, are
independent of both j and . In particular,

~(mgry~e)(ji-cy)

Ixn2+9)1Kl, <c e (5.10)

Lemma 5.2: As g~ 1, (g, — p)tll = 0.

Proof: The calculation (2, 17) shows that (yg — i)
is a bounded operator and that

(b — 1t = i—f:ym(uﬁ + 97 g — pg +y)1idy.

When ¢ = 1 on a sufficiently large set (say |x| < ¢},
we obtain by (5. 10)

(s, — p)Lll < const HZ) J&lIx k2 + vy ielidy
ilze

<const 2 f§°e-(m1+y-€)(|jlucz)dy.

ijize
The lemma follows upon choosing ¢ large.

Lemma 5.3: Asg—1, p, 2 py and gt 2opit.

Proof: Note that by (2.2), D(y,) = D{(u,) and, by

(2.17), 1l By — pqll = ¢ < o, where ¢ is independent of

&. We approximate any f € D(u) by £ f: | f — ¢ FII <
€, where € > 0 is arbitrary and { € C} is chosen as

an approximation to the identity. Next choose g suf-
ficiently close to 1 that [|(, — p,)¢|l < €. Then

M — ) A1 < Hpy— 2 0F — €N
+ g — ) < ce + €ll 71l

The convergence of p;1 follows from that of p,.

By the form (5. 5) of wg(A), Lemma 5.3 establishes
the convergence (5. 2) for a generator A. This con-
vergence obviously extends by closure to all of %,:

Theorem 5.1: (Eachus) As states on %, W, ™ Wy
in the w *-topology.

Finally we verify that w, converges in norm to w, on
each local algebra %(B). We have been unable to
prove this directly because of lack of a good under-
estimate for the norm {|A| of a local observable 4.
Instead the proof relies on results of the next section
and a theorem of Glimm and Jaffe.® In Sec.6 we
introduce the local number-energy operator N,  for
the interval B and prove that w, (N, ;) <c where the
constant ¢ depends on the volume of B but is other-
wise independent of B and g. By Theorem 4.1 of Ref.
8(c), we conclude that on each %(B), the w, have a
norm convergent subsequence. Glimm and Jaffe
prove this theorem for s = 1 but with appropriate
modifications it remains valid in any number of space
dimensions. We also need the fact that w, is a nor-
mal state on ?IO(B) and hence extends to a normal
state on % (B). (A normal state w is one for which
w(d,) = wd)as 4, T A.) By Theorem 6.1,w, | %y(B)
is unitarily equivalent to a vector state and is hence
normal,

Suppose then that w, does not converge in norm to w,

on A(B). Then there exists a subsequence Wy such

that H(wgn — wy M U(B)] = ¢ for some € > 0. But by the
above result there is a further subsequence of the w,
n

that converges in norm to a (normal) state w o ON
%(B). Clearly [[(w, — w )} AB)] = ¢. However, by
Theorem 5.1, w,(A) > w,(A) for every A € % 4(B);
hence [(wy — w ) %U(B)l = 0. But [{w, — w ) [ A(B)|
= Hwy — @) AB)| since (wy — wy){A(B) is normal
and the unit sphere of %,(B) is strongly dense in the
unit sphere of %(5).26 As a result:

Theovem 5.2: As states on %(B), W, = w, in norm.
By an approximation argument:

Corollary 5.1: As states on ¥, w, = w, in the w*-
topology.

6. LOCALLY FOCK PROPERTIES

Let p; be the representation of % on ¥, determined
by w,; and let ¢,,7,, and H; be the standard fields
and free Hamiltonian for the free theory with mass
my on §,. By (5.6), exponentials of the time~zero
fields A = eile(*1h] ¢ U are represented by p,(4) =
eilo*mW] and as can be checked from (3. 8) and
(3.9) this correspondence extends consistently to the
time-propagated fields, e.g., p,(¢(f, 1)) =

eiting, (£, 0t = ¢ (f, 1).

Since representations of the CCR's with different
masses are unitarily inequivalent,24 p, is not unit-
arily implementable; however, p; is locally unitarily
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implementable. It is this property that Glimm and
Jaffe call “locally Fock” in the context of the P(¢),
and Y, models. Here it might seem redundant to call
a representation on Fock space ¥, “locally Fock,”
and in fact this redundancy is reflected in the proof.
In the case of the P(¢), and Y, models, local Fock-
ness depends critically on the local norm convergence
of w, and the subsequent locally normal property of
Py %Iowever,in the present case we need only note
that by a result of Araki,27 %(B) and p,(%(B)) are sep-
arable type III factors;hence the isomorphism p, is
unitarily implemented.2® We state this as:

Theorem 6.1: Let B be a bounded open subset of
Rs. There is a unitary operator Uy mapping from &,
to &, such that

Uy,AUg! = p,;(A) for every A € A(B).
Unfortunately we have been unable to find an explicit
representation for the mapping Uy. If we regard 7,
as mapping from &, to 9, then in a formal sense
(since it does not exist) T, gives the canonical unitary
equivalence between the action of % on F4 and p, (%)
on ¥,; for support of this statement see formula
(3.4). One might think then that Uy is given by T !
with g = 1 on B but g ¥ 1. However, this choice of Uy
is only approximately correct; for no matter how
large we take the region {x |g(x) = 1} it is not true
that p;1/2f = p7l/2f for f with support in B'.

Perhaps the locally Fock property can be best under-
stood in terms of local number-energy operator
estimates which we now prove. Let x(x) be the
characteristic function for the bounded open region

B CRs. If 7< 3,it is easy to see that yuTy is a well-
defined positive operator on Schwartz space $(RS).

We denote its Friedrichs extension by c.. The local
number-energy operator N_ ; for the region B is the
biquantization of c,, N, z=dI'(c,). Let{f,} be an
orthonormal basis for L2(Rs) such as the Hermite
functions; then a convenient expression for N_ , is
22,a*(c}2f,)a(jcl/2f,), where the sum certainly makes
sense on the dense domain

D={¥ e Fy:¥, € S(Rs"); ¥, = 0 for largen}. (6.1)
If we refer to the particles with mass m associated
with the Fock space F, as “bare particles” and the
particles of §, as“physical particles,” then the
observable N ; corresponds to the number-energy
of bare particles in the region B.

The N, ; estimates that we prove are of the form

N p < c[H.en(8) + 1}, (6.2)
where 7 is a small positive number,;j an arbitrary
positive integer, and ¢ a constant depending on the
volume of B but otherwise independent of B and g.
The physical significance of (6.2) can be seen by
passing to the limit g = 1: Any physical state of finite
total energy has a finite number of bare particles in
any bounded region. The inequality (6. 2) is believed
to be true for any locally Fock model such as (¢ 27),
or Y, but has not yet been proved for these models.
Such inequalities would be useful for establishing the
regularity of the physical vacuum (e.g., that it is in
the domain of powers of the fields) and for deter-
mining the relation between normal ordering of
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powers of the field with respect to the bare vacuum
and the physical vacuum.

We need some preliminary estimates.

Lemmma 6.1: Let a be real and suppose the in-
teger » = |a|/2. Then if £ € C27(R9),

petu-=| < const sup |Dit|.
1jls2r

Remavk: On the left side of (6. 3), ¢ is interpreted
as a multiplication operator, whereas on the right
side D’ = 871 ... 9s¢ is the derivative of the func-
tion ¢ of order |j| =j; + -+ +j_.

(6.3)

Proof: The idea is to commute the y@ through the
€. We shall consider the case 0 < a < 2; the other
cases are similar, By (2.11)

pe = ﬂ_z_aﬁf(‘f y@/@D-1(y2 4 y)1p2gy
so that

[ne, €] = SRI2/2 feo aape (42 + y)1ay.
Now

(€ (w2 + 9) 1] = (b2 + y) L[~ A, L](p2 + p)L

= (12 + )= AL - 2VEV)
X (u2 + ).

We thus obtain

lwegp=e| < supft] + S—i“—:a—/zfooo y*2[a(y) + b(y))d

where

a(y) = l(u2 + y)-1(AL)(p2 + y) Lpo| = suplag| O(y~2
and

b(y) = l(u2 + y)-12VE-T(p2 + y)-lue|

Therefore, the integral converges and u* ¢y is
bounded as in (6. 3).

Remark: When (suppg)” is disjoint from [j,7 + 1],
then the method of the above lemma and the estimate
(5.10) yield

~(mg-€)lj
iy otp=ell, = 0@ ™ 1) (6.4)
for any € > 0. Moreover from (5.7) we see that when
az — 1, we may take € = 0 in (6. 4).

If we replace § by the characteristic function x of an
interval in Rs, then we obtain a somewhat weaker
result.

Lemma 6.2: 0 < a<$and 8> as,then poyu-8
is a bounded operator on LZ(Rs).

Proof: We sketch the proof which is similar to
that of Theorem 3. 3.1 of Ref. 8(c). As in the pre-
vious lemma, it is sufficient to prove that [u®, x ] u8
is bounded. Let f(k) €§. Then

ITpey xJu-8f(R) | < const(u|g|)xp8| fI(k)  (6.5)

and estimating the norm of the convolution by L,
norms, 29



RENORMALIZATION OF THE HILBERT SPACE 925

I{pe, x Ju=8f 11 < const px I, liuw-2711,,
where 1/p + 1/r =%, p=1, r = 1,

By an elementary computation |u*g(%)| = O((ky < - -
k1) as k > ®so that p*x e L, if 1/p< 1— . By
Holder's inequality, | w8 f [, < [ Fllol w8l om0
This last norm is finite if 287/(2 — 7} > s. The above
restrictions on p and » are consistent if o < % and

g > as.

Lemma 6.3: 0 <o <% andf > a + s/2,then
puey pu8 € HS.

Proof: The operator x 1%~? has kernel §(k — %)
p(k7)e-8 which is in L2(R2s) if 8 > a + s/2. Thus by
(6.5) the lemma reduces to proving that u*(k — k') x
Lk — k) (k') € L2(R2s) which follows from the fact
that u3 € L2(Rs).

By Lemma 2.1, §,x € HS. In fact:

Lemma 6.4: H a < 3, then 16, x u* ||, is bounded
independently of g.

Proof: Let w(y) = p~Y2(u2 + y)lg(u2 + y)tu-1/2
xit®. By (2.17) it is sufficient to show that v(y) € HS
and that for large y, v, < b}y | ®/2-¢for some
€ > 0 and b independent of g. Accordingly, for 0 < € <
1 —s/4—a/2,we rewrite Y(y) = s1(9)s555(¥)sy,
where s;(y) = p~V2(u2 + p)lpl2, s, = pl2gu 12,
s3(¥) = p2(p2 + y)y-1lpG2-2¢ and s, = p-2*2¢yp,
By Lemma 6.3, s, € HS,and by Lemma 6.1, s, is
bounded independently of g. Clearly s; is bounded and
by (2.2) so is s;;but in fact for y > 0 we have [|s,(y)ll
= O(y~1) and, by the arithmetic-geometric-mean
inequality, [s5(y)| = O(y~1/2-¢). Hence by (2.18),
lv(p)ll, = O(y~B/2=¢) for large y.

As applications of these estimates we note that if
0 <7< 3and B> s7/2,then c1/2-8 is a bounded
operator. For if f € §, then

lct2usfll = |u/2yx wef | < const| fl], (6.6)
by Lemma 6.2. Secondly, if @ < 3, then
| vy_x n¢lly < const(independent of g), (6.7)
since by (A5), (2. 6),and (2.16), y_ = zu*p-15,.
Lemma 6.5: If < min(3, (1/s)), then
§||a#( jy, €M2f,)(Hy + 1)°1/29]|2 < const|¥[2,  (6.8)

where the constant is independent of g.

Proof: It is sufficient to prove the lemma for ¥
in the r-particle space JC, with estimates indepen-
dent of ¥. From the definition (A6) of a( f) we calcu-
late that

22 la(Gy, c1/2f, |2

n

=7fdp1“'dpr-1<‘II(P1""?Pr—1:')7
y+cfyf‘p(p17"'7pr—17')>
< Jel2y¥p-12)2||(Hy + DY2 82,

since by symmetry

H(HO + 1)1/2‘-1'”2 = ’Vfdpl' . 'dIJ,_1<‘I’(P1, ey Py qs ),
1316 NS JPPED N
Now by (6.6), c1/2-1/2 is bounded if 7 < min(}, (1/s))

and by (A5) and (2.2) so is p1/2y* u-1/2, Thus
llct/2y ¥ u=1/2|| < o and (6. 8), is verified.

As for (6. 8)_ we have
2illa*(jy_cl2f, ) w2
= 2%, aly_c¥2f )a*(jy. cl’2f, )g)

=2illa(y_cl2f,)¥0(|2 + 19|22 |y Y27, |2

by the commutation relations for a and a¢*. Now the
first sum is bounded as before, and the second sum

Zilly.cl2f,12 = |ly_ci/2|2
= ” y_ Xu(x ﬂ—acl‘;/z ”%
< lyox el llu-aclz)2,
which is bounded independently of g by (6. 6) and (6.7)
provided that s7/2 < a < 1/2,

Remark: If 7 = 0, then the above proof works if
(Hy + 1)71/2 in (6. 8), is replaced by (N + 1)-1/2,

Theovem 6.2: Let Ny = N, 5 be the local number
operator for the bounded interval BC Rs. If 7 <
min(3, (1/s)), then

N, g < c[Hyen(8) +1] (6.9)
and if j is a positive integer then
ND < d[H (&) + 1]’ (6.10)

where the constants ¢ and d depend on the volume of
B but are otherwise independent of B and g.

Proof: By (2.3), we see that (6.9) is equivalent to
the inequality Tg*NT,BI; < ¢[Hy(g) + 1] which can be
reformulated as

2 a2 £)T(Ho(g) + 1712 %2 < cfiwf2.  (6.11)

But by (A14),
a(jc¥/?f, )T, = T, a(jy, c¥2f,) — T, a*(y_ cV/2f,). 6.12)

To verify (6.11), we insert (6.12) into the left side of
(6.11) and appeal to the triangle inequality, the unit-
arity of 7,, and the previous lemma. Note that by
(2.2), H, < aHy(g) < bH,.

To establish (6. 10), we prove that

TINJT, <d(N +1)7, (6.13)

which is actually a stronger inequality since e =M.
The proof of (6.13) is by induction on j,the case j =
1 being covered by the remark after Lemma 6. 5.

Assume then that (6. 13) holds for j, and prove it for
j + 1. Now

(¥, TN ) = Dlalix £IN T, w2,

But [a(f), N, z] = a(jc,jf), and, if the region B is
symmetric about the origin so that jx = x j, we have
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a(jxf,)Ng = (Ny + Da(jxf,) It follows by the func-
tional calculus that a(jxf,)N}/2 = (N, + 1Di’2aljyf,).

It is no loss of generality to assume that B is sym-

metric since NIJ-), is monotonically increasing with
respect to B. Thus

(¥, TN T,¥) = W + 1 2a(ix £,)T, 912
—Z)HN +1)”2 T,[a(y, jx f,)
—a™(y_xf,)]¥l? (6.14)

by (6.12). We apply the inductive assumption and the
friangle inequality to the right side of (6.14) to
dominate it by

2d[2‘ IV + 1)2a(y, jx f,) |2
+EH(N + 1)i2a*(y_x f,)¥]2].

Each of the above sums can be estimated as in
Lemma 6. 5; for example,

LN + D)2aly, jx )02 = Zllaly, jx f,) N/2w||2

< di|(V + 1)1/2N2y | 2
< IV + 1) D2y 2

where d, is independent of g.

Corollary 6.1: w, (N, 5) < c.

Finally we note that it is possible to interpolate be-
tween the results (6.9) and (6.10). For instance, by a
variant of the above proof it follows that if 7 <
min(3, (1/s)), then

. 1
NT,BNB] < d[Hren(g) + 1]]
and from this that if v <(j + 1)-1s-[#2]7 then
j+ i+1
N5 < dHypen(g) + 117,

APPENDIX: DERIVATION OF THE DRESSING
TRANSFORMATION

Following Friedrichs,1 we first give a heuristic deri-
vation of the dressing transformation 7, that leads to

its defining property (A9). We then skefch a rigorous

proof that the 7, constructed in Sec. 2 possesses this

property.

Friedrichs observes that turning on the interaction
H,(g) bas the effect of replacing the energy function u
of the theory by p,. It is reasonable to expect that

H,..,(g) can be expressed in the form

= [b*(ky)u,(ky, (A1)

where the b#(: b or b*) are linear combinations of the
a. To determine b* we note that

(x) (2m) S/ZJezkxa (xk)dE

Hpon(8) ko)b(ky)dk,dk,,

= (u/2)12¢(x, 0) + ¥2p)127(x, 0), (A2)
while we ought to have
b¥(x) = (1,/2)12¢(x, 0) + i(2p,)120(x,0).  (A3)

Eliminating ¢ and 7 from (A2) and (A3), we obtain
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bk =y, alk) + y_a*(— k),

A4

bMk) = y_al— k) + v, a*(k), (ag)
where

y, = %(p;/2“—1/2 + u£1/2“1/2)' (AD)

One can verify formally that this choice of bt gives
equality between the expressions (Al) and (2. 5) for
Hren(g)‘

We now reformulate the transformation (A4) more

carefully. Letf ¢ L2(Rs). For ¥ = (¥, ¥, ") €
¥, the destruction operator a(f) is defined by
(@), (pys.-.sP,)

= + DY2 [k f(R)¥, (b1, sDp F). (AB)

Both a(f) and its adjoint [a(f)]* = a *(jf) are densely
defined operators in ¥ whose domams include
D(N1/2) where N is the number operator. [Here j is

complex conjugation in momentum space; for f(x) real,
jf = ¥f.] We define modified annihilation and creation
operators on D(N 1/2) by

a@, f) + a* jf),
a_ jif) + a*@w, 1),

where w, =y} = 3(p "1/2p1/2 £ ;11/2,-1/2) are bounded
operators on X. It is easy to verify that [6(f)]* =
6*(jf) and that b and b* satisfy the canonical commut-
ation relations. Hence (A7) is a canonical transfor-
mation (i.e.,a Bogoliubov or symplectic transformation),

(AT)

In terms of the operators u and p of (2.6),

w, =3(pxphu=h,u. (A8)
As proved in Corollary 2.1, %z _ € HS. Therefore

w_j € HS and by a well-known theorem (see for in-
stance Theorem 4.1 of Ref. 2), the canonical trans-
formation (A7) is proper. That is, there exists a

unitary operator T, (unique up to phase) such that
# -1 — pff
T, a"(f)T;1 = b7(f).

Of course when g = 1, w_j ¢ HS and the transforma-
tion (A7) is improper. A comparison of (Al), (A9),
and (2. 3) shows that 7, is the desired dressing trans-
formation of Sec. 2 which effects the unitary equi-
valence between H,. ., (g) and Hy(g).

(A9)

It remains to verify that 7_ as constructed in (2. 10)
satisfies (A9). As in Sec. Zg let W = dT(w) where u =
ei®, Using the fact that j antlcommutes with w we
calculate that the commutator (ad W)a(f) = [W, a(f)]=
a(wf), valid as an operator equality on D(N3/2),
Taking f real for convenience we similarly find that
on D(N372) (ad iL)a(f) = a*(lf) and (ad iL)a*(f) =
a(lf).

A formal proof of (A9) can be given as follows by
means of the Baker—Hausdor{f{ formula. With U; and
U, defined as in (2. 10) we have

Ual U = io(adz'L}"a(f)/n!
= al(coshl) f] + a*|(sinhi) f]
= a(h, f) + a*(jh_ f)

(A8).

(A10)

by (2.8) and Similarly,
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o0

Uya(f)U) = 2iiraw=f)/n! = aluf).

n=0

(A11)
Since T, = U,U,, we obtain

1, a(f)Tg* = alh,uf) + a*(jh_uf)
=aw, f) + a*w_jf) = b(f).

We now convert the above argument into a rigorous
one that takes into account convergence and domain
questions. Since W commutes with N, it is clear that
Ug(a) = eie¥ and U, (a)* leave D(N”)invariant for
arbitrary rezl o and positive integer »n. Let @ and ¥
be vectors in C®(N). F(a) = (&, Uy(a)a(f)Uy(a)*¥) is
then a well-defined infinitely differentiable function of
a. In fact F®(0) = (&, adiW)ra(f)¥) = (®,ia{wf)¥).
Hence F(a) is an analytic function of o and in particu-
lar, F(1) =2, FW(0)/n! = (@,a(uf)¥). This establish-
es (A11) as a form equation on C*(N) x C™(N) and
by extension as an operator equation on D(N1/2),

The relation (A10) is somewhat more troublesome,
Again we write U, {(a) = eiel, Since by Corollary 2.1
I € HS, it is easy to see that the expansion U,(a)¥ =
e L) /0¥ is convergent for ¥ a vector with a
finite number of particles, provided that [a| < oy =
[Zi5t. This convergence enables us to prove that for

|a| <O!0,

a(f)UL(@)* = U (@) e la)f) + a*(jh(a)f)], (Al2)
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where h,(a) = cosh(a!) and k_(a) = sinh(al). Equation
(A12) is first proved as a form relation on © X D
[see (6.1)], but it then extends to an operator equality
on D(N1/2),

From (Al12) we can then deduce that if |a| < a,,

U, (a)*D(N) € D). (A13)

The method is to write NU,(a)* = 23a*(f,)a(f,)U,(a)*
as in Sec. 6 and to use (Al12) and its adjoint relation to
“commute” the U,(a)” to the left; this displays NU{(@)*
in the form Ul(a)*A, where A is an unbounded oper-
ator whose domain includes D(N); and (Al3) is proved.
But U, (a/n)» = U,(a) so that, in fact, (A13) holds for
all «.

It is now a simple matter to prove (Al0). For ¢,¥
D(N), the function G(a) = (U (a)*®, a(f)U,(a)*¥) is
Cl in @ by (A13). When G'(a) is calculated, it too is
seen to be C1 and by continuing this argument we see
that G(a) is actually analytic in @. Thus (A10) follows
as did (A11).

Finally we mention that the same method can be
applied to show that on D(N1/2):

T ()T, = aly, f) — a*(§y_f). (A14)
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The line just before Eq. (4. 4) should read: “x, by

(x — x,) = 0 in (4. 3) gives.” Consequently, Eq. (4.5) is
valid only for x > x,. For x < x,, note that Eq, (4. 3)
shows that G(x, xy) = G(x,, x) so that we have

X
Gx, %) = — foods e(sle(s + x — x5), x> x, (4.5a)

Glx, xy) = — j:ds e(s)e(s + xy —x), x<=x5. (4.5b)

These two equations together should replace both Egs.
(4. 5) and (1. 3a). Equation (1, 3b) is, of course, cor-
rect as it stands.
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Uya(f)U) = 2iiraw=f)/n! = aluf).

n=0

(A11)
Since T, = U,U,, we obtain

1, a(f)Tg* = alh,uf) + a*(jh_uf)
=aw, f) + a*w_jf) = b(f).

We now convert the above argument into a rigorous
one that takes into account convergence and domain
questions. Since W commutes with N, it is clear that
Ug(a) = eie¥ and U, (a)* leave D(N”)invariant for
arbitrary rezl o and positive integer »n. Let @ and ¥
be vectors in C®(N). F(a) = (&, Uy(a)a(f)Uy(a)*¥) is
then a well-defined infinitely differentiable function of
a. In fact F®(0) = (&, adiW)ra(f)¥) = (®,ia{wf)¥).
Hence F(a) is an analytic function of o and in particu-
lar, F(1) =2, FW(0)/n! = (@,a(uf)¥). This establish-
es (A11) as a form equation on C*(N) x C™(N) and
by extension as an operator equation on D(N1/2),

The relation (A10) is somewhat more troublesome,
Again we write U, {(a) = eiel, Since by Corollary 2.1
I € HS, it is easy to see that the expansion U,(a)¥ =
e L) /0¥ is convergent for ¥ a vector with a
finite number of particles, provided that [a| < oy =
[Zi5t. This convergence enables us to prove that for

|a| <O!0,

a(f)UL(@)* = U (@) e la)f) + a*(jh(a)f)], (Al2)
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where h,(a) = cosh(a!) and k_(a) = sinh(al). Equation
(A12) is first proved as a form relation on © X D
[see (6.1)], but it then extends to an operator equality
on D(N1/2),

From (Al12) we can then deduce that if |a| < a,,

U, (a)*D(N) € D). (A13)

The method is to write NU,(a)* = 23a*(f,)a(f,)U,(a)*
as in Sec. 6 and to use (Al12) and its adjoint relation to
“commute” the U,(a)” to the left; this displays NU{(@)*
in the form Ul(a)*A, where A is an unbounded oper-
ator whose domain includes D(N); and (Al3) is proved.
But U, (a/n)» = U,(a) so that, in fact, (A13) holds for
all «.

It is now a simple matter to prove (Al0). For ¢,¥
D(N), the function G(a) = (U (a)*®, a(f)U,(a)*¥) is
Cl in @ by (A13). When G'(a) is calculated, it too is
seen to be C1 and by continuing this argument we see
that G(a) is actually analytic in @. Thus (A10) follows
as did (A11).

Finally we mention that the same method can be
applied to show that on D(N1/2):

T ()T, = aly, f) — a*(§y_f). (A14)
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